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Abstract

We derive a recursion relation for the Fourier transform of any self-similar multifractal mass
distribution. This is then used to find sufficient conditions under which S(k) -» 0 as |k| — oo.
Among two-dimensional distributions for which the similarity transformations contain 2r/n
rotations, it is found that for values of n equal to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18
and 30, distributions may be constructed satisfying the above condition. The possible scaling
factors in the similarity transformations are strongly constrained by the value of n. In three
dimensions, the equivalent condition is that all rotations/reflections are elements of a finite
group, together with similar constraints on the scaling factors.

1. INTRODUCTION

It is well known that the scale invariance of frac-
tal mass distributions appears in the diffraction
pattern,’ and this has led to experimental tech-
niques for measuring not only the dimension,
but " also the whole multifractal spectrum of a
distribution.?

Investigations into the structure factor S(k)
of deterministic mass,? surface,® and mixed frac-
tals® have shown that although the structure factor
decreases on the average for large |k|, given by
generalisations of the expression in Ref. 1, it
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need not vanish in the limit |k| — oo,

S(k) »0 as |k| — 0. 1)
That is, S(k) contains peaks for arbitrarily large
|k|, the intensities of which do not approach zero.
None of these investigations considered fractals with
rotations in the defining transformations.

In our previous paper,’ we considered the specific
case of the von-Koch snowflake, which contains 7 /3
rotations, and found that Eq. (1) holds, due to the
existence of the hexagonal lattice and the nature of
the transformations used to define the snowflake.
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In this paper we .consider the more general
question of what conditions are sufficient for this
property to hold, for self-similar multifractal mass
distributions. Similar to the classification of quasi-
periodic lattices which also have long range order
and (approximate) self-similarity,”8 it is found that

Eq. (1) holds for fractal distributions defined with

rotations inconsistent with periodic lattices. In ad-
dition to the octagonal, decagonal, dodecagonal,
and icosahedral symmetries of quasicrystals, we find
that 14~, 18- and 30-fold rotations are permitted for
distributions which satisfy Eq. (1).

2. FUNDAMENTALS

We begin by setting forth the mathematical formal-
ism used in the following sections. It is necessary
to use a slightly more gemeral approach than previ-
ous authors®* to allow for rotations in the transfor-
mations used to define the mass distribution. The
mathematical foundation of the theory of fractals,
and an introduction to multifractal distributions
may be found in Ref: 9.

A self-similar fractal of embedding dimension F
is a bounded closed set F C RF which may be
split into N subsets, each of which being similar to
the original,

N
F=|JF, (2)
F,=S5,F. 3)

The , similarity transformations S, each consists
of a unitary rotation/reflection matrix Uy, an iso-
tropic dilation factor 0 < c, < 1 and a translation
vector tq,

Sox = cqUaXx + tq . 4)

Provided that the sets F, are non-overlapping, the
Hausdorff dimension of F satisfies the equation:

N©o T
S imE g, (5)
a=1 - N ’

‘We consider a mass distributio'nv‘on F. ’i‘he mass
density p(x) is singular; however, all: physical quan-
tities may be found using integrals of the form:

1700 = [ $x)p(x)d%z; )

which are often finite, and hence easier to handle
rigorously than p(x). The distribution is normal-
ized to have total mass unity, ’

1= [ px)dPa=1. NG

A self-similar multifractal distribution on F is one
which satisfies the equation: '

N
I[f(x)] = Z Pal|f(Sax)], ) ®

: a=1

where f is any function and p, is the total mass on
F,, thus:

N
E Pa=1. (9)
a=1 .
If the p, are given by
Ca
Do = N ) (10)
Ca
-, a=1

the distribution is monofractal and uniform, with
identical regions of the fractal having the same
mass. In all other cases the distribution is mul-
tifractal, with a range of scaling exponents,
depending on the point on the fractal and the
quantity referred to.

Equation (8) gives, for the center of mass of the
distribution (x), :

N .
(x) =Ix] =Y palta+ CaUa(X)if 11)

a=1

Without loss of generality, we assume that the

distribution is centered on the origin, so:

N
Z Pata =0 - (12)

a=1

Similarly, rescaling or rotating all‘of the t, simply
rescales or rotates the distribution; - thus, it is
possible to fix t; to any given non-zero vector in
full generality.

The Fourier transform of the distribution, s(k) =
Iexp(ik-x)], is uniquely determined by Eqgs. (7) and
(8) which give, using the linearity property of I,

p0)=1 (13)
plk) = f: Pae™ e 5(caUlK) (19)
a=1



where the “!” indicates Hermitian conjugate and
is equivalent to U;!. This equation permits the
numerical evaluation of p(k) for any value of k
. using a recursive algorithm since the right-hand side
of the above equation involves (k) at values of k
which approach zero after a number of iterations.
For values'of |k| less than a cutoff ¢, 5(k) is taken to
be equal to 1, thus terminating the recursion. Con-
".vergence of this procedure as & — 0 is guaranteed by
the analyticity of g(k), together with the fact that
‘the magnitude of the coefficients (pa exp(ik - to))
sum to 1, and so do not increase the error in j(k)
in successive iterations. The analyticity of g(k) is
shown by expanding the exponential in I[exp(ik-x)]
in a power series and showing that the resulting
series involving terms of the form I [H]E=1 a:;'J] is
convergent for all k.
The structure factor S(k) may then be simply
evaluated as:
TS = [P (15)

" The alternative definition, as the Fourier transform
of the autocorrelation function g(r), is not partic-
ularly suitable for deterministic fractals, as g(r).is
typically singular.

In order for 5(k) to be non-vanishing as |k| — oo,
the phases of the terms in Eq. (14) must add
constructively for all but a finite number of

iterations. In the following sections, the stringent.

conditions this imposes on cu, Uy, to and p, are
investigated for some simple cases following some
general discussion.

3. GENERAL REMARKS'

The. purpose of this paper is to ‘demonstrate the
existence of .a class of fractals defined using
rotations with the property that (k) does.not tend

to zero in the limit of large, real k.. We do not

provide "an exhaustive classification scheme . of
such fractals. The fractals we describe all have the
following properties: )

Condition 1. The exponentials of Eq. (14) re-
quired in the evaluation of §(K;) for some un-

bounded sequence K; atre almost all close to 1..

Given a set of t,, the values of k for which the
exponential is exactly 1, lie on a periodic lattice of
-points, ‘lines or planes, etc., or else k = 0 is the
only solution. The phrase “almost all close to 17
¢an be made rigorous by insisting that, for all j, if
-the largest difference between the exponentials re-

quired to calculate j(k;) and 1 at each iteration
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step were sorted into a decreasing sequence, this
sequence could be bounded from above by a de-
creasing geometric sequence which is independent
of j. This Condition is automatically satisfied for
the terms with k close to zero, since the recursion
relation in Eq. (14) requires values of k whose ab-
solute value follows & geometric sequence.

Condition 2.", The ,grbup generated by the U, is
finite. This means, for example, that all rotations

-are of an angle 2 /n where n is an integer. It makes "

the rapid evaluation of 5(k) possible. It is probably -
implied by Condition 1, except in the trivial case
of the U, and the t, spanning mutually disjoint
subspaces, but this is difficult to prove.

It is clear that Condition 1 implies that j(k) does
not approach zero for large k, except where it is
exactly zero for the K; due to unspecified behavior
at small k. This possibility may be eliminated for
any specific distribution by simply evaluating p(k)
at appropriate points. )

Note that we have not assumed that the periodic
lattice referred to in Condition 1 exists. It is suffi-
cient that values of k exist for which exp(ik - t,) is
close to 1 for all o. For a given definition of “close
to 1” such points will lie on a quasiperiodic lattice.

4. THECASE E=1

There are no rotations in one dimension, so this
case has been thoroughly dealt with in Ref. 3. It is,
however, instructive to review these results, as the
two-dimensional case with rotations retains many
of the features present in one dimension.

Let ¢ be the smallest number such that all of the
¢, may be written as integer powers of ¢. If ¢ does
not exist, the number of values of k within any in-
terval required in the evaluation of 5(K;) increases
without limit as j — oo. Thus ¢ must exist for
Condition 1 to be met.

If c exists, the values of k required form a geomet-
ric sequence with ratio ¢. Condition 1 is fulfilled if

- it is possible to align this geometric sequence with

the. lattice at which the exponentials are close to
1. This is true only if ¢~''is a Pisot-Vijaraghavan

(PV) number. See Ref. 10 for the properties of

these numbers. . ]
A PV number z > 1 is a real number whigh

- satisfies the equation VYn

|z" = [="]] < a®, (16)
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for some @ < 1. [z"] is the nearest integer to ™.
The PV numbers include all integers, no irreducible
rational numbers, and all the remaining algebraic
numbers for which all the conjugates are of mag-
nitude less than 1. Each algebraic number has a
unique polynomial of minimal degree of which it
is a root; its conjugates are the remaining roots of
that polynomial. The most well known irrational
example is the golden ratio (+/5+1)/2. An impor-
tant property which may be deduced from Eq. (16)
is that, if 2 is a PV number and y is expressible as
a polynomial in z with integer coefficients Vn,

lyz" — [yz"]| < ba™, 17)
for some 0 < @ < 1 and real number b.

Thus the one dimensional self-similar multifrac-
tal distributions which satisfy Condition 1 are those
for which the t, are commensurate (hence the pe-
riodic lattice at which the exponentials are equal to
1) and ¢! is a PV number, and those for which all
the ratios between the t, are powers of ¢~1, which
is again a PV number. In the second case, there ex-
ists a geometric sequence K; at which exp(ik - to)
is increasingly close to 1 for all o.. Both cases rely
strongly on the fact that the difference between all
the large powers of a PV number and the nearest
integer decreases as fast as a geometric sequence.

5. THE CASE E =2

In two dimensions U, may be described by either
a rotation or a reflection. In any case Condition 2
requires that all the U, leave the vertices of an n-
sided regular polygon invariant, for some n. The
question arises: for what values of n can Condition 1
be met?

The simplest periodic array occurs when the t,
are all parallel, with rational ratios (the generalisa-
tion to PV ratios is straightforward). In this case,
the exponential in Eq. (14) is equal to one on a peri-
odic array of parallel lines in k space. It is trivial to
align the vertices of an n-sided polygon to this ar-
ray if n = 1, 2, 3, 4 or 6. The scale factor ¢ (see last
section) may then be the reciprocal of any PV num-
ber, and Condition 1 will be met. These values of
n are also the symmetries of lattices of points, thus
a large range of fractals with these rotations exists
for which the Fourier transform does not vanish at
large k.

The first non-trivial case is n = 5. In Fig. 1,

it is seen that it is possible to align only 3 of the -

ke

Fig. 1 A pentagon cannot be aligned on an array of
parallel lines.

5 vertices of a regular pentagon centered on the
origin on an array of parallel lines. However, the
two remaining points shown have z-coordinates of
sin(2m/5)/ sin(r/5) = (V5 + 1)/2. Thus a value of
c equal to the reciprocal of (v/5 + 1)/2 ensures that
the preimages of this pentagon by the transforma-
tion in Eq. (14) are increasingly close to the lines
as the number of iterations increases, so that Con-
dition 1 is met. The case n = 10 follows by simply
reflecting Fig. 1 in the z-axis.

For n = 7 the same result holds. It is only pos-
sible to align 3 of the 7 vertices on an array of
parallel lines, but sin(37/7)/sin(x/7) is PV num-
ber, with a minimal polynomial of degree 3. In
addition, sin(27/7)/sin(x/7) may be written as a
polynomial in this number with integer coefficients,
so by Eq. (17) any distribution with 7-fold rota-
tions with the t, parallel and commensurate satis-
fies Condition 1.

For large values of n, this procedure does not ap-
pear to generate fractals which satisfy Condition 1.
That is, we have not found any PV number in which
all the required ratios of sines may be written as in-
teger polynomials. The exceptions, n = 5, 7, 8,
9, 10, 12, 14, 15, 18 and 30, are listed in Table 1,
together with the relevant PV number. Note that
there is an infinite set of PV numbers of the form
av2+b (and a+/3 + b) with integers a and b, all of
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Table 1 Suitable Scaling Factors for Different Values of n

—1

n c Minimal Polynomial
1,2,3,4,6 Any PV number Polynomial with all but
one of it’s roots of
magnitude less than 1
. (27
sin (?) Ei1
5,10 ) _ V54 P oz-1
sin{ 2 2
5
‘ (3”)
sin | =
7,14 —_—L 22 -2 -z+1
sin|Z
7 "
8 V2+1 z2—2r-1
sin i
9
9,18 — L z® — 32 +1
sin| =
9
12 V3+1 7?2z -2
. (77:")
sin ‘1—5‘
30 and its factors — 7 ' 42’ — 4z’ +z+1
. ™
sin (E)

which satisfy the conditions for n = 8 (and n = 12
respectively). It is interesting to note at this point
that an n = 12, ¢! = V3 + 2 (a PV number)
set of transformations has been used to define a
fractal-like acceptance domain in the construction
of a dodecagonal quasicrystal.l!

Note that the highest degree PV number in
Table 1 is of degree 4, and that the ratios of sines
and cosines for the first value of n not in Table 1
(n = 11) are algebraic numbers of degrees at least
5. Our algorithm for determining if a given number
z is PV involves evaluating large powers of z (near
2200) to a high degree of precision and should not
depend on the degree of z. There may be a deep

connection between these properties of PV numbers
and the solvability of the minimal polynomial. If
this is indeed the case, we expect that a PV number
for both n» = 20 and n = 24 should exist, since
all the expressions sin(2jm/20) and sin(2j7/24) are
algebraic numbers of degree 4 or less.

We conclude this section by giving a few exam-
ples of two-dimensional fractal distributions with
these properties. All of the distributions here are
uniform -as defined in Eq. (10). The experimen-
tally measured diffraction pattern of the von Koch
snowflake, which has 6-fold symmetry, is given in
Ref. 12. See our previous paper® for an analytic
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Table 2 Defining Transformations for the Distributions shown-in Figs. 7‘2 t‘o 9-

n 8 Ca 0a fa Pa
VB-1 i . 1r . 1
5 5 2 5 ) sin 5 9°5g 3
VB-1 —4r P AY 1
) R “sing o8 2
sin (E)
7 27 1
7 1 —_— = (1,0) =
7 3
sin (3—”)
7
sin z
7 1
e\ 0 ) (0,0) 3
sin (_w) ‘
7
si;l (E)
) —ar . 1
7 3
: sin (3_71')
. 7 : .
8 1 Vi-1 3 ‘ 1,0) - %
v2-1 0 (0,0) 3
’ -3
va-1 = (-1,0 3
sin (1)
15 . .
30 . 30 3?” ) o (1,0) ,%
sin (7_7r) ’ . -
15 ) o
sin (L) ' . :
. . 15 o £17r . 1
WA = (‘1‘ 0) ) 3
et ST g ‘

description and figures similar to those given here.

There is a 5-fold analog of the von Koch snowflake,
shown in Fig. 2, which has the correct value of ¢
A representation of |5(k)[? is given in. Fig. 3. Ex-
amples of 7-fold, 8-fold and 30-fold rotations are
given in the Figs. 4-9. The transformations used
. Yo generate these are given in Table 2.-Here 0, refers
" to the rotation angle of U, and s refers to the total

number of copies of the (Eliétribution. For exam-
ple, the 5-fold snowflake isigenerated in two stages;

~ firstly, the transformations given define the upper

section of the fractal distribution; second, s = 5 ro-
tated copies of the distribution are added together
and normalised to give.the.final result. None of
these transformations involve reflections or define
distributions which are multifractal.

P
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Fig. 2 The 5-fold von-Koch snowflake. The defining trans-
formations for this and succeeding distributions are given in
Table 2.

ky

Fig. 3 The structure factor of the 5-fold snowflake S(k) =
|5(k)|®. The range of shades black to white corresponds to
values of 0 to 0.001._

The reason that the 5-fold snowflake with trans-
formations given in Table 2 satisfies the conditions
set out at the beginning of this section requires some

e 1
AT Ay
o FET W
o ", L2

T

Fig. 4 A fractal with 7-fold rotations.

400

200

-200

-400

Fig. 5 The structure factor of the n = 7 fractal, ranging
from 0 to 0.001.

explanation. The upper section which contains 2/5
of the snowflake is generated by the two transforma-
tions given. Thus, if this section is centered on the
origin, the translation vectors t; and ty are equal
and opposite by Eq. (12). Shifting the section back
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Fig. 6 A fractal with 8-fold rotations. Fig. 8 A fractal with 30-fold rotations.
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Fig. 9 The structure factor of the n = 30 fractal, ranging
Fig. 7 The structure factor of the n = 8 fractal, ranging from 0 to 0.01.
from O to 0.01. The non-zero peaks at large k are clearly
visible.

sibly cancel the intensities at the required peaks by

destructive interference, but this does not happen,
to its original position alters the phases, but not as seen in Fig. 3. It is also interesting to note that
the magnitudes of |5(k)|%>. Adding the result to 4  the “voids”, regions of low intensity, in Fig. 3 are
rotated copies of the same distribution might pos-  shaped like the original snowflake.




6. THE CASE E =3

Rotations in more than 2 dimensions do not com-
mute. This means that classifying the finite groups
required for Condition 2 becomes a non-trivial prob-
lem. We refer the interested reader to Ref. 13 and
the references therein. In three dimensions, the only
groups of transformations which map a point out of
the plane are the groups of symmetries of the regu-
lar polyhedra. Each polyhedron is equivalent to its
dual for this purpose, so the group of symmetries
of a cube and of an octahedron are isomorphic, and
denoted by W*, and similarly for the dodecahedron
and icosahedron (J*). The group of symmetries of
a tetrahedron 7* is a subgroup of W*, so there are
only 4 cases to consider: W*, W, J* and J, where
the unstarred forms are the groups containing only
rotations.

W+, and hence W are symmetries of the cubic
lattice, hence Condition 1 is automatically met if
¢! is a PV number; this case is analogous to n = 4
of the previous section.

J* and J both contain 5-fold rotations, and so
are not the symmetry group of any periodic lattice.
Just as for E = 2, the problem is now to align the
icosahedron with a lattice of points, lines or planes.
Writing ¢ = (v/5+1)/2, the 12 vertices of an icosa-
hedron have coordinates (0, +1, +¢), (+¢, 0, £1),
(%1, +¢, 0). All of the coordinates are trivially in-
teger polynomials in ¢, which is a PV number, as
noted previously. Thus if ¢ = ¢~! and the t, are
such that the periodic lattice in Condition 1 is a
cubic lattice, Condition 1 is met.

For E > 3, the complexity of the problem
increases dramatically; however, some genera] re-
marks may be made concerning all dimensions.
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Some groups of rotations have an invariant lattice,
thus satisfying Condition 1 if ¢! is any PV num-
ber. Others are symmetries of polyhedra, but do
not have such a lattice, in which case ¢! is severely
restricted, if values which satisfy Condition 1, and
hence Eq. (1) exist at all.
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