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Photon trajectories in models of the Universe that have constant negative spatial cur-
vature are exponentially unstable. We demonstrate that they can be stabilized by ad-
ditional random fluctuations in the curvature. The mechanism is analogous to the one
responsible for stabilizing the stochastic Kapitsa pendulum. We discuss the consequences
for the cosmic microwave background fluctuations.

The cosmological assumptions of homogeneity and isotropy imply a spatial ge-
ometry of constant curvature, as in the standard Friedmann-Roberston-Walker Uni-
verse. Recent observations' have shown that this curvature is small, but have not
yet determined its sign. The characteristic feature of negatively curved spaces is the
exponential separation of initially close geodesics, leading to chaotic instability of
cosmic microwave background (CMB) photons, for example, hence Gaussian fluctu-
ations in the CMB23. Similar chaotic mixing mechanisms have also been proposed
to explain pre-inflationary homogeneity* and arrows of time®.

It is obvious, however, that the Universe is not exactly homogeneous and
isotropic. Matter is quite unevenly distributed, in that galaxies and voids lead
to fluctuations of the curvature. In particular, when the spatial curvature becomes
positive at some points, it is no longer clear that the chaotic instability will remain.
Intuitively, the fact that the fluctuations are random, and that the average curva-
ture is still negative point towards a chaotic instability still more unpredictable than
in the homogeneous case. In this paper, we show that the exact opposite is true:
fluctuations of sufficiently high (spatial) frequency and amplitude tend to stabilize
the photon trajectories. A back of the envelope calculation® suggests that this is
possible in the present cosmological epoch.

Since our aim is to establish the principle of stochastic stabilization, rather than
give a detailed calculation, we will focus on the essential ingredients for the effect,
and ignore many phenomena with weaker effects on the stabilization. Thus we
ignore vector and tensor perturbations (such as gravitational waves) and pressure
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fluctuations (for example due to relativistic neutrinos), writing in the conformal
Newtonian gauge the perturbed line element in the form?

1-29

ds® = R*(1){(1 + 2®)dr* — [1+ K22 + 92 + 22)]2

(dz? + dy® + d2*)}. (1)

Here R(7) is the scale factor or spatial curvature radius of the Universe, 7 = [ R™dt
is conformal time, & < 1 is the Newtonian gravitational potential, K = —1 is the
spatial curvature corresponding to a hyperbolic geometry, (z,y,2) are comoving
coordinates, and units are chosen in which G = ¢ = 1. Since the equations for null
geodesics are conformally invariant (c.f. 8), the overall factor R appears only in the
definition of the conformal time.

The separation of geodesics is given by the geodesic deviation equation®; com-
puting the spatial projection (that is, on hypersurfaces of constant 7) with respect
to a basis aligned to the instantaneous direction of motion (that is, undergoing
Fermi-Walker transport®), leads to an equation for the separation of the two spatial
directions orthogonal to the direction of motion:

d_2 (5) _ <K + 2(I>§§ + (I>CC 2‘1357, ) (6) (2)
dr2 \n) 2%, K +2®,, 4+ &) \n
where the constant exponential separation arising from the spatial curvature K is
modified by the second derivatives of the Newtonian potential, namely tidal forces.
Our Newtonian assumptions imply that ® is constant in time; we assume that it is
random in space, leading to a rapidly fluctuating force on the CMB photons, which
we represent schematically by
2
o = (A7)~ D ®
-
where A is the amplitude and f(7) is some stochastic forcing function with zero
mean and characteristic frequency w. This equation also describes an inverted pen-
dulum which can be stabilized by appropriate oscillations of the pivot!®; the smooth
hyperbolic geometry corresponds to the gravitational force on the pendulum, and
the matter fluctuations correspond to the stochastic forcing.
Without forcing the solutions clearly grow exponentially. In the forced case, the
w — oo limit has been shown to stabilize using Lyapunov exponent techniques'!; we
now find the dependence of the stability on w by separating u asymptotically into
fast and slow components: u(7) = (u(7)) + us(7) where the () denote an average
over a time scale T, with w™! <« T, < 1; we will have in the high frequency limit
Af(1) € (u(7)) = 1 < uy. Substituting into (3) and averaging, we have

T — () — A s (o). @

Subtracting (4) from (3) gives, as w — oo,

TU ~ —Af()u(r)). )
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This equation can be integrated directly, treating (u(7)) as a constant, leading to
uy (1) & —A{u(7))z(7) where = [vdr, v = [ fdr and the constants of integration
are chosen so that the averages of  and v are zero.

Substituting into (4) and computing the integral implicit in the average by parts,
we obtain

2
T ~ (- 207 ). ©

It follows from (6) that if A%2(v?) < 1 then u grows exponentially as 7 — oo, but
if A2(v?) > 1 then u is linearly stabilized. This effect, and the accuracy of (6), are
illustrated by numerical simulations presented elsewhere®.

In the cosmological context, an analogous calculation in two dimensions® based
on Eq. (2) shows that stabilization follows if A%/w?|K| > 1 and w > 1. The latter
simply says that the photon has had a chance to be influenced by the gravitational
field of many clusters of galaxies; as the Universe expands w will decrease until the
photon ceases to interact. On the other hand, A% > 1 since the mass density in
clusters is much greater than the average cosmological density, so for some range of
times (including our own) both inequalities are satisfied. Note that the exact value
of |[K| < 1 is not required: the parallel geodesics of a spatially flat Universe are
equally well stabilized, and (6) continues to hold.

Stabilisation leads to alternate focussing and defocussing of photons from the
largest cosmological distances; we expect this to limit the resolution of the CMB
fluctuations, and possibly also affect observations of distant galaxies. More detailed
calculations will follow in a future paper.
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