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Abstract – Circular microresonators (microdisks) are micron size dielectric disks embedded in
a material of lower refractive index. They possess modes with complex eigenvalues (resonances)
which are solutions of analytically given transcendental equations. The behavior of such eigenvalues
in the small opening limit, i.e. when the refractive index of the cavity goes to infinity, is analyzed.
This analysis allows one to clearly distinguish between internal (Feshbach) and external (shape)
resonant modes for both TM and TE polarizations. This is especially important for TE polarization
for which internal and external resonances can be found in the same region of the complex
wave number plane. It is also shown that for both polarizations, the internal as well as external
resonances can be classified by well-defined azimuthal and radial modal indices.

Copyright c© EPLA, 2009

Introduction. – Thin dielectric microcavities of
various shapes filled with a homogeneous material
are key components for the construction of optical
microresonators and microlasers [1,2]. Their eigenmodes
(resonances) are characterized by complex wave numbers
k= kr + iki, which are complicated solutions of 3D
Maxwell equations. However, the modes of microcavities,
with the thickness only a small fraction of the mode wave-
length, can be studied in 2D formulation with the aid of
an effective refractive index neff which takes into account
the material as well as the thickness of the cavity, see, for
example, appendix I of ref. [3], or chapter II of ref. [4].
Among such microcavities, circular cavities are one of the
few cases where the transcendental equations for complex
eigenmodes (resonances) can be found analytically.
The resonances can be divided into two classes.

Following the common terminology, see, for example,
refs. [5,6], we will call them “internal” (or “Feshbach”)
and “external” (or “shape”) resonances. These notions
have their origin in quantum reactions where internal
resonances correspond to resonances which become real
(bound states) and external resonances stay complex
in some limit of the coupling between the reaction
coordinate and the internal degrees of freedom. In the
context of dielectric microcavities the analogous limit
is the so-called small opening limit where the refractive
index n of the microcavity goes to infinity. The internal
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Fig. 1: TM (left panel) and TE (right panel) resonances of a
dielectric microdisk of radius R and refractive index n= 1.5 in
the complex kR plane. The straight solid lines in both panels
show the boundary Im kR=− 1

2n
ln n+1
n−1 .

resonances are resonances which become real as n→∞,
while the external resonances are resonances which stay
complex (not real) in this limit.
For transverse magnetic polarization of the electromag-

netic field (TM; electric field perpendicular to the disk
plane) and a fixed refractive index n, the two kinds of
resonances are well separated in the complex wave number
plane. As illustrated in the left panel of fig. 1, TM internal
resonances with relatively large Re kR satisfy the inequal-
ity, see, for example, refs. [5,6],

|Im kR|� 1
2n
ln
n+1

n− 1 , (1)

where R is the radius of the circular disk. Results on
scattering at obstacles with convex boundaries, see, for
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example, refs. [7,8], suggest that TM external resonances
satisfy

|Im kR|> const |Re kR|1/3 . (2)

Therefore, TM external resonances have in general quite
a large imaginary part compared to internal ones. As a
consequence they are very leaky (i.e. have low Q-factors
defined as Q= kr/2|ki|) and cannot be directly used for
lasing.
As illustrated in the right panel of fig. 1, for transverse

electric polarization (TE; magnetic field perpendicular to
the disk plane) one does not always find an analogous sepa-
ration. While one can argue that TE external resonances
still satisfy a condition similar to (2), there is no condition
analogous to (1) for TE internal resonances. For a fixed
refractive index n, there is therefore no clear separation
between some of the TE internal and external resonances,
and indeed, as we will show in this paper, the TE reso-
nances with Im kR in the range from −0.7 to −1.5 in the
right panel of fig. 1 consist of a mixture of internal and
external ones.
The purpose of this letter is to provide a detailed study

of the internal and external circular cavity (disk) reso-
nances. To this end, we carefully study the behavior of
the resonances in the small opening limit n→∞. We note
that for internal resonances this has recently been stud-
ied in ref. [9]. For completeness we reproduce their results,
using however a mathematically different and more illus-
trative approach. Our analysis allows us to clearly distin-
guish between internal and external resonant modes for
both TM and TE polarizations of the electromagnetic
field. This is especially important for TE polarization for
which, as we have already mentioned, internal and exter-
nal resonances can be found in the same region of the
complex wave number plane. Moreover, using the small
opening limit, we show that both internal and external
resonances can be classified by well-defined azimuthal and
radial modal indices for both polarizations.

Equations for resonances. – Let Ψ stand for Ez in
the case of TM polarization and for Hz in the case of TE
polarization, where Ez and Hz are electric and magnetic
fields, respectively. For a homogeneous dielectric microdisk
of radius R and effective refractive index n in a medium
of refractive index 1, Maxwell’s equations reduce to

∂2Ψ

∂r2
+
1

r

∂Ψ

∂r
+
1

r2
∂2Ψ

∂ϕ2
+ k2n2Ψ(r, ϕ) = 0, (3)

inside the microdisk (r <R) and the same form with
n replaced by 1 outside the microdisk (r >R). The
resonances are obtained by imposing outgoing boundary
conditions at infinity, i.e. we require that Ψ(r)∝ eikr/√r,
r→∞. For physical reasons, the value of the EM field at
the disk center must be finite. These boundary conditions
in combination with the continuity of the electric field Ez
and its derivative for TM modes (or the magnetic field Hz
and its derivative divided by the square of the refractive

index for TE modes) at r=R lead to the resonant field Ψ
in the form of twofold degenerate (for m> 0) whispering
gallery (WG) modes

Ψmz =



NmJm (knr)

(
cosmϕ
sinmϕ

)
, r <R,

Hm (kr)

(
cosmϕ
sinmϕ

)
, r >R,

(4)

where for TM modes the complex wave numbers k are
solutions of

Jm(knR)H
′
m(kR)−nJ ′m(knR)Hm(kR) = 0, (5)

and for TE modes the complex wave numbers k are
solutions of

Jm(knR)H
′
m(kR)−

1

n
J ′m(knR)Hm(kR) = 0. (6)

Here Jm and Hm are Bessel and Hankel functions of the
first kind, respectively, m= 0, 1, 2, . . . is the azimuthal
modal index, and Nm =Hm(kR)/Jm(knR) are constants.
Physically, the azimuthal modal index m characterizes
the field variation along the disk circumference, with the
number of intensity hotspots being equal to 2m. The radial
modal index q= 1, 2, . . . will be used to label different
resonances with the same azimuthal modal index m. We
will discuss mathematical and physical interpretations of
the radial modal index q in the next sections.
In general, to study resonant modes we firstly solve

numerically eq. (5) and eq. (6) for several azimuthal modal
indices m and for the fixed refractive index n= 1.5, using
as initial guesses a fine grid in the complex wave number
plane. Then we numerically continue the solutions for
increasing and decreasing n.

TM modes. – Figures 2 and 3 show the behavior
of TM resonances given by the solutions of eq. (5) for
several azimuthal modal indices m under variation of
the refractive index n. For a fixed n, like for n= 1.5 in
figs. 2 and 3, one can clearly distinguish between the
internal and external resonances as they are located in
well-separated regions of the complex wave number plane:
the internal resonances have much smaller imaginary parts
in comparison to the external resonances. For each of the
two kinds of resonances with the same m, we consecutively
assign a radial modal index q in accordance with the
increase of their real parts kr starting from q= 1.
Another difference between internal and external reso-

nances (in addition to their location in the complex wave
number plane) is the number of radial modes in each group
of fixed azimuthal indexm. While there are infinitely many
internal resonances for each azimuthal index m� 0, there
are, as we will see below, only a finite number of external
resonances for a given m, namely, none if m is 0 or 1, m2
if m is even, and m−12 if m is odd. This is in agreement
with the results of ref. [6] where the asymptotic formulas
for TM external resonances are derived.
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Fig. 2: TM internal (thin curves) and external (thick curves)
resonances of a dielectric microdisk of radius R and refractive
index n varying from n= 1.001 (loose ends) to infinity (crosses)
in the complex kR plane (upper panel) and nkR plane (lower
panel). The filled circles correspond to n= 1.5.

For TM internal resonances, the physical meaning of
the radial modal index q is the number of intensity
hotspots in the radial direction inside of the disk, see fig. 4.
For TM external resonances, the index q has no similar
physical interpretation. These resonances are so deep in
the complex wave number plane that the corresponding
Bessel functions, see eq. (4), have almost no variation
inside the disk. This is illustrated in fig. 5.
Let us now study the behavior of the scaled wave

numbers nkm,qR of TM internal resonances in the small
opening limit, n→∞. One would intuitively expect that
in such a limit these resonances reduce to the real
eigenvalues of a closed disk which are given by the
corresponding zeros of Bessel functions jm,q. However, as
we will see below, this is not the case. In fact, for the TM
internal resonances, see the thin curves in figs. 2 and 3, we
have

lim
n→∞nkm,qR = jm−1,q, m �= 0,
lim
n→∞nk0,qR = j1,q−1, q �= 1,
lim
n→∞nk0,1R = 0.

(7)

Fig. 3: TM internal (thin curves) and external (thick curves)
resonances with the azimuthal modal index m= 23 of a
dielectric microdisk of radius R and refractive index n varying
from n= 1.001 (loose ends) to infinity (crosses) in the regions
16<Re(kR)< 74, −11< Im(kR)< 0 of the complex kR plane
(upper panel) and nkR plane (lower panel). The filled circles
correspond to n= 1.5.

Fig. 4: (Color online). The intensity of TM internal resonant
modes with the indicated modal indices in the near-field region
of the dielectric disk with n= 1.5, R= 1. Red indicates high
intensities, purple/black indicates low intensities.

This can be obtained by rewriting eq. (5) as

1

n

Jm(knR)

Jm+1(knR)
=
Hm (kR)

Hm+1 (kR)
.

34003-p3



C. P. Dettmann et al.

Fig. 5: (Color online). The intensity of TM external resonant
modes with the indicated modal indices in the near-field region
of the dielectric disk with n= 1.5, R= 1.

Then, from inspecting figs. 2 and 3 we see that the
quantity nkR converges to finite real values and the
quantity kR converges to 0 as n→∞ for all TM internal
resonances. But for kR→ 0 we have
Hm (kR)

Hm+1 (kR)
∼
{
kR/(2m) , m> 0,

(iπ/2− ln(kR/2)− γ) kR , m= 0,

where γ = 0.5772 . . . is the Euler-Mascheroni constant. As
a result, we obtain for n→∞ and m �= 0,

1

n

Jm(knR)

Jm+1(knR)
→ kR

2m
,

or equivalently

Jm−1(knR) =
2m

knR
Jm(knR)−Jm+1(knR)→ 0,

i.e. all n scaled TM resonance wave numbers nkm �=0,qR
approach the zeros jm−1, q (rather than jm, q). Then, for
n→∞ and m= 0 we have

knRJ1(knR)

J0(knR)
∼ 1

iπ/2− ln(kR/2)− γ → 0.

Since J0, J1 are regular along the real axis, we have that
nk0,1R→ 0 and nk0,q �=1R→ j1,q−1 as illustrated in fig. 2.
As for TM external resonances, their wave numbers kR

assume (finite) complex (not real) limits, and accordingly
their scaled wave numbers, nkR, go to infinity. Using
standard asymptotics for Bessel functions, one sees that

1

n

Jm(knR)

Jm+1(knR)
→ 0 , n→∞ .

This immediately leads to

Hm(kR)→ 0, n→∞,
i.e. all TM external resonance wave numbers (not scaled
with respect to n) satisfy the relation

lim
n→∞ km,qR= hm,q, (8)

Fig. 6: TE internal (thin curves) and external (thick curves)
resonances of a dielectric microdisk of radius R and refractive
index n varying from n= 1.001 (loose ends) to infinity (crosses)
in the complex kR plane (upper panel) and nkR plane (lower
panel). The filled circles correspond to n= 1.5.

where hm,q are complex zeros of Hankel functions. It is
known, see ref. [10], that there is only a finite number of
such zeros for a given m: 0 if m is 1 or 2, m/2 if m is even,
and (m− 1)/2 if m is odd. This exactly corresponds to our
findings for the number of radial modes in each group of
external resonances with fixed m.

TE modes. – Figures 6 and 7 show the behavior of
TE resonances given by the solutions of eq. (6). Like
for TM polarization, we separate internal and external
resonances with the same m and assign the radial modal
index q to each member of those two sets independently,
in accordance with the increase of their real parts kr
starting from q= 1. But there could be a problem. The TE
external resonances km,m2 with m= 2, 4, . . . and km,m+12
with m= 1, 3, . . ., i.e. the last ones in the sets of fixed m,
do not necessarily have large imaginary parts. (We will
call these resonances the “special” ones.) As a result, they
could be mixed with TE internal resonances and their
field intensities could display some features of internal
resonances as well. Therefore, the only way to separate
them is to trace them with increasing n till they reach
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Fig. 7: TE internal (thin curves) and external (thick curves)
resonances with the azimuthal modal index m= 23 of a dielec-
tric microdisk of radius R and refractive index n varying
from n= 1.001 (loose ends) to infinity (crosses) in the regions
16<Re(kR)< 74, −11< Im(kR)< 0 of the complex kR plane
(upper panel) and nkR (lower panel). The filled circles corre-
spond to n= 1.5.

their limits (when n→∞), see the thick and thin curves
in figs. 6 and 7.
Using arguments similar to the ones in the previous

section on TM modes we find that eq. (6) takes the form
Jm(knR) = 0 for internal and H

′
m(kR) = 0 for external

resonances when n→∞. This means that for the scaled
wave numbers of the TE internal resonances

lim
n→∞nkm,qR= jm,q, (9)

as we intuitively expected. The TE external resonances
(not scaled with respect to n) approach the complex zeros
h′m,q of the corresponding Hankel function derivatives

lim
n→∞ km,qR= h

′
m,q. (10)

The thin and thick curves in figs. 6 and 7 illustrate the
results numerically.
The field intensities of most TE modes display patterns

similar to TM modes: the modal index q for internal
resonances gives the number of intensity hotspots in the
radial direction; for external resonances, which are deep

Fig. 8: (Color online). The intensity of TE external resonant
modes with the indicated modal indices in the near-field region
of the dielectric disk with R= 1 and n= 1.5 (left panel), n= 3.0
(right panel).

Fig. 9: (Color online). The intensity of TE resonant modes
with the indicated modal indices in the near-field region of the
dielectric disk with R= 1 and n= 1.5; “int” stands for internal
resonance, “ext” stands for external resonance.

in the complex wave number plane, there is almost no
field variation inside the disk. However, the situation is
different for the “special” TE external resonances. With
the variation of the disk refractive index their imaginary
parts could become relatively small. Then their field
intensity patterns become similar to those of internal
resonances, see the left panel in fig. 8. Moreover, for large
azimuthal indices m and relatively low refractive indices
n the “special” external resonances occupy positions
exactly where one would expect the corresponding internal
resonances, see the modes with n= 1.5 in fig. 7. As a result,
the field patterns of internal resonances to the left from the
“special” external one display some unexpected features as
well, see fig. 9. For example, the field intensities of internal
resonances k23,6 and k23,7 have five and six (rather than
six and seven) intensity peaks in the radial direction.
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Conclusions. – To summarize, we have studied in
detail the behavior of both internal (Feshbach) and exter-
nal (shape) resonances of an open microdisk in the small
opening limit, i.e. when the microdisk refractive index
goes to infinity, for both TM and TE polarizations.
Contrary to naive expectations, the limit values of the
open-disk resonances match the eigenvalues of the corre-
sponding closed disk with the zero (Dirichlet) boundary
conditions only for TE internal resonances. Based on the
obtained limits, a clear separation of all resonant modes
into internal and external ones has been achieved. While
such a classification is of interest in its own right, it should
also be useful for the construction of a trace formula for
open cavities, see ref. [6]. Moreover, this classification is
important for understanding the resonance level dynam-
ics in circular cavities perturbed by a point scatterer, see
ref. [11].
Furthermore, our analysis assigns mathematically

unambiguous azimuthal and radial modal indices to each
internal and external resonant mode. We showed that
the latter index has a clear physical interpretation only
for internal resonances, with one qualification. As the
refractive index n is decreased, one observes the striking
phenomenon that some special TE external resonances
join the set of internal resonances and share their features.
Our results should be of general interest since to the best
of our knowledge this is the first complete classification
of all resonant modes in the well-known and the simplest
open system —a dielectric microdisk.
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