Mathematical Methods 3

Sheet F

In this worksheet we consider properties of Laplace Transforms and their application to ODE's. The Laplace transform is denoted

$$L_f(p) \equiv \overline{f}(p) = \int_0^\infty f(t) \mathrm{e}^{-pt} \,\mathrm{d}t.$$

- 1. For functions f(x) absolutely integrable on $(-\infty, \infty)$ and zero for x < 0 show that
 - (a) $\mathcal{F}{f} = L_f(-ik)$
 - (b) $\mathcal{F}_s{f} = -\mathrm{Im}(L_f(-ik))$
 - (c) $\mathcal{F}_c{f} = \operatorname{Re}(L_f(-ik))$
- 2. Assuming that the Laplace transforms of f(t) and g(t) exist verify the following relations:

(a)
$$g(t) = e^{at} f(t) \Rightarrow L_g(p) = L_f(p-a)$$

(b) $g(t) = f(at) \Rightarrow L_g(p) = \frac{1}{a} L_f(p/a)$
(c) $g(t) = t^n f(t) \Rightarrow L_g(p) = (-1)^n \frac{d^n}{dp^n} L_f(p)$
(d) $g(t) = \int_0^t f(t') dt' \Rightarrow L_g(p) = \frac{1}{p} L_f(p)$
(e) $g(t) = \frac{f(t)}{t} \Rightarrow L_g(p) = \int_p^\infty L_f(p') dp'$

(f)
$$g(t) = t^{-1/2} \Rightarrow L_g(p) = \sqrt{\frac{\pi}{p}}$$

- 3. Find the inverse Laplace transform of the following:
 - (a) $(p^2 3p + 2)^{-1}$ (b) $p^{-2}(p^2 + 1)^{-1}$ (c) $p/(p^2 - 2p + 5)$ (d) (2p+1)/(p(p+1)(p+2))
- 4. The Laplace transform of $t^{-3/2}e^{-1/t}$ is denoted F(p). Show that

$$\frac{\mathrm{d}F}{\mathrm{d}p} = -\frac{F}{p^{1/2}}$$

Hence deduce that $F(p) = \sqrt{\pi} e^{-2\sqrt{p}}$.

Laplace Transforms

5. Find the Laplace transforms of the functions $f(t) = t^a$ and $g(t) = t^b$ where $a, b \in \mathbb{N}$ and f & g are assumed to vanish for t < 0. Construct the convolution of f(t) and g(t), find its Laplace transform and deduce that

$$\int_0^1 y^a (1-y)^b \, \mathrm{d}y = \frac{a!b!}{(a+b+1)!}.$$

6. Solve the differential equation

$$\frac{d^2}{dt^2}y(t) + 4y(t) = 3\cos 2t, \qquad y(0) = 1, \qquad \frac{d}{dt}y(0) = 0$$

using Laplace transforms.

7. Use Laplace transforms to find the solution of the following simultaneous differential equations for unknowns x(t), y(t):

$$x' + y' + x = -e^{-t}$$

 $x' + 2y' + 2x + 2y = 0$, with $x(0) = -1, y(0) = 1.$

8. Obtain the solution of

$$y''(x) + (\alpha + \beta)y'(x) + \alpha\beta y(x) = f(x),$$
 with $y(0) = y'(0) = 0$

where $\alpha \neq \beta$ using Laplace Transforms leaving your answer in the form of an integral.