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The cosmic microwave background (CMB) is a contemporary echo of the Big Bang. The
recently announced WMAP 1-year sky maps 1 provide exceptionally accurate data for
the CMB, making it possible to probe the physics of the early Universe down to an
unprecedented level of detail. Fluctuations in the CMB have a distribution that is close
to gaussian (i.e. normal) 2. There has been considerable interest in identifying physical
mechanisms that might lead to deviations from the gaussian distribution 2,3. One class
of cosmological models that have been much studied are those in which the Universe has
constant negative curvature; all photon trajectories are then exponentially unstable and
the gaussian distribution of the CMB fluctuations has been related to general properties
of quantum wavefunctions in chaotic systems 4,5,6. Inhomogeneities in the distribution
of matter imply a non-constant curvature. Here we show that, surprisingly, random
perturbations in the curvature can stabilize photon trajectories. We argue that this leads
to quantifiable non-gaussian fluctuations in the CMB, as well as having other potentially
important cosmological consequences.
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1. Introduction

Just after its birth, the Universe was very hot and dense; the protons and electrons
formed a gas of ionized matter coupled to radiation through the constant scattering
of photons. As it expanded and cooled there came a point when the radiation de-
coupled from the matter - this happened approximately 380,000 years after the Big
Bang. That radiation now forms the Cosmic Microwave Background (CMB) 7. The
CMB is isotropic down to one part in 105. At this scale there are temperature vari-
ations, or fluctuations, which carry the imprint of structures in the early Universe
7,8.

One interesting and much explored possibility is that the Universe has negative
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spatial curvature 9,10,11,12,13. For this to be consistent with observed properties of
the CMB, the absolute value of the curvature must be small: the Universe is flat
to within about 1%. If the curvature is taken to be constant (and negative) then
all of the geodesics are unstable: neighbouring geodesics diverge from each other
exponentially quickly. Generally, cosmological models with negative spatial curva-
ture are regarded as open, or non-compact. However, in the case of non-positively
curved three space the local metric structure does not determine the global topol-
ogy uniquely; in particular, it is possible for this to be compact 5,14. The geodesics
on compact surfaces of constant negative curvature are strongly chaotic: as well as
being unstable the dynamics is rapidly mixing. It has been suggested that the lat-
ter property accounts for the remarkable homogeneity observed in the Universe 9.
Quantum wavefunctions in systems where the classical mechanics is strongly chaotic
may be modelled by gaussian random functions (i.e. by a superposition of random
waves)6, explaining the fact that fluctuations in the CMB have a value distribution
that is close to gaussian 4,5. These wavefunctions have, in various systems, also been
observed to exhibit scars along short periodic orbits 15, and this has been linked
with non-isotropic structures in the CMB and in the distribution of galaxies 4.

It is obvious that the Universe is not exactly homogeneous and isotropic. Matter
is not smoothly distributed, but is organized into galaxies, galaxy clusters and even
superclusters of galaxy clusters. (This complex hierarchy is, according to inflation
theory 16, a result of the gravitational amplification of quantum fluctuations in the
very early Universe 17,18,19,20,21). Consequently, the curvature is not in reality con-
stant; it fluctuates. We show here that, surprisingly, these fluctuations can stabilize
geodesics, even if they are random; that is, if they are seen by a photon, as it moves,
to be stochastic.

2. Stochastic stabilization of photons

In order to establish the principle of stochastic stabilization, and to describe some
implications for cosmology, the calculations we report contain the essential ingredi-
ents for the effect, but ignore many additional, comparatively weaker phenomena
present in the early Universe. With this in mind, we begin with an expanding
isotropic homogeneous (Friedmann) cosmology perturbed by density fluctuations
with nonrelativistic velocities, neglecting perturbations of vector and tensor char-
acter such as gravitational waves, and pressure fluctuations, for example caused by
relativistic neutrinos. In the coordinate system called the ’conformal Newtonian’ or
’longitudinal’ gauge 22, with the spatial variables in Robertson-Walker form, such
a spacetime is described by the metric

ds2 = R2(τ)

{
(1 + 2Φ)dτ2 − 1− 2Φ

[1 + K
4 (x2 + y2 + z2)]2

(dx2 + dy2 + dz2)

}
. (1)

Here, R(τ) is the scale factor or spatial curvature radius of the Universe, τ =∫
R−1dt is conformal time, Φ ¿ 1 is the Newtonian gravitational potential, K = −1



January 29, 2004 12:0 WSPC/INSTRUCTION FILE SPRADO

SDPRADO 3

is the sign of the spatial curvature corresponding to a hyperbolic geometry, (x, y, z)
are comoving coordinates, expanding at the same rate as the Universe, and units
are chosen in which Newton’s constant G and the speed of light c are equal to unity.

The paths of photons through the spacetime are null geodesics. Since the equa-
tions for these are conformally invariant 23, the factor R2(τ) may be neglected as it
does not appear in the final results. The separation of two close photon trajectories
is determined by the geodesic deviation equation, which, when written in terms of
conformal time with respect to a basis aligned to the instantaneous direction of
motion, leads to an equation for the separation in the two orthogonal directions:

d2

dτ2

(
ξ

η

)
= −

(
K + 2Φξξ + Φζζ 2Φξη

2Φξη K + 2Φηη + Φζζ

)(
ξ

η

)
(2)

where constant exponential separation arising from the spatial curvature K, whose
value we take to be -1, is modified by the second derivatives of the Newtonian
potential, namely tidal forces.

These tidal forces are, in principle, entirely characterised by a complete knowl-
edge of the fluctuations in the matter density. As it moves, a photon will see them
as a time-varying force. We shall be interested in the case when this force fluctuates
rapidly (because the speed of light is large) and randomly (i.e. stochastically) with
zero mean.

In order to illustrate the qualitative behaviour of the solutions of this class of
equations, it is sufficient to consider a single component, satisfying

d2u

dτ2
= − (Af(τ)− 1)u. (3)

Here A is a control parameter and f(τ) is a stochastic forcing function, which
we take to have zero mean. This has a mechanical analogy: it also describes an in-
verted pendulum with a vertically moving pivot in the limit of small oscillations; see
Figure 1. In this case u denotes the angular displacement from the vertical and the
forcing term describes the height of the pivot. The gravitational force destabilizing
the pendulum corresponds to the smooth hyperbolic geometry of the unperturbed
cosmology, while the motion of the pivot corresponds to the metric perturbations
induced by fluctuations in the matter density.

Although equation (3) may appear rather simple, its solutions exhibit a rich
variety of qualitatively different behaviours in the long-time limit. If A = 0 the
solutions grow like exp (τ). When A 6= 0 we are interested in when the frequency ω

characterising the fluctuations in f(τ) is large. We therefore write u(τ) =< u(τ) >

+uf (τ), where < · · · > denotes a local time average over scales large compared to
ω−1. Hence < u > varies slowly, and uf is small is varies rapidly. Averaging over
the rapid fluctuations 24 gives, as ω →∞, that

d2

dτ2
〈u〉 =

(
1−A2

〈
v2

〉) 〈u〉 , (4)

where v(τ) =
∫

f(τ)dτ and the constant of integration is chosen so that v has zero
mean. It follows that if A2

〈
v2

〉
< 1 then u grows exponentially quickly as τ →∞,



January 29, 2004 12:0 WSPC/INSTRUCTION FILE SPRADO

4 Dettmann et al

Af (τ)

u

Fig. 1. The pendulum referred to in the text. The pivot moves along a vertical line, its height
given at time τ by Af(τ). The arm of the pendulum makes an angle u, which is assumed to be
small, with the upward vertical. When A = 0, u = 0 is an unstable equilibrium.

but if A2
〈
v2

〉
> 1 then u is bounded and oscillatory (i.e. stabilized). Numerical

simulations are shown in next section.

3. Numerical results

The photon stabilization, and the accuracy of (4), is illustrated by numerical sim-
ulations, the results of which are represented in Figures 2, 3 and 4. In these
simulations we took f(τ) =

∑
n sin (ωnτ + ϕn), with 100 frequencies ωn chosen

at random from [120, 600] and phases ϕn chosen at random from (−π, π] . Thus〈
v2

〉
= 1

2

∑
n

1
ω2 ≈ 1

1440 and so for A <
√

1440 ≈ 38 the expectation is that u grows

like exp
(
τ
√

1−A2/1440
)
, while for A >

√
1440 it is expected to oscillate with fre-

quency
√

(A2/1440− 1). In order to compare with astrophysical time-scales, note
that τ = 50 corresponds to a red-shift ratio of 502 = 2500 in a matter dominated
Universe

(
R ∼ √

t
)

when the spatial curvature scale is of the same order as the
space-time curvature. Observations indicate that the Universe is closer to spatial
flatness than this, so τ = 50 corresponds to a time longer than that since the Big
Bang.

Returning to (2), one can split the variables ξ and η into slow and fast compo-
nents as for u. Performing a local time average we find, in the high-frequency limit,
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Fig. 2. Solutions of (3) with the forcing f(τ) given by a combination of 100 sinusoidal functions
with angular frequencies chosen randomly with respect to the uniform distribution on [120, 600],
and phases chosen randomly from the uniform distribution on (−π, π ]. When A = 0, the solution
increases exponentially, corresponding to the fact that the photon trajectories are unstable. This
is also the case when A = 20 and A = 30. When A = 50, 60, 70 and 80 the solution is oscillatory,
indicating stability.

that

d2

dτ2

( 〈ξ〉
〈η〉

)
=

(|K|I−A2
〈
v2

〉) ( 〈ξ〉
〈η〉

)
, (5)

where v is the time integral of the perturbation matrix in (2) (i.e. the matrix
appearing in (2) with K=0) and I is the identity matrix. The stability of the trajec-
tory thus depends on the eigenvalues of the matrix

(|K|I−A2
〈
v2

〉)
; specifically,

if A

√〈
(v11 ± v12)

2
〉

< 1 it is unstable, and if
(|K|I−A2

〈
v2

〉)
; specifically, if

A

√〈
(v11 ± v12)

2
〉

> 1 it is stabilized by the stochastic fluctuations. Note that v11

and v12 are of the order of ω−1, and so the larger ω is the larger A has to be to give
stabilization.
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Fig. 3. Plots of log u vs. τ for the data corresponding to A = 20 and A = 30 in Figure 2. The
continuous black lines are best-fitting straight lines when τ > 6. For A = 20 the gradient is about
0.85 (the theoretical value is 0.8498 . . .). For A = 30 the gradient is about 0.62 (the theoretical
value is 0.6124 . . .).

4. Conclusions

Stabilization has several potentially important consequences. First, rather than be-
ing fully chaotic, the geodesic dynamics will have both chaotic trajectories and
stable islands. It is well established in the context of quantum chaos that stable
islands lead to a quantifiable non-gaussian component in the value distribution of
wavefunctions, whose precise form depends on the size and position of the islands 25.
Second, the motion of matter in the Universe will cause the curvature to change with
time. Since the matter dynamics is non-relativistic and only weakly coupled to the
photon dynamics, the curvature can be considered to be a system parameter, rather
than a dynamical variable. As it varies, orbits undergo bifurcations. These bifur-
cations give rise to a separate non-gaussian component in the value distribution of
quantum wavefunctions, quantified in the moments by universal scaling exponents in
the short-wavelength limit that have been calculated using the theory of singularity-
dominated strong fluctuations 26. We are thus led to predict related non-gaussian
components in the CMB. Third, stabilization typically amplifies scarring; in par-
ticular, orbits undergoing bifurcation give rise to what have been called superscars
26. Thus stabilization is likely to enhance considerably the influence of scars on the
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Fig. 4. Plots of the fourier transform of the data for u(τ) shown in Figure 2, as a function of
period 2π/ν (i.e. ν is the frequency conjugate to τ) when A = 50, 60, 70 and 80. In each case the
vertical dotted line marks the theoretical oscillation period, 2π/

√
A2/1440− 1.

CMB and on the generation of structure in the distribution of galaxies 4. This may
explain the previously puzzling observation that scars in constant-curvature models
are too weak to support the structures they have been conjectured to generate 4.
Fourth, stable islands are likely to have a major influence on the proposed relation-
ship between geodesics and galactic structure. These islands generically exhibit a
fractal hierarchy of structures and this may relate to the hierarchical structures seen
in the distribution of galaxies and clusters of galaxies. Stable orbits also typically
inhibit the rate of mixing, and so may play a role in the suggested links between
mixing and homogenization 9.
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