Mathematical Methods 3

Sheet J

Green's functions for PDE's

Constructing and using Green's functions to solve PDE's.

- 1. The Green's function for the Poisson equation $(\nabla^2 \phi = f)$ in three dimensions is given by $g(\mathbf{x}, \boldsymbol{\xi}) = -1/(4\pi |\mathbf{x} \boldsymbol{\xi}|)$. Hence find $\phi(\mathbf{x})$, when
 - (a) $f \equiv f_1(\mathbf{x}) = \delta(r);$
 - (b) $f \equiv f_2(\mathbf{x}) = \frac{-a^2 e^{-ar}}{4\pi r},$

where $r = |\mathbf{x}|$. Thus show that when $f = f_1 + f_2$,

$$\phi(\mathbf{x}) = \frac{-\mathrm{e}^{-ar}}{4\pi r}$$

2. Given that the Green's function for Poisson's equation in the region $-\infty < x, y < \infty$ is given by

$$g(x, y; \xi, \eta) = \frac{1}{2\pi} \log r$$

where $r^2 = (y - \eta)^2 + (x - \xi)^2$, use the method of images to determine the Green's function for Laplaces equation in the *half-space* $-\infty < x < \infty$, y > 0 satisfying

(a) g(x,0;ξ,η) = 0 - i.e. a Dirichlet condition on y = 0
(b) ∂/∂y g(x,0;ξ,η) = 0 - i.e. a Neumann condition on y = 0.

Hence express the solution of

$$\nabla^2 \phi = f(x, y), \qquad -\infty < x < \infty, \quad y > 0$$

with $\phi(x, 0) = 0$, in terms of a double integral involving your Green's function.

3. The forced heat equation is given by

$$\frac{\partial \theta}{\partial t} - \frac{\partial^2 \theta}{\partial x^2} = f(x, t), \qquad -\infty < x < \infty, \quad t > 0$$

and satisfies the homogeneous initial condition, $\theta(x,0) = 0$. Use the Green's function for this general problem in Green's formula to find the solution for a particular forcing $f(x,t) = \delta(x-x_0)\delta(t-t_0)$ where $t_0 > 0$.

4. Consider the forced wave equation, with general initial conditions

$$\frac{\partial^2 u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = f(x, t), \qquad u(x, 0) = \phi(x), \qquad u_t(x, 0) = \psi(x), \qquad -\infty < x < \infty$$

Use the fact that the problem is *linear* to write $u = u_1 + u_2$, where you should state boundary value problems for each of u_1 and u_2 which can be solved using methods from the course.