Sheet H

Generalised Functions

In this worksheet we consider some properties of generalised functions

1. Verify the following properties of the Dirac δ-function:
(a) $\delta(a x)=\frac{1}{|a|} \delta(x)$,
(b) $\delta\left(t^{2}-a^{2}\right)=\frac{\delta(t+a)+\delta(t-a)}{2|a|}$,
(c) $\int_{-\infty}^{\infty} \delta(t-a) \delta(t-b) d t=\delta(a-b)$
(d) $\delta(t)=-t \delta^{\prime}(t)$
where a and b are real constants, and the prime denotes differentiation.
2. Prove the Fourier inversion formula

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k \int_{-\infty}^{\infty} f(\xi) \mathrm{e}^{\mathrm{i} k(\xi-x)} d \xi
$$

by interchanging the order of integration and using the definition of the δ-function.
3. Show that $\delta(\sin x)=\sum_{n=-\infty}^{\infty} \delta(x-n \pi)$.
4. The function $f(x)$ is defined by

$$
f(x)= \begin{cases}1+x, & -1<x<0 \\ 1-x, & 0 \leq x<1\end{cases}
$$

and vanishes for $|x| \geq 1$.
(a) Calculate the Fourier transform of $f(x)$.
(b) Find the first and second derivatives of $f(x)$ and show that

$$
\begin{equation*}
f^{\prime \prime}(x)=\delta(x+1)-2 \delta(x)+\delta(x-1) . \tag{1}
\end{equation*}
$$

Hence recalling that $\mathcal{F}\left(f^{\prime \prime}\right)=-k^{2} \mathcal{F}(f(x))$, calculate the Fourier transform of $f(x)$ from (1).
5. The definition of the δ-function given in the lecture notes is not the only way of defining a δ-function. Show that the following representations of the δ-function also satisfy all the required conditions (equations (4.1) and (4.2) in the lecture notes):

$$
\begin{array}{ll}
\text { (i) } \delta(x)=\lim _{a \rightarrow 0}\left(\frac{1}{\pi} \frac{a}{a^{2}+x^{2}}\right) & \text { (ii) } \delta(x)=\lim _{a \rightarrow 0}\left(\frac{1}{a \sqrt{\pi}} \mathrm{e}^{-x^{2} / a^{2}}\right)
\end{array}
$$

[HINT: The result $f(x)=1 /\left(a^{2}+x^{2}\right) \Rightarrow F(k)=(\pi / a) \mathrm{e}^{-a|k|}$ will help with (i)]
6. In $\S 3.6$ of the lecture notes, we considered the problem of a string falling under gravity, defined by the equation $u_{t t}=c^{2} u_{x x}+g$ with B.C. $u(0, t)=0, t>0$ and I.C's $u(x, 0)=$ $u_{t}(x, 0)=0, x>0$ and used Laplace Transforms to give

$$
L_{u}(x, p)=\frac{g}{p^{3}}\left(1-\mathrm{e}^{-p(x / c)}\right)
$$

Show that

$$
\mathcal{L}\{\delta((x / c)-t)\}=\mathrm{e}^{-p(x / c)}
$$

and hence perform the inverse Laplace Transform of L_{u} above using this result, convolutions and properties of the δ-function to give

$$
u(x, t)=\frac{g t^{2}}{2}-\frac{g}{2} H(t-(x / c))(t-(x / c))^{2}
$$

as in the lecture notes.
7. During example 1.8 of the course notes, it was claimed that the solution to a certain problem was unique without proving this. This question is designed to demonstrate that this solution was in fact the unique solution. We will need the result from the lectures,

$$
\delta(k)=\frac{1}{\pi} \int_{0}^{\infty} \cos k x d x
$$

As a reminder, example 1.8 was given as

$$
u_{x x}+u_{y y}=0, \quad y>0, \quad-\infty<x<\infty
$$

with $u(x, 0)=0$ and $u_{y}(x, 0)=\sin (n x) / n$ (and $n>0$ w.l.o.g.) It was claimed that the unique solution was

$$
\begin{equation*}
u(x, y)=\frac{\sinh n y \sin n x}{n^{2}} . \tag{2}
\end{equation*}
$$

To prove this, let us start with the most general representation of the solution to Laplace's equation satisfying $u(x, 0)=0$:

$$
\begin{equation*}
u(x, y)=\int_{0}^{\infty}\{A(k) \cos k x+B(k) \sin k x\} \sinh k y d k . \tag{3}
\end{equation*}
$$

(a) Verify that (3) does indeed satisfy Laplace's equation and $u(x, 0)=0$. Why is it sufficient for the integral in (3) to start from $k=0$ instead of $k=-\infty$ if it is to be the most general representation of the solution?
(b) Apply the second BC, namely $u_{y}(x, 0)=\sin (n x) / n$, multiply (in turn) the result by $\sin p x$ and $\cos p x(p>0)$ and integrate between $-\infty<x<\infty$ to show that $A(k)=0$, $B(k)=\delta(n-k) /(k n)$. Hence show that the solution is given by (2).
(c) Comment on the analogy between the procedure in part (b) and Fourier series.

