Sheet F

Laplace Transforms

In this worksheet we consider properties of Laplace Transforms and their application to ODE's. The Laplace transform is denoted

$$
L_{f}(p) \equiv \bar{f}(p)=\int_{0}^{\infty} f(t) \mathrm{e}^{-p t} \mathrm{~d} t
$$

1. For functions $f(x)$ absolutely integrable on $(-\infty, \infty)$ and zero for $x<0$ show that
(a) $\mathcal{F}\{f\}=L_{f}(-i k)$
(b) $\mathcal{F}_{s}\{f\}=-\operatorname{Im}\left(L_{f}(-i k)\right)$
(c) $\mathcal{F}_{c}\{f\}=\operatorname{Re}\left(L_{f}(-i k)\right)$
2. Assuming that the Laplace transforms of $f(t)$ and $g(t)$ exist verify the following relations:
(a) $g(t)=\mathrm{e}^{a t} f(t) \Rightarrow L_{g}(p)=L_{f}(p-a)$
(b) $g(t)=f(a t) \Rightarrow L_{g}(p)=\frac{1}{a} L_{f}(p / a)$
(c) $g(t)=t^{n} f(t) \Rightarrow L_{g}(p)=(-1)^{n} \frac{d^{n}}{d p^{n}} L_{f}(p)$
(d) $g(t)=\int_{0}^{t} f\left(t^{\prime}\right) d t^{\prime} \Rightarrow L_{g}(p)=\frac{1}{p} L_{f}(p)$
(e) $g(t)=\frac{f(t)}{t} \Rightarrow L_{g}(p)=\int_{p}^{\infty} L_{f}\left(p^{\prime}\right) d p^{\prime}$
(f) $g(t)=t^{-1 / 2} \Rightarrow L_{g}(p)=\sqrt{\frac{\pi}{p}}$
3. Find the inverse Laplace transform of the following:
(a) $\left(p^{2}-3 p+2\right)^{-1}$
(b) $p^{-2}\left(p^{2}+1\right)^{-1}$
(c) $p /\left(p^{2}-2 p+5\right)$
(d) $(2 p+1) /(p(p+1)(p+2))$
4. The Laplace transform of $t^{-3 / 2} \mathrm{e}^{-1 / t}$ is denoted $F(p)$. Show that

$$
\frac{\mathrm{d} F}{\mathrm{~d} p}=-\frac{F}{p^{1 / 2}}
$$

Hence deduce that $F(p)=\sqrt{\pi} \mathrm{e}^{-2 \sqrt{p}}$.
5. Find the Laplace transforms of the functions $f(t)=t^{a}$ and $g(t)=t^{b}$ where $a, b \in \mathbb{N}$ and f $\& g$ are assumed to vanish for $t<0$. Construct the convolution of $f(t)$ and $g(t)$, find its Laplace transfrom and deduce that

$$
\int_{0}^{1} y^{a}(1-y)^{b} \mathrm{~d} y=\frac{a!b!}{(a+b+1)!}
$$

6. Solve the differential equation

$$
\frac{d^{2}}{d t^{2}} y(t)+4 y(t)=3 \cos 2 t, \quad y(0)=1, \quad \frac{d}{d t} y(0)=0
$$

using Laplace transforms.
7. Use Laplace transforms to find the solution of the following simultaneous differential equations for unknowns $x(t), y(t)$:

$$
\begin{gathered}
x^{\prime}+y^{\prime}+x=-\mathrm{e}^{-t} \\
x^{\prime}+2 y^{\prime}+2 x+2 y=0, \quad \text { with } \quad x(0)=-1, y(0)=1 .
\end{gathered}
$$

8. Obtain the solution of

$$
y^{\prime \prime}(x)+(\alpha+\beta) y^{\prime}(x)+\alpha \beta y(x)=f(x), \quad \text { with } \quad y(0)=y^{\prime}(0)=0
$$

where $\alpha \neq \beta$ using Laplace Transforms leaving your answer in the form of an integral.

