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Spectrum of stochastic evolution operators: Local matrix representation approach
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A matrix representation of the evolution operator associated with a nonlinear stochastic flow with additive
noise is used to compute its spectrum. In the weak noise limit a perturbative expansion for the spectrum is
formulated in terms of local matrix representations of the evolution operator centered on classical periodic
orbits. The evaluation of perturbative corrections is easier to implement in this framework than in the standard
Feynman diagram perturbation theory. The results are perturbative corrections to a stochastic analog of the
Gutzwiller semiclassical spectral determinant computed to several orders beyond what has so far been attain-
able in stochastic and quantum-mechanical applicati@®k063-651X%99)10210-]

PACS numbgs): 05.45-a, 02.50.Ey, 03.65.Sq, 05.40.Ca

I. INTRODUCTION equivalent Feynman diagrams. Using these techniques, we
were able to extend the stochastic perturbation theory to the
Any dynamical evolution that occurs in nature is affectedfourth order in the noise strength.
by noise. In a neuronal system the noise might be compa- Fourth order should be sufficient for most realistic calcu-
rable in magnitude to purported underlying deterministic dy-lations, but does not provide enough information to deter-
namics; in celestial mechanics the degrees of freedom omiflline the convergence properties of the expansion, or deter-
ted from a particular set of equations may be accounted fofine eigenvalues beyond the first few. In this paper we
by very weak noise. Our task here and in two precedingl€velop a third approach, based on construction of an ex-
papers[1,2] is to systematically account for the effects of plicit matrix representation of the stochastic evolution opera-

The theory is also closely related to the semiclassical exconjugation method, but for high expansion ord¢nere
pansions based on Gutzwiller's formula for the trace in term&ighth, but higher orders seem quite feasitsled many ei-
of classical periodic orbit§4] in that both are perturbative 9envalues it is currently unsurpassed. As with the previous
theories(in the noise strength dr) derived from saddlepoint form_ulatlons, it retains th_e periodic orbit structure, thus in-
expansions of a path integral containing a Cantor set of unPeriting valuable information about the dynamics.
stable stationary pointdypically periodic orbits. The anal- In the following sections we dgfme the stochastlc dynam-
ogy with quantum mechanics and field theory has been madgS and show how to obtain matrix representations, both glo-
explicit in [1] where Feynman diagrams were used to fingbally and Iocate'd on the periodic orbltls, as an expansion in
the lowest nontrivial noise corrections. Unfortunately like itsterms of the noise strengit. The matrix elements are ob-
quantum counterpart, the Feynman diagram method for std@ined from derivatives of the dynamics computed around
chastic dynamics quickly becomes unwieldy at higher orach periodic orbit. We give as a numerical example the
ders; rather than applying it directly we turn the argumentduartic map considered in both previous papers, a_Ithough the
around and suggest that the more efficient recent approach@BProach is very general and is by no means restricted to one
of [2] and the present paper be applied to difficult perturbad!mens'onv to maps, or to Gaussian noise. We find that up to
tive problems of quantum mechanics and field theory. eighth order, the cumulants converge super-exponentially
An elegant method, inspired by the classical perturbatiofVith the length of periodic orbit and the expansion is now
theory of celestial mechanics, is that of smooth conjugation§hown to be accurate to larger valuesoof
[2]. In this approach the neighborhood of each saddlepoint is
flattened by an appropriate coordinate transformation, so the
focus shifts from the original dynamics to the properties of!l- THE STOCHASTIC EVOLUTION OPERATOR AND ITS
the transformations involved. An elementary example is the SPECTRUM
Ulam mapf(x)=4x(1—x) which is solved exactly by the An individual trajectory in the presence of additive noise
transformatiorx= sir’(6/2) leading to the piecewise linear jg generated by iteration
tent mapf(#)=1—|1—24|. In general there is no such ex-
plicit solution, but the expressions obtained for perturbative
corrections are much simpler than those found from the Xni1=T(Xp) +0&,, (h)
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wheref(x) is a map,&, a random variable with the normal- ll. MATRIX REPRESENTATION
ized distributionp(¢), ando parametrizes the noise strength. OF EVOLUTION OPERATOR
In what follows we shall assume that the mappi{g) is
one-dimensional and expanding, and that§hare uncorre-
lated. A density of trajectorieg(x) evolves with time as

As the mappingf(x) is expanding by assumption, the
evolution operatof2) smoothes the initial distributioth(x).
Hence it is natural to assume that the distributipf(x) is
analytic, and represent it as a Taylor series, intuition being
¢n+1(Y):(£°¢n)(Y)=f dXL(Y,X) pn(X) (2)  that the action of£ will smooth out fine detail in initial

distributions and the expansion ¢f,(x) will be dominated
by the leading terms in the series.

whereL is the evolution operator An analytic functiong(x) has a Taylor series expansion
*° m m
L(y,X) = 8,(y—(X))8,(x)= f S(x—cé)p(£)dé 0= — ——g(y)
m=0 m! 3y y=0
1 (X
= —p(— . (3 ExpandingZ(y,x) in a Taylor series iry enables us to re-
ag g .
write traces of£" as

For a repeller the leading eigenvalue of the evolution opera-
tor yields a physically measurable property of the dynamical tr £2= f dxdyL(y,X)L(X,Y)
system, the escape rate from the repeller. In the case of de-
terministic flows, the periodic orbit theory yields explicit for- ym’ Pl
mulas for the spectrum af as zeros of its spectral determi- = E f dxdy( —7 o £(v,X) )
nant[5]. Our goal here is to explore the extent to which such m,m’ m:= gy v=0
methods are applicable to systems with noise and to quantum moom
systems. In particular, we are interested in exploring the de- X | = ——£(u,y) _
pendence of the eigenvalueéo) of £ on the noise strength m! gu™ ’ u=0
paramete.

The eigenvalues are determined by the eigenvalue condFollowing H. H. Rugh[6] we now define the matrix
tion (mm’=0,1,2,...)

F(o,v(o))=de(1—L/v(o))=0 (4) m

(€)

3 o X
| . (L)m’m_m dxL(y, %) —r
where F(o,1/z) =det(1-z£) is the spectral determinant of y=0
the evolution operatof. Computation of such determinants L is a matrix representation af which maps thex™ com-

commences with evaluation of the traces of powers of the ) ) ) ) )
evolution operator ponent of the density of trajectories,(x) in (2) to they™

component of the density,, 1(y), with y=f(x). The de-
20 % sired traces can now be evaluated as traces of the matrix
=> C.2", C,=trL" (5)  representatioh, tr£"=trL". AsL is infinite dimensional,
1-2L =1 in actual computations we have to truncate it to a given finite
order. The Feynman diagrammatic and the smooth conjuga-
which are then used to compute the cumula@ts= Q,(£) tion methods developed in the preceding pap&j2| require

tr

in the cumulant expansion no such approximations. However, as we shall see below, for
expanding flows the structure bfis such that its finite trun-
* cations give very accurate spectra.
de(1-z£)=1- 2, Quz", (6) Our next task is to evaluate the matrix elements of

IV. WEAK NOISE EXPANSION OF THE EVOLUTION

by means of the recursion formula OPERATOR

1 We have written the operatof in (3) in terms of the
Qn=r5(Cn=Cn1Qu=-CaQn-1), (") Dirac delta function,Z(x',x)= [ 8(x' — f(x)— c&)p(£)dé,
in order to emphasize that in the weak noise limit the sto-
chastic trajectories are concentrated along the deterministic
trajectoryx’ = f(x). Hence it is natural to expand tté&func-
= n tion in a Taylor series inr
de(l—zﬁ):exp( -> Ftrﬁ”). (8)

n

which follows from the relation

L(X",x)=8(x"—1(x))
Our task is to compute the cumulai@®g. We start by intro- + 3
ducing a matrix representation fa. n=2

(—o)"

T s~ 1) [ enpierae,
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where §M(y)=(d"9y") 8(y). This yields a representation >

of the evolution operator centered along the deterministic L (¢, ¢)= Z
trajectory, with the Perron-Frobenius operatitk’ — f(x)), n=2
and corrections given by derivatives 8functions weighted
by moments of the noise distributiay,= [p(&) £"dé,

(_n(,r) ang(n)((f), tXa+1— fa( ¢))

Repeating the steps that led (@ we construct the local
matrix representation of, centered on th&,—X,,1 Seg-
ment of the deterministic trajectory

o (—o)"
L0 X) =8¢ =)+ 2 — = and "X = (). o o
n= . _ ’ o
(10) (La)m’m_a¢,mr j d¢£a(¢ ,¢) m!
¢'=0
In our numerical tests we find it convenient to assume that = ()"
the noise is Gaussiap(&)=e 7%/ \2x. For the Gaussian = > n—(,ran(Ba)m,mm. (13
noise alla,, moments are known, and the weak noise expan- n=maxm-m'’,0) :
sion of L is L . .
Due to its simple dependence on the Di&ftinction, B can
1 expressed in terms of derivatives of the inversd gfp):
L(X' X)= e—[x’—f(x)]2/2<72 ) .
270 _d , ¢
(Ba)nm__/n d¢5(¢ +Xa+1_fa(¢) ml
*° O.Zn &d) m: ¢'=0
= s (x" —f(x))
Ao ni2" " (M a1t ) X))
o’ 08" miFa(f " (Xasat $I| 4, g
=8(x'—f(x))+ - 5P (x'—f(x))
f, n+1 rym+1
o Sl a), s K ) (14
+§5(4)(X’_f(x))+..._ (11) (m+1)! d¢ 5=0

_ ) o ) where we introduced the shorthand notatigh,(¢’)
The choice of Gaussian noise is not essential, as the methodsf ~1(x .+ ¢')—x
a a+1l ar

that we develop here apply equally well to any other peaked | e expandF,(¢') in a Taylor series, the constant term
smooth noise distribution, as well as space dependent noisg ;oo sincef - 1(x,. 1) =X,. SO we can write
distributionsp(x,£). In any case, as the neighborhood of any ' a Vet a

trajectory is nonlinearly distorted by the flow, the integrated =0
N . . a
noise is never Gaussian, but colored. ]—‘a(¢’)=|21 AL (15)
V. LOCAL MATRIX REPRESENTATION where ]_Fgl):fé

OF EVOLUTION OFERATOR The matrix elements can be calculated explicitly as a mul-

Traces of powers of the evolution operat6f are now  tinomial expansiori7]
al(sc)J a power series i, with contributions composed of " m =
S (f(xa) —Xar1) Segments. The contribution is non- Xl v oAy
vanishing only if the sequencq, Xy, ..., Xp, Xps1=Xq IS @ (21 it ) _m!nz::| n! 2 (nfay,... ) X"
periodic orbit of the deterministic maf{x). Thus the series (16)
expansion of t£" has support on all periodic points,
=X,.n Of period n, f"(x,)=X,; the skeleton of periodic Where the second sulX) goes over all non-negative inte-
points of the deterministic problem also serves to describ@ers such that:
the weakly stochastic flows. The contribution of thg
neighborhood is best presented by introducing a coordinate 81728+ - +na,=n, a;+ay+---+a,=m, (17)
systemg, centered on the cycle points, together with a no-
tation for the mag1) and the operatai3) centered on thath
cycle point

a,
n
X",

and the multinomial coefficient is

n!
(nlag,az,....an)" = =3 3 -
Xa—Xa+ da, a=1,..N0, (11)%1a,4!(21)%a,...(n!)%a,! .
fa(d)=f(Xat &), We apply the formuld16) to F,(¢') with powerm+1:
La(Par1,Pa)=L(Xar1H Par1.Xat Pa). (12) = m
' ' ' (yfa(¢>'))m+1=(m+1)!|:§+l ﬁ! > (llag,ay,...a)’

The weak noise expansidt0) for the ath segment operator
is given by X (Fa )3 F@he,, (F )&, (19
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For the f+1)-th derivative of this expression evaluated at * 1
¢'=0 only thel=n+1 term is non-vanishing. The matrix tr £”=2 an 5n,nprm. (23
elements vanish fan<<m, soB is a lower triangular matrix: poor=t P

VI. PERTURBATIVE CORRECTIONS TO EIGENVALUES
(Ba)anE (n+1|a1,a2,...,an+1)’

The eigenvalue conditiofd) is an implicit equation for
X (F 2 (F@)d2, (F," D)1 (20)  the eigenvaluer=v(o) of form F(o,v(o))=0. As the ei-
genvalue condition is satisfied for any all total derivatives

The diagonal and the nearest off-diagonal matrix elementgf the eigenvalue condition with respectdovanish, leading
can easily be worked out. Here we show the first four ex+g

pressed in terms of the derivatives of the original map:
dv JF JF

d
1 O:—F(O' V(U'))——E-i-%,

L _d?v oF  [dv|?0%F , P°F  O°F
1(m+2)! o S 42 av T\do) 9% 240 doar T 902

(Ba)m+1,m:_§ m! |fé|fém+2,

d3v oF d?v dv 9°F (dv)3¢93F d?v 9°F

" "2 - - _ J—
(Ba)m+2m:_—(m—|’_3|)! m( fa —5—3(m+4) (fa - ) 0 do® ov +3d02 do av? * do/ av° +3d0'2 dadv
’ 24mi | 2" £

(dv)z P°F dv &°F P°F
(m+4)! 1 a5 3 do| dodv? +3d0' dolov - o’ (24
(Ba)m+3,m:_4—|fa|f,m< f 4(m+5) f/5
a and so ony(0) can be computed by cycle expansions for a
f73 deterministic, noiseless flow:# 0 then parametrizes a weak
+(m+5)(Mm+6) f’6) , (21 perturbation to the deterministic Perron-Frobenius operator

L|s—0. The above formulas enable us to compute recur-
sively, order by order in", the perturbative corrections to

wheref, f7, - -- refer to the derivatives df(x) evaluated at the eigenvalues of

the periodic pointx, .

By assumption the map is expandiné;,|> 1. Hence the % 1 gm
diagonal terms drop off exponentially, as|fl/™"?!, the W)= D o™ vg=
terms below the diagonal fall off even faster, and we are m=0

justified in truncatingB,, as truncating the matrix to a finite ) o ) N
one introduces on|y exponent|a||y small errors. in terms of partlal derivatives of the e|genvalue condition

In the local matrix approximation the traces of evolution F(o,v(o))
operators are approximated by

. (29

m| do —mv(o)

o=0

o"kH
® = Fu=— o k(o) (26)
trﬁnlsaddIeS:% np; Snnr terr:JZO Cojol, (22) r=0s=1(0)

In this notation the formula&4) for v,, take the form
where tiL ,=trL, L2 -L, is the contribution of the@ cycle,

and the power serles il follows from the expansioif13)
of L, in terms ofB,. The subscript,yqesiS @ reminder that
this is a saddle-point approximation tad? (see Ref[1] for
a discussio) valid as an asymptotic series in the limit of
weak noise. T 52— (Fort 2F 13v1+ 2F ,007)

As a simple check of the above formulas, consider the
noiseless case, for which the ) = (Ba) m'm Matrices are 1
a representation of the deterministic Perron-Frobenius operay,= — —— (F;+3F ,v;+ 6F 105+ 3|:21,,§+ 6F ,ov1 v
tor £|,—o. The L, are triangular with diagonal elements 3!F10
(L) mm=f4|f2™. The trace of theC on a periodic orbip +Fggrd). 27)
is therefore !

- As shown in Ref[5], Fy, can be computed from explicit
rl=trl, Ly-L;=3 1 _ 1 cycle expansions. However, in numerical calculations we
p L |Ap|Ag‘ |[1-Ay|’ find it more expedient to proceed by first expressing the
spectral determinar in terms of the cumulants. The traces
and we recover the standard deterministic trace foriéla of L" evaluated by(13) yield a series ing’, and thed’
for the Perron-Frobenius operator coefficientsQp; in the cumulant expansion
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o 0 - 1010
F=de(l-z£)=1—-2, > Q"0 (28)
n=1j=0 10°
are then obtained recursively from the traces, a&’jn 107°
1 n-1 |j |Q|1o-20
Qni=p an—kgl ;o Qk,j-1Cnh—k1 |- (29 o
This givesF=F(z=1/v,0) and the partial derivativeE, 107
can be found. Substituted {27) they yield the perturbative - o
corrections to the eigenvalues. The above calculations can be 10 i 2 3 4 5 6 7 8 9 10
efficiently done by manipulating formal Taylor series. n

VII. NUMERICAL TESTS

(30

Here we continue the calculations of the eigenvalue cor=0.2,4,6,8 all exhibit superexponential convergence.

the repeller of the one-dimensional map agingly, the value ofyg=2076.47... computed here is not
hibit a superexponential convergence with the truncation
system of bounded nonlinearity and complete binary symbut the proof has not been extended to the stochastic evolu-
length[6]. ample, as here we are in a fortunate situation that the escape
compute the truncated evolution mattix and its repetitions ~ample, one can discretize the stochastic kernel on a spatial
suffice to achieve double precision accuracy for most cyclesveak noise corrections is compared to the eigenvalue com-
sion, and we employ B28x 28] truncation for the 2-cycles, order perturbative results plotted. We see that the perturba-
efficients in the traces expansi@@?) evaluated numerically, perturbative terms are added.
. . . . . Vill. SUMMARY AND OUTLOOK

proximation is obtained already at=2 level, using only 3
arithmetic. traces of the corresponding evolution operator are approxi-

FIG. 1. The perturbative correctiori29) to the cumulant®;
plotted as a function of cycle length (for perturbation orders
rections described in Refgl,2], where more details and dis-
cussion may be found. We test our perturbative expansion oweak-noise evolution operator are given in Table I. Encour-
wildly different to our previous numerical estimafg] of
1 /1 4 2700. Both the cumulants and the eigenvalue corrections ex-
f(X)=2 E_ E_X .
cycle lengthn. The superexponential convergence has been
This repeller is a clean example of an “AxioAY expanding ~ proven for the deterministicy, part of the eigenvalug7],
bolic dynamics, for which the deterministic evolution opera-tion operators. _ o
tor eigenvalues converge superexponentially with the cycle We have chosen to test the formalism on this simple ex-
We start the numerical calculations by determining allrate for arbitrary noise strength can be calculated numeri-
prime cycles up to a given length. For each prime cyolee  cally by other methods to a rather high accuracy. For ex-
L, to the given order iny, and evaluate the tracég2). For lattice[1] and determine numerically the leading eigenvalue.
the map at hand we find that truncations of Sii&x 16] The perturbative result in terms of periodic orbits and the
However, as the short orbits are less unstable, they requifeuted by the numerical lattice discretization in Fig. 2, with
larger matrix truncations in order to attain the same precithe absolute difference between the numerical andnttte
and a[ 34x 34] truncation for the fixed points. With the co- tive resultz(m,o) =<4 v,0? indeed improves as more
the cumulants and the perturbative eigenvalue corrections
follow from (29) and (27). In case at hand, a good first ap-
prime cycles, anch=6 (23 prime cycles in allis in this In this paper we study evolution of a classical dynamical
example sufficient to exhaust the limits of double precisionsystem with additive noise. In the limit of weak noise the
The size of the cumulants is indicated in Fig. 1, and themated by sums of local traces computed on periodic orbits.
perturbative corrections to the leading eigenvalue of theHere we present a computationally efficient technique for
TABLE I. Significant digits of the leading deterministic eigenvalyg and theo?,- -+ ,¢® perturbative coefficient&25), calculated from

the cumulant exapansion of the spectral determinant, as a function of the cycle truncatiomleéxgth the superexponential convergence
of all coefficients.

n Vo Vo Vg Vg Vg

1 0.308 0.42 2.2 17.4 168.0

2 0.37140 1.422 32.97 1573.3 112699.9

3 0.3711096 1.43555 36.326 2072.9 189029.0

4 0.371110995255 1.435811262 36.3583777 2076.479 189298.8

5 0.371110995234863 1.43581124819737 36.35837123374 2076.4770492 189298.12802

6 0.371110995234863 1.43581124819749 36.358371233836 2076.47704933320 189298.128042526
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10™ r r . r In other words, in the saddle-point approximation the spec-
v—v(8) trum of theglobal evolution operatotC is in this approach
o L V_V(Z) ’___,.—-—"’:_ pieced toge_ther from thmcgl s_pgctra cqmputed cyclg—by—
E ::122; e _=Tod cycle on neighborhoods of individual prime cycles with pe-
[~ vvo) .- _em e riodic boundary conditions. Vattdy] was first to formulate
0° o L the # corrections to the semi-classical Gutzwiller theory in
v—v(m) terms of local spectra. Here we have shown that also the
107 ] stochastic flows can be suspended on the skeleton of classi-
cal periodic orbits in this way.
With so many orders of perturbation theory, we are now
107 3 poised to address the issues raised by the asymptotic series
nature of perturbative expansions. We can now hope to re-
107 | sum the series to all orders, making use of techniques such as
the Borel resummation, the asymptotic expansions of general
. integrals of saddlepoint type, and asymptotics beyond all or-
1001 503 505 007 .05 ders[9]. All of this is beyond the scope of the present paper,

and we defer a full discussion of asymptotics to a forthcom-

ing paper[10].
FIG. 2. The difference between the numerical and perturbative

eigenvalue| (o) — v(m,o)|. The plateau at 10 is a numerical

artifact due to the limited accuracy of the lattice discretization cal-

culation.

G
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