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Spectrum of stochastic evolution operators: Local matrix representation approach
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A matrix representation of the evolution operator associated with a nonlinear stochastic flow with additive
noise is used to compute its spectrum. In the weak noise limit a perturbative expansion for the spectrum is
formulated in terms of local matrix representations of the evolution operator centered on classical periodic
orbits. The evaluation of perturbative corrections is easier to implement in this framework than in the standard
Feynman diagram perturbation theory. The results are perturbative corrections to a stochastic analog of the
Gutzwiller semiclassical spectral determinant computed to several orders beyond what has so far been attain-
able in stochastic and quantum-mechanical applications.@S1063-651X~99!10210-1#
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I. INTRODUCTION

Any dynamical evolution that occurs in nature is affect
by noise. In a neuronal system the noise might be com
rable in magnitude to purported underlying deterministic d
namics; in celestial mechanics the degrees of freedom o
ted from a particular set of equations may be accounted
by very weak noise. Our task here and in two preced
papers@1,2# is to systematically account for the effects
noise on measurable properties such as dynamical aver
@3# in classical chaotic dynamical systems.

The theory is also closely related to the semiclassical
pansions based on Gutzwiller’s formula for the trace in ter
of classical periodic orbits@4# in that both are perturbative
theories~in the noise strength or\! derived from saddlepoin
expansions of a path integral containing a Cantor set of
stable stationary points~typically periodic orbits!. The anal-
ogy with quantum mechanics and field theory has been m
explicit in @1# where Feynman diagrams were used to fi
the lowest nontrivial noise corrections. Unfortunately like
quantum counterpart, the Feynman diagram method for
chastic dynamics quickly becomes unwieldy at higher
ders; rather than applying it directly we turn the argum
around and suggest that the more efficient recent approa
of @2# and the present paper be applied to difficult pertur
tive problems of quantum mechanics and field theory.

An elegant method, inspired by the classical perturbat
theory of celestial mechanics, is that of smooth conjugati
@2#. In this approach the neighborhood of each saddlepoin
flattened by an appropriate coordinate transformation, so
focus shifts from the original dynamics to the properties
the transformations involved. An elementary example is
Ulam map f (x)54x(12x) which is solved exactly by the
transformationx5sin2(pu/2) leading to the piecewise linea
tent mapf (u)512u122uu. In general there is no such ex
plicit solution, but the expressions obtained for perturbat
corrections are much simpler than those found from
PRE 601063-651X/99/60~4!/3936~6!/$15.00
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equivalent Feynman diagrams. Using these techniques
were able to extend the stochastic perturbation theory to
fourth order in the noise strength.

Fourth order should be sufficient for most realistic calc
lations, but does not provide enough information to det
mine the convergence properties of the expansion, or de
mine eigenvalues beyond the first few. In this paper
develop a third approach, based on construction of an
plicit matrix representation of the stochastic evolution ope
tor. Numerical implementation requires a truncation to fin
dimensional matrices, and is less elegant than the sm
conjugation method, but for high expansion orders~here
eighth, but higher orders seem quite feasible! and many ei-
genvalues it is currently unsurpassed. As with the previ
formulations, it retains the periodic orbit structure, thus
heriting valuable information about the dynamics.

In the following sections we define the stochastic dyna
ics and show how to obtain matrix representations, both g
bally and located on the periodic orbits, as an expansion
terms of the noise strengths. The matrix elements are ob
tained from derivatives of the dynamics computed arou
each periodic orbit. We give as a numerical example
quartic map considered in both previous papers, although
approach is very general and is by no means restricted to
dimension, to maps, or to Gaussian noise. We find that u
eighth order, the cumulants converge super-exponenti
with the length of periodic orbit and the expansion is no
shown to be accurate to larger values ofs.

II. THE STOCHASTIC EVOLUTION OPERATOR AND ITS
SPECTRUM

An individual trajectory in the presence of additive noi
is generated by iteration

xn115 f ~xn!1sjn , ~1!
3936 © 1999 The American Physical Society
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where f (x) is a map,jn a random variable with the norma
ized distributionp(j), ands parametrizes the noise strengt
In what follows we shall assume that the mappingf (x) is
one-dimensional and expanding, and that thejn are uncorre-
lated. A density of trajectoriesf(x) evolves with time as

fn11~y!5~L+fn!~y!5E dxL~y,x!fn~x! ~2!

whereL is the evolution operator

L~y,x!5ds„y2 f ~x!…ds~x!5E d~x2sj!p~j!dj

5
1

s
pS x

s D . ~3!

For a repeller the leading eigenvalue of the evolution ope
tor yields a physically measurable property of the dynam
system, the escape rate from the repeller. In the case o
terministic flows, the periodic orbit theory yields explicit fo
mulas for the spectrum ofL as zeros of its spectral determ
nant@5#. Our goal here is to explore the extent to which su
methods are applicable to systems with noise and to quan
systems. In particular, we are interested in exploring the
pendence of the eigenvaluesn(s) of L on the noise strength
parameters.

The eigenvalues are determined by the eigenvalue co
tion

F~s,n~s!!5det„12L/n~s!…50 ~4!

where F(s,1/z)5det(12zL) is the spectral determinant o
the evolution operatorL. Computation of such determinan
commences with evaluation of the traces of powers of
evolution operator

tr
zL

12zL 5 (
n51

`

Cnzn, Cn5tr Ln, ~5!

which are then used to compute the cumulantsQn5Qn(L)
in the cumulant expansion

det~12zL!512 (
n51

`

Qnzn, ~6!

by means of the recursion formula

Qn5
1

n
~Cn2Cn21Q12¯C1Qn21!, ~7!

which follows from the relation

det~12zL!5expS 2(
n

`
zn

n
tr LnD . ~8!

Our task is to compute the cumulantsQn . We start by intro-
ducing a matrix representation forL.
-
l
e-

h
m

e-

i-

e

III. MATRIX REPRESENTATION
OF EVOLUTION OPERATOR

As the mappingf (x) is expanding by assumption, th
evolution operator~2! smoothes the initial distributionf(x).
Hence it is natural to assume that the distributionfn(x) is
analytic, and represent it as a Taylor series, intuition be
that the action ofL will smooth out fine detail in initial
distributions and the expansion offn(x) will be dominated
by the leading terms in the series.

An analytic functiong(x) has a Taylor series expansion

g~x!5 (
m50

`
xm

m!

]m

]ym g~y!U
y50

.

ExpandingL(y,x) in a Taylor series iny enables us to re-
write traces ofLn as

tr L25E dxdyL~y,x!L~x,y!

5 (
m,m8

E dxdyS ym8

m8!

]m8

]vm8
L~v,x!U

v50
D

3S xm

m!

]m

]um L~u,y!U
u50

D .

Following H. H. Rugh @6# we now define the matrix
(m,m850,1,2,...)

~L !m8m5
]m8

]ym8 E dxL~y,x!
xm

m! U
y50

. ~9!

L is a matrix representation ofL which maps thexm com-
ponent of the density of trajectoriesfn(x) in ~2! to theym8

component of the densityfn11(y), with y5 f (x). The de-
sired traces can now be evaluated as traces of the m
representationL , trLn5tr Ln. As L is infinite dimensional,
in actual computations we have to truncate it to a given fin
order. The Feynman diagrammatic and the smooth conju
tion methods developed in the preceding papers@1,2# require
no such approximations. However, as we shall see below
expanding flows the structure ofL is such that its finite trun-
cations give very accurate spectra.

Our next task is to evaluate the matrix elements ofL .

IV. WEAK NOISE EXPANSION OF THE EVOLUTION
OPERATOR

We have written the operatorL in ~3! in terms of the
Dirac delta function,L(x8,x)5*d„x82 f (x)2sj…p(j)dj,
in order to emphasize that in the weak noise limit the s
chastic trajectories are concentrated along the determin
trajectoryx85 f (x). Hence it is natural to expand thed func-
tion in a Taylor series ins

L~x8,x!5d~x82 f ~x!!

1 (
n52

`
~2s!n

n!
d~n!

„x82 f ~x!…E jnp~j!dj,
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where d (n)(y)5(]n/]yn)d(y). This yields a representatio
of the evolution operator centered along the determini
trajectory, with the Perron-Frobenius operatord„x82 f (x)…,
and corrections given by derivatives ofd functions weighted
by moments of the noise distributionan5*p(j)jndj,

L~x8,x!5d~x82 f ~x!!1 (
n52

`
~2s!n

n!
and~n!

„x82 f ~x!….

~10!

In our numerical tests we find it convenient to assume t
the noise is Gaussian,p(j)5e2j2/2/A2p. For the Gaussian
noise allan moments are known, and the weak noise exp
sion of L is

L~x8,x!5
1

A2ps2
e2@x82 f ~x!#2/2s2

5 (
n50

`
s2n

n!2n d~2n!
„x82 f ~x!…

5d~x82 f ~x!!1
s2

2
d~2!

„x82 f ~x!…

1
s4

8
d~4!

„x82 f ~x!…1¯ . ~11!

The choice of Gaussian noise is not essential, as the met
that we develop here apply equally well to any other pea
smooth noise distribution, as well as space dependent n
distributionsp(x,j). In any case, as the neighborhood of a
trajectory is nonlinearly distorted by the flow, the integrat
noise is never Gaussian, but colored.

V. LOCAL MATRIX REPRESENTATION
OF EVOLUTION OPERATOR

Traces of powers of the evolution operatorLn are now
also a power series ins, with contributions composed o
d (m)

„f (xa)2xa11… segments. The contribution is non
vanishing only if the sequencex1 , x2 ,..., xn , xn115x1 is a
periodic orbit of the deterministic mapf (x). Thus the series
expansion of trLn has support on all periodic pointsxa
5xa1n of period n, f n(xa)5xa ; the skeleton of periodic
points of the deterministic problem also serves to desc
the weakly stochastic flows. The contribution of thexa
neighborhood is best presented by introducing a coordin
systemfa centered on the cycle points, together with a n
tation for the map~1! and the operator~3! centered on theath
cycle point

xa→xa1fa , a51,...,np,

f a~f!5 f ~xa1f!,

La~fa11 ,fa!5L~xa111fa11 ,xa1fa!. ~12!

The weak noise expansion~10! for the ath segment operato
is given by
ic

t

-

ds
d
ise

e

te
-

La~f8,f!5 (
n52

`
~2s!n

n!
and~n!

„f81xa112 f a~f!….

Repeating the steps that led to~9! we construct the loca
matrix representation ofLa centered on thexa→xa11 seg-
ment of the deterministic trajectory

~La!m8m5
]m8

]f8m8 E dfLa~f8,f!
fm

m! U
f850

5 (
n5max~m2m8,0!

`
~2s!n

n!
an~Ba!m81n,m . ~13!

Due to its simple dependence on the Diracd function,B can
expressed in terms of derivatives of the inverse off a(f):

~Ba!nm5
]n

]f8n E dfd„f81xa112 f a~f!…
fm

m! U
f850

5
]n

]f8n

„f a
21~xa111f8!2xa…

m

m! u f a8„f a
21~xa111f8!…uU

f850

5
sgn~ f a8!

~m11!!

]n11
„Fa~f8!m11

…

]f8n11 U
f850

, ~14!

where we introduced the shorthand notationFa(f8)
5 f a

21(xa111f8)2xa .
If we expandFa(f8) in a Taylor series, the constant ter

is zero, sincef a
21(xa11)5xa . So we can write

Fa~f8!5(
l 51

` Fa
~ l !

l !
f8l , ~15!

where 1/Fa
(1)5 f a8

The matrix elements can be calculated explicitly as a m
tinomial expansion@7#

S (
l 51

`
xl

l !
t l D m

5m!(
n5 l

`
tn

n! ( ~nua1 ,...,an!8x1
a1...xn

an,

~16!

where the second sum~(! goes over all non-negative inte
gers such that:

a112a21•••1nan5n, a11a21•••1an5m, ~17!

and the multinomial coefficient is

~nua1 ,a2 ,...,an!85
n!

~1! !a1a1! ~2! !a2a2 ...~n! !anan!
.

~18!

We apply the formula~16! to Fa(f8) with powerm11:

„Fa~f8!…m115~m11!! (
l 5m11

`
f8n

n! ( ~ l ua1 ,a2 ,...,al !8

3~Fa
~1!!a1~Fa

~2!!a2...~Fa
~ l !!al. ~19!
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For the (n11)-th derivative of this expression evaluated
f850 only the l 5n11 term is non-vanishing. The matri
elements vanish forn,m, soB is a lower triangular matrix:

~Ba!nm5( ~n11ua1 ,a2 ,...,an11!8

3~Fa
~1!!a1~Fa

~2!!a2...~Fa
~n11!!an11. ~20!

The diagonal and the nearest off-diagonal matrix eleme
can easily be worked out. Here we show the first four
pressed in terms of the derivatives of the original map:

~Ba!mm5
1

u f a8u f a8
m ,

~Ba!m11,m52
1

2

~m12!!

m!

f a9

u f a8u f a8
m12 ,

~Ba!m12,m52
~m13!!

24m! u f a8u f a8
m S f a-

f a8
323~m14!

~ f a9!2

f a8
4 D ,

~Ba!m13,m52
~m14!!

48m!
u f a8u f a8

mS 2
f a8888

f a8
4 24~m15!

f a8 f a-

f a8
5

1~m15!~m16!
f a9

3

f a8
6D¯ , ~21!

wheref a8 , f a9 , ¯ refer to the derivatives off (x) evaluated at
the periodic pointxa .

By assumption the map is expanding,u f a8u.1. Hence the
diagonal terms drop off exponentially, as 1/u f a8u

m11, the
terms below the diagonal fall off even faster, and we
justified in truncatingBa , as truncating the matrix to a finit
one introduces only exponentially small errors.

In the local matrix approximation the traces of evoluti
operators are approximated by

tr Lnusaddles5(
p

np(
r 51

`

dn,npr tr L p
r5(

j 50

`

Cn js
j , ~22!

where trL p5tr Lnp
L2¯L1 is the contribution of thep cycle,

and the power series ins j follows from the expansion~13!
of La in terms ofBa . The subscriptsaddlesis a reminder that
this is a saddle-point approximation to trLn ~see Ref.@1# for
a discussion!, valid as an asymptotic series in the limit o
weak noise.

As a simple check of the above formulas, consider
noiseless case, for which the (La)m8m5(Ba)m8m matrices are
a representation of the deterministic Perron-Frobenius op
tor Lus50 . The La are triangular with diagonal elemen
(La)mm51/u f a8u f a8

m . The trace of theL on a periodic orbitp
is therefore

tr L p5tr Lnp
L2¯L15 (

m50

`
1

uLpuLp
m 5

1

u12Lpu
,

and we recover the standard deterministic trace formula@6#
for the Perron-Frobenius operator
t

ts
-

e

e

a-

tr Ln5(
p

np(
r 51

`

dn,npr

1

u12Lp
r u

. ~23!

VI. PERTURBATIVE CORRECTIONS TO EIGENVALUES

The eigenvalue condition~4! is an implicit equation for
the eigenvaluen5n(s) of form F(s,n(s))50. As the ei-
genvalue condition is satisfied for anys, all total derivatives
of the eigenvalue condition with respect tos vanish, leading
to

05
d

ds
F„s,n~s!…5

dn

ds

]F

]n
1

]F

]s
,

05
d2n

ds2

]F

]n
1S dn

ds D 2 ]2F

]n2 12
dn

ds

]2F

]s]n
1

]2F

]s2 ,

05
d3n

ds3

]F

]n
13

d2n

ds2

dn

ds

]2F

]n2 1S dn

ds D 3 ]3F

]n3 13
d2n

ds2

]2F

]s]n

13S dn

ds D 2 ]3F

]s]n2 13
dn

ds

]3F

]s2sn
1

]3F

]s3 , ~24!

and so on.n(0) can be computed by cycle expansions fo
deterministic, noiseless flow.sÞ0 then parametrizes a wea
perturbation to the deterministic Perron-Frobenius opera
Lus50 . The above formulas enable us to compute rec
sively, order by order insn, the perturbative corrections t
the eigenvalues ofL

n~s!5 (
m50

`

nmsm, nm5
1

m!

dm

dsm n~s!U
s50

, ~25!

in terms of partial derivatives of the eigenvalue conditi
F(s,n(s))

Fkl5
]k1 l

]nk]s l F~s,n!U
s50,n5n~0!

. ~26!

In this notation the formulas~24! for nm take the form

n152
F01

F10
,

n252
1

2F10
~F0212F11n112F20n1

2! ,

n352
1

3!F10
~F0113F12n116F11n213F21n1

216F20n1n2

1F30n1
3!. ~27!

As shown in Ref.@5#, Fkl can be computed from explici
cycle expansions. However, in numerical calculations
find it more expedient to proceed by first expressing
spectral determinantF in terms of the cumulants. The trace
of Ln evaluated by~13! yield a series ins j , and thes j

coefficientsQn j in the cumulant expansion
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F5det~12zL!512 (
n51

`

(
j 50

`

Qn jz
ns j ~28!

are then obtained recursively from the traces, as in~7!:

Qn j5
1

n S Cn j2 (
k51

n21

(
l 50

j

Qk, j 2 lCn2k,l D . ~29!

This givesF5F(z51/n,s) and the partial derivativesFkl
can be found. Substituted in~27! they yield the perturbative
corrections to the eigenvalues. The above calculations ca
efficiently done by manipulating formal Taylor series.

VII. NUMERICAL TESTS

Here we continue the calculations of the eigenvalue c
rections described in Refs.@1,2#, where more details and dis
cussion may be found. We test our perturbative expansion
the repeller of the one-dimensional map

f ~x!520X 1

16
2S 1

2
2xD 4C. ~30!

This repeller is a clean example of an ‘‘AxiomA’’ expanding
system of bounded nonlinearity and complete binary sy
bolic dynamics, for which the deterministic evolution oper
tor eigenvalues converge superexponentially with the cy
length @6#.

We start the numerical calculations by determining
prime cycles up to a given length. For each prime cyclep we
compute the truncated evolution matrixL p and its repetitions
L p

r to the given order ins, and evaluate the traces~22!. For
the map at hand we find that truncations of size@16316#
suffice to achieve double precision accuracy for most cyc
However, as the short orbits are less unstable, they req
larger matrix truncations in order to attain the same pre
sion, and we employ a@28328# truncation for the 2-cycles,
and a@34334# truncation for the fixed points. With the co
efficients in the traces expansion~22! evaluated numerically,
the cumulants and the perturbative eigenvalue correcti
follow from ~29! and ~27!. In case at hand, a good first ap
proximation is obtained already atn52 level, using only 3
prime cycles, andn56 ~23 prime cycles in all! is in this
example sufficient to exhaust the limits of double precisi
arithmetic.

The size of the cumulants is indicated in Fig. 1, and t
perturbative corrections to the leading eigenvalue of
be

r-

on

-
-
le

l

s.
ire
i-

ns

n

e
e

weak-noise evolution operator are given in Table I. Enco
agingly, the value ofn652076.47... computed here is no
wildly different to our previous numerical estimate@2# of
2700. Both the cumulants and the eigenvalue corrections
hibit a superexponential convergence with the truncat
cycle lengthn. The superexponential convergence has b
proven for the deterministic,n0 part of the eigenvalue@7#,
but the proof has not been extended to the stochastic ev
tion operators.

We have chosen to test the formalism on this simple
ample, as here we are in a fortunate situation that the es
rate for arbitrary noise strengths can be calculated numeri
cally by other methods to a rather high accuracy. For
ample, one can discretize the stochastic kernel on a sp
lattice @1# and determine numerically the leading eigenvalu

The perturbative result in terms of periodic orbits and t
weak noise corrections is compared to the eigenvalue c
puted by the numerical lattice discretization in Fig. 2, w
the absolute difference between the numerical and themth
order perturbative results plotted. We see that the pertu
tive resultn(m,s)5(k50

m/2 n2ks
2k indeed improves as mor

perturbative terms are added.

VIII. SUMMARY AND OUTLOOK

In this paper we study evolution of a classical dynami
system with additive noise. In the limit of weak noise th
traces of the corresponding evolution operator are appr
mated by sums of local traces computed on periodic orb
Here we present a computationally efficient technique

FIG. 1. The perturbative corrections~29! to the cumulantsQn j

plotted as a function of cycle lengthn ~for perturbation ordersj
50,2,4,6,8! all exhibit superexponential convergence.
ce

2526
TABLE I. Significant digits of the leading deterministic eigenvaluen0 , and thes2,¯ ,s8 perturbative coefficients~25!, calculated from
the cumulant exapansion of the spectral determinant, as a function of the cycle truncation lengthn. Note the superexponential convergen
of all coefficients.

n n0 n2 n4 n6 n8

1 0.308 0.42 2.2 17.4 168.0
2 0.37140 1.422 32.97 1573.3 112699.9
3 0.3711096 1.43555 36.326 2072.9 189029.0
4 0.371110995255 1.435811262 36.3583777 2076.479 189298.8
5 0.371110995234863 1.43581124819737 36.35837123374 2076.4770492 189298.12802
6 0.371110995234863 1.43581124819749 36.358371233836 2076.47704933320 189298.12804
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evaluation of these local traces based on a matrix repre
tation of the evolution operator, and show that method
powerful enough to enable us to compute two more order
perturbation theory.

The local matrix representation can be interpreted as
lows. Substituting~22! into ~8! we obtain

det~12zL!usaddles5)
p

det~12znpL p!. ~31!

FIG. 2. The difference between the numerical and perturba
eigenvalueun(s)2n(m,s)u. The plateau at 1027 is a numerical
artifact due to the limited accuracy of the lattice discretization c
culation.
J.

y,

cs

,

n-
s
of

l-

In other words, in the saddle-point approximation the sp
trum of theglobal evolution operatorL is in this approach
pieced together from thelocal spectra computed cycle-by
cycle on neighborhoods of individual prime cycles with p
riodic boundary conditions. Vattay@8# was first to formulate
the \ corrections to the semi-classical Gutzwiller theory
terms of local spectra. Here we have shown that also
stochastic flows can be suspended on the skeleton of cl
cal periodic orbits in this way.

With so many orders of perturbation theory, we are n
poised to address the issues raised by the asymptotic s
nature of perturbative expansions. We can now hope to
sum the series to all orders, making use of techniques suc
the Borel resummation, the asymptotic expansions of gen
integrals of saddlepoint type, and asymptotics beyond all
ders@9#. All of this is beyond the scope of the present pap
and we defer a full discussion of asymptotics to a forthco
ing paper@10#.
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