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Computing the diffusion coefficient for intermittent maps: Resummation of stability ordered
cycle expansions

Carl P. Dettmann
Center for Chaos and Turbulence Studies, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

Per Dahlqvist
Royal Institute of Technology, S-100 44 Stockholm, Sweden
(Received 25 November 1997

We compute the diffusion coefficient and the Lyapunov exponent for a diffusive intermittent map by means
of cycle expansion of dynamical zeta functions. The asymptotic power law decay of the coefficients of the
relevant power series is known analytically. This information is used to resum these power series into gener-
alized power series around the algebraic branch point whose immediate vicinity determines the desired quan-
tities. In particular, we consider a realistic situation where all orbits with instability up to a certain cutoff are
known. This implies that only a few of the power series coefficients are known exactly, and many of them are
only approximately given. We develop methods to extract information from th&swlity orderedcycle
expansions, and compute accurate values for the diffusion coefficient and the Lyapunov exponent. The method
works successfully all the way up to a phase transition of the map, beyond which the diffusion coefficient and
Lyapunov exponent are both zef&1063-651X98)05405-1

PACS numbd(s): 05.45+b

I. INTRODUCTION periodic orbits in a systematic way is largely facilitated if
one has some symbolic dynamics. For a few potentials this is
Given the task of computing an average, such as @ossible, for example the’y? model[5], the helium atom
Lyapunov exponent or diffusion coefficient of a chaotic sys-[6], the diamagnetic Kepler problefd] and the anisotropic
tem, one can take two different approaches. First, simulatioiKepler problem8,9].
is usually simple, and it provides an answer without bother- For generic flows it is often not clear what Poincage-
ing to understand the topology of the flow, but it may suffertion should be used, and how it should be partitioned to
from severe convergence problems. generate a symbolic dynamics. Cycles can be detected nu-
Second, these averages can be extracted from dynagnicaimerically by searching a long trajectory for near recurrences.
functions and their expansions, known @gle expansions The long trajectory method for finding cycles discussed in
The basic advantage of expanding the average over cycles lRefs.[10,11] preferentially finds the least unstable cycles,
that the asymptotic limitt—o is already taken from the regardless of their topological length. If you can find all
beginning. Longer cycles provide corrections to the resultsycles with stabilityA;, less than a certain cutoff, you can
obtained from shorter ong4]. usestability ordered cycle expansions. Stability ordering was
Real success app]ymg functions has so far 0n|y been introduced in R8f5[5,12] It was later studied more system-
demonstrated for quite a restricted class of dynamical sysatically in Refs[13,14]. Itis much easier to implement for a
tems [1-3]. The topology of the flow should be 9eneric dynamlc_:al system than t_he curvature expansions
Markovian—symbolic dynamics may be introduced and thigwhich rely on f|n|te_ _subshlft approximations to_ a given flqw.
symbolic dynamics is of finite subshift typeneaning that NA general stability ordered cycle expansion looks like
there is only a finite number of forbidden substringk 226 @ €xp(—sh), wherea; is a monotonically decreasing
addition the system needs to be hyperbolic—the stability oequence but; is not monotonic. In this paper we will re-
cycles is exponentially bounded with length. The class oftrict our attention to mapslt would then be relevant to
systems complying with these two properties is callegspeak of stability truncatign rather than stability ordering.
Axiom-A. This class is far too restricted to have any major The expansion looks lik&; "#a;z', where a few of the co-
relevance in applications. efficients may be exact whereas the rest are only approxi-
Success in expandingZafunction depends on its analytic mate. In particular, if the system is intermittent, the number
structure. Convergence is hampered by singularities close tof approximate coefficients greatly exceeds the number of
the zero being studied. However, if the nature of a disturbingexact ones and the main task of this paper is to extract the
singularity is known, one can utilize this knowledge in ainformation they carry. Moreover, we will make use of @ur
resummation scheme. If the singularity is solely due to interjpriori knowledge of the power law decay of the exact coef-
mittency the convergence problem is thus tamed to a largécients, and employ the resummation technique of R&f.
extent[4]. to improve convergence.
To appreciate the relevance of stability ordering of cycle We believe that the idea of stability ordering has its larg-
expansions, we imagine a fairly generic system, given byest potential for systems which cannot be described by a
some set of differential equations. The problem of findingsymbolic dynamics of finite subshift type. However, in order
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to identify the problems due only to intermittency, we will result can be recast into a sum over residues outSidhat
study a map with complete symbolic dynamics. is, it may be related to the analytic structure of théunc-
tion.

The Lyapunov exponentan be expressed in terms of a
generating function

Il. THEORY
A. Averages and{ functions

A nice introduction to chaotic averages is found with , _ iy, E(In|A(x0 )= Iiml
proper references in RefL5]; we will take a slightly differ- N N ' Nl
ent approach. The reason for this is that the key step in Ref.
[15] assumes that the leading zero of &unction is isolated.
We will try to avoid this assumption by starting from an
expression for the invariant density in terms of periodic or-
bits. The price we pay is that this formula is not rigorously

d B
@(A(Xo'n) >|B:o-

One therefore introduces the multiplicative weight

W(Xg,N)=A(Xq,n)~.

(6)

proven for the intermittent systems we will study.
The aim is to compute averages like

<wum»=fmmwummz 1)

where p(x) is the invariant density of the ergodic map

x—f(x).

This density can be expressed in terms of periodic orbit:

via

Ilmzz pE S(X=X;),

noow P r=1 p|rX|EP

)

wherer is the number of repetitions of primitive orbit,
having periodn,, and stabilityApz(df”p/dx)|X:,(i with X;
being any point alongp.

The weightw(xg,n) is associated with the trajectory

starting atxy and evolving duringn iterations in such a way
that it is multiplicative along the flow:w(xq,n;+ny)

One can now express the Lyapunov exponent in terms of
the associated function

1 dd_
= I|m - — z "— —In {, "(2)|g=odz.

e 4B dz @)

For a diffusive mag: R— R, the diffusion coefficient can

éallso be expressed in terms of a generating function

1 SN2
= lim ﬁ((f (Xg) —X0)%)

n—o

= lim id_2<eﬁ(%n(;<o)—;<o)>|B70 8
n 2N dB?
motivating the introduction of the weight
Wp(xo, 1) =41l %ol ©

If #(x+nL)=f(X)+nL wherexel (I is some interval of

=W(Xo,N1)W(f"(X0),n). As we are dealing with maps, it |engthL) then the map can be reduced to a niap—1 on

is simply

W(Xg,n) =W(Xo, DW(f (X0), DW(f*(x0),1)- - -w(f"~11).

The phase space averagewdfx,,n) may now be expanded

in terms of periodic orbits as

nrn

lim (W(xg,n))= lim >, n Z} ©)

n—o n—eo P p|

w, is the weight along with cycl®. { functions are intro-
duced by observing that the avera@ may be written as

lim <W(X0,n)) lim —f In Lw Y2)dz, (4
with the ¢ function
112,(2)=1] |2 wplep|) ®

the elementary cell
This may be expressed in terms of dunction with the
weightw,, along cyclep on the elementary cell given by
wy=eP7%, (10

where

op= 2 [Fx)—f(x)]

Xjep

(11)

is the corresponding drift in the full system.
The diffusion coefficient may now be expressed in terms
of the associated function

1 1 d?
= I|m —— z‘n

d
! 2n 27 —In{5N(2)|g_odz. (12)

dp? dz

In both Egs.(7) and (12), the asymptotic behavior will be
determined by the leading singularity of the integrand. Since
the integrand is evaluated gt=0, the singularity is located
atz=1. If this singularity is isolated, the asymptotic result is

C is a small contour encircling the origin in clockwise direc- obtained by simply integrating around it. For the intermittent

tion. Equation(4) may be verified by inserting thefunction
(5) and let the integral pick up the residues fram0. The

system we are going to consider, there is a complication. The
singularity is not isolated. Thé function has a branch cut
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along Reg)=1 and Imf)=0. To extract the asymptotic Z"p
behavior of these integrals we need to integrate around this 1/£)\(Z):H - |A|TB
cut. p
Let us return to the Lyapunov exponent and assume that z P z Toln| A
_ +0 2 )
1/¢\(z,B)=[a1(1=2)+O((1-2)")]+ B[bo+ O(1~-2)] ( AT (F)
+0(B?), (13 oz z pIn| A
:H |A| 0(182)
where y>1. This particular assumption will be motivated P
later in this paper. We need to evaluate S S
Eg az+p ,Zo bz | +0(B?), (20)

d d
2t ) (179 " gp asin & @l p-ods
resulting in two power series. Similarly for the diffusion cal-

culation we expand

bo 1+0(s” Y
(1— s)~" ———d no o
T 2m a g2 z"reP%
Ueo(2)=11 |1~
bg p |A|
=——n+0(n*77), (14 5 .
- Uo(2)=1] (1 AR anp)
Z — —
where we have changed variableste 1—z. I'; is a contour P p |A| |A| 2|A| 6|A|
encircling the negative real axis in an anticlockwise direc-
tion. ’ ) +0(8%
When evaluating these integrals, the following formula is s o
useful: E;o a7+ g2 ,Zo ¢,z | +0O(B%). (22)
1 1 G , . , . .
| Zestgs= ) (15)  We restrict our attention to systems with no net drift, that is,
2i oS’ I'(p)
R SN
The Lyapunov exponent is thus found to be lim —("(xo) —X0)=0. (22)
n—oo
bg .
AN=——. (16)  Therefore only even powers ¢f appear in Eq(21).
a The set of coefficients we obtain in this way depends on
For the diffusion case. we assume that the truncation used in the expansion of the infinite product.

For truncation by topological length, we count cycles up to a
1¢p(z,8)=[a1(1—2)+O((1—2)")]+ BH co+O(1-2)] given lengthN,,,. For maps with a few branches, this num-
4 ber is limited to roughly of order-10', due to the exponen-
+0(B%). A7 tal growth in the number of cycles with the topological
length. All combinations of cycles with total length less than

We now n to evaluat : .
e now need to evaluate or equal toN,,, are also included, as these contribute to the

1 2 g . first Niop cqefficients in each.series. Thus we obtdip,,
> ro(l_s) nd_,82 d_sln res (Z(S))|ﬁ:od3 g;ﬁg;coefﬁuents in each series by topological length trun-
co Fp_r truncation by stability,_ we count cycles up to a given
=—-2—n+0(n?7?) (18  stability An,y, and combinations where the product of sta-

bilities is less tham\ .- They have lengths up t,,,,, and

so contribute to all of the firdN,,,, coefficients in each se-
ries, but are not the only contributions to such coefficients.
They give us an approximation to tl{efunction which, for
D=——. (190 the intermittent case, is more accurate than that obtained
from the length truncation, but the values of the coefficients
themselves are not exact beyond sdWg.{ A may, @ quan-

tity growing logarithmically: Ngyacr=In Apax. FOr intermit-

tent maps, as the one we will considat,,,, increases as a
power of A ax @aNd Npa> Neyact:

Often it is found that stability ordered cycle expansions
lead to noisy results as a function &f,,,. This is due to the
breaking of shadowing pairs. For example, a cy&R usu-

For the Lyapunov exponent calculation we expand ghe ally gives a contribution roughly equal to and of the opposite
function sign as the combination of cyclésandB (we will refer to

and

To obtain thea, b, andc coefficients of this section we need
to expand the function (5) in powers ofz aroundz=0
which will be discussed in Sec. Il B. Then we will resum the
series arouna@=1 in Sec. Il C.

B. Expanding ¢ functions
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such a combination as @seudocycle This means the total INA;+---+ In Ay
contribution is quite small. The phenomenon is called shad- 2 (—1)k Ay Ay
owing, and is the main mechanism for the rapid convergence A= ! K , (25)
of cycle expansions in hyperbolic systems. It is still present S (- 1)k”1+ AL
to some degree in intermittent systems. However, if one such [Aq--- Ay
term is included but the other is excluded because they lie on
opposite sides oA ., there may be a substantial error gen- Z (- 1)k(fffr et o)?
erated. 1 A Ay
Partial shadowing which may be present car{fmtially) D= 5 Nt -+’ (26)
restored by smoothing the stability ordered cycle expansions E (— 1)kl—k
by replacing each term with inverse pseudocycle stability [Ag- - Ay

-1_ . -1 -1 i _ L.
A _ =(Ap, Apk). by S(A_)A ' HereS(A) S @ MONO- \yhere the sums run over all distinct pseudocycles.
tOl’)\lcaagy decreasing function, withS(0)=1 and S(A This approach is particularly cumbersome for intermittent
>Ama) =0. s ~ ¢ ~ .
e . . _ ystems, wherg; (as well as; andc;) decays according to
A typical “shadowing error” induced by the cutoff is due gm0 power law. Then the coefficients either diverge or con-

to two pseudocycles of stabilih separated bYAA, and  erge slowly as—o. So, for intermittent systems, the re-

wh_ose_ contribution is of opposite signs. Ignc_)rmg pos.s'blesummed series cannot be a Taylor series; it has to be some
weighting factors the magnitude of the resulting term is of

9 1 > ap X > “'generalized power series.
orderA™"—(A+AA)""~AA/A® With smoothing there is ™ Aqqyme that the asymptotic behavior of the coefficients is
an extra term of the forn®'(A)AA/A, which we want to

L ! a power law
minimize. A reasonable guess might be to ke®gA)/A
constant and as small as possible, that is a~n-(r+1), (27)
A |2 Then the leading singularity is of the form {1z)?, and the
S(A):[l_ Amax) O(Amax—A).- simplest possible expansion would be
This function still contains a nonanalytic point a S a(l—2)+(1— yw a(l—z)= ; a7z (28
= A max, hOwever the discontinuity is now in the derivative, .21 (1=2y+(1-2) i:zo (12 iZO iz (28

not in the original function, so a smoothing error estimated
by S'(A)/A (A<Apg) is finite. We use this smoothing Having only a finite numben of coefficientsa;, we propose
function below when evaluating thiecoefficients, and dem- the following resummatiofi4]
onstrate the improvement numerically. _
Ny Ny n
C. Resumming¢ functions 21 ai(l—z)'+(1—z)7i20 ai(l_z)lzigo ,z +0(z"™).

The result of thecycle expansions Sec. 1l B is a set of (29
power series of the forrﬁiéizi aroundz=0. And, according Fan42=n+1 btain iust a li " f i
to Sec. Il A, what we need are coefficients from some kind ofll Na™Na 'n » We obtain “_JS alinear sys em of equa
(resummeliseries around=1. We now describe a method tions to solve in orde[to determine the coefficiemtandn,
of obtaining such a series, along the lines of Réf. from the coefficientsa;. It is also natural to require that

Suppose for a moment that the ser% ,a,z' has ara- |na+y—ny/<1.
dius of convergence exceeding unity. In a practical calcula- The basic philosophy is to build in as much information
tion we have only a finite number (say Ny, Or Npg) of  a@s possible into the an_satz. If the priginal power series cor-
coefficientsa, at our disposal. We assume them to be exact'€SPonds to the unweighted function, we know thata,
the treatment of the approximate coefficients from stability=0- The ansatz is thus accordingly modified. Wedj=0
ordered expansions are discussed in Sec. Il C. Then we ca@nd modifyn, or n, so we still obtain a solvable system of
in principle expand it into another truncatécesummegl  equations.
Taylor series around=1:

Ill. NUMERICAL STUDIES OF AN INTERMITTENT

n n
A ; DIFFUSIVE MAP
> az=> a(z-1). (23)
i=0 i=0 A. Map
This leads to a linear systems of equations which is trivially ~In the intervalx e [ — 2,2), which we call the elementary
invertible: cell, our model map, following Ref14], takes the form
n F(X)=x(1+2|2%|%). (30)

N (24)

The parameter range we consider here és(0,1), where the
Lyapunov exponent and diffusion coefficient are both non-

In this way one obtains the standard formufa¢ zero. For any value of, this maps the intervate[ —$,3)
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FIG. 1. Map(30) for =0.7.

monotonically to[ —2,2). Outside the elementary cell, the
map is defined to have a discrete translational symmetry,
fx+n)=f(x)+n, neZ
See Fig. 1. A typical initiak in the elementary cell diffuses,
wandering over the real line. The map is parity symmetric

f(—%x)=—F(x), so the average value of,.,—X, iS zero,
and there is no mean drift, as expressed in [28).

We now restrict the dynamics to the elementary cell; that

is, we define
X=x—[x+1/2],

where[z] is the greatest integer less than or equat,tso

thatx is restricted to the range- 3,3). The reduced map is

f)=F0)—[F00 + 3]. (31)

As discussed in Ref14], the intermittency of this map

COMPUTING THE DIFFUSION COEFFICIENT FR. ..

5307

05

04r

0.3

0.2;

0.1

10

FIG. 2. The diffusion coefficient ak=0.7, from direct simula-
tion (solid line), and topological ordered cycle expansions with
(diamond$ and without(pluse$ resummation.

n+1 * n+1
4 4
_e+ﬁ§

n=0 | AZonl

1/50(2)”1_6_/3“20 m

(33

—on|

This approximation may seem crude. For instance, ¢he
functions (32) and (33) fail to preserve flow conservation.
However, in Ref[4] we presented evidence that they capture
the leading singularity structure correctly. This was obtained
by comparing coefficients of the piecewise linear approxima-
tion of the intermittent magsharing the singularity structure
with the approximation aboydoy the exact cycle expansion.
The asymptotic behavior of the fundamental cycles is given

by

A$: 1+1/a

(39

'see, e.g., Refd§4,14] for a derivation. We immediately ob-
tain, from Eqs.(32)—(34),

+on~N

anwn—l—l/a’ (35)
b,~n~1"Ynn, (36)
6nNn—l—1/a. (37)

This leads to formg13) and (17), with y=1/a, as long as
a<l.

For a general orbit we can only bound the stability in the
range

Cni <] Al <(maXf’|)"=(3+2a)%,  (38)

appears in the form of long cycles near the marginal poinf®: When using stability cutoff, for the .parametN,ﬁaX and
with power law stabilities. This is in contrast to Axiom-A Nexactdiscussed in Sec. Il B we obtain:

systems, for whictA may be bounded by exponentials of the N~ A1+ (39)
topological length. e Tomax

The map has three complete branches in the elementagnd
cell. Symbolic dynamics is introduced by labeling the In A
brancheq —,0,+}, with cycles denoted by an overbar. Due Nexacs™ — s (40)
to the completeness of the symbolic dynamics, hfeinc- In(3+2a)

tions are approximated Hyl6] _ _ ]
B. Resumming topologically ordered cycle expansions

® N+l n+1 We will, most of the time, concentrate on the diffusion
Ui (2)~1— >, i - (320  coefficient, but a similar analysis holds for the Lyapunov
(=0 [A=gn|*™# =0 |[ATgn|t T exponent, to which we return at the very end. We calculated

the diffusion coefficient from resummed cycle expansions

and obtained using topological ordering, as described in Sec.
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0.175 A =100
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0.0001; e 0.15
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FIG. 3. The magnitude of thé coefficients for stability ordered 042
cycle expansions atr=0.7 unsmoothedpointy and smoothed
(solid line). 0.1
9 4

0.1

(=]

II C, with the number of coefficients determined by the 02 04 06 08

maximum topological length, up to 10. We also used the 0.128
direct formula(26), and performed direct simulations with A=10°
roughly the same amount of computer time. The results are 0.1275
shown in Fig. 2, showing that the resummation gives much

improvement, and is consistent with direct simulation. D oaz

C. Resumming stability ordered cycle expansions 0.1265

Now we come to the central part of our numerical work: 0426 12 6
the resummation of stability ordered cycle expansions. First 02 04 06 08

we calculatea;, as described in Sec. Il B. The coefficients

z
are all negative exce;ﬁto= 1, and their magnitudes are plot- FIG. 4. Diffusion coefficient calculated using resummed stabil-
ted in Fig. 3, where we have usey, .= 10°> which corre- ity ordered cycle expansions, showing a dependence’ dffabels
sponds toNgy.c=8 andNp.=81. The unsmoothed coeffi- on curveg andz’ (horizontal axi$. Note the scales on the vertical
cients are thus exact far<Ng,,. The smoothed are not axes.
exact but are still quite accurate. FOP> N, We clearly

o

N .
see how the unsmoothed begins to oscillate in an irregular al = iax ! 2.z (i=m (42)
fashion, whereas the smoothed ones are stable for much " & \n) ! '
largern.

The next issue is how to best make use of the informatioYVith z' suitably chosen, we have thus used the information
contained in the, coefficients. As pointed out in Sec. Il B, available in thea, approximately in proportion to their reli-
these coefficients are not exact, but they give a better repr&Pility. That is, the accurate low order coefficients appear

sentation of the’ function than the limited number of exact With large weights in the first few, , while the less accurate
coefficients obtained from topological ordering. In order tohigh order coefficients appear with small weights. As we will

match the series =1, we must again solve a linear set of see, this approach is better than one which simply ignores the

equations, but the number of coefficieni$,{;,) for intermit- ng\% order coefficientgthis corresponds to putting =0

tent systems is much larger than for the topological ordering. As for the topological length truncation, the resummation
We cannot match such a large number of coefficients in botly | " -4 71" |aads to a set of linear équations obtained
series, because the solution would be unstable to the errors B equating coefficients in
the coefficients, so we must represent the information con-
tained ina,, in the (fewen number of degrees of freedom that , _ ,
the expansion really contains. > ai(l-2)'+(1-2)" a(1-2)'

There may be more than one solution to this problem; the =t =0
solution we use here is to perfortwo resummations, the n’
first from z=0 to an intermediate €z’ <1, and the second => a/(z—z')'+0(z"Y). (43
from z=2z' to z=1: =0

Na Na

Nmax — Nmax _ Again, we adjush, andn, so as to obtain a consistent series
> az=> al(z—7'), (41)  in powers ofz—1 and a consistent set of linear equations.
1=0 =0 We have two parameters in the double resummation
scheme,n’ andz'. The idea is to calculata or D for a
which can be explicitly inverted range of both parameters and look for the most consistent
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0.13 = 0.175
0.125 VI 0.15
0.12 0.125
b 0.115 5 0.1
0.11 0.075
0.105 0.05
01 0.025
0.095 0
100 1000 10000 100000 0.5 0.6 0.7 0.8 0.9 1
A @

FIG. 5. Diffusion coefficient calculated using resummed stabil-  FIG. 7. The diffusion coefficient as a function of the parameter
ity ordered cycle expansions, showing a dependence on the stability, showing the approach to the phase transitiomatl, beyond
cutoff. The horizontal lines are the range indicated by direct simuwhich D=0.
lation (also see the discussion in the text

quite compatible with the topological ordering discussed in
solution. The general behavior is shown in Fig. 4. For eaclsec. |1l B, which yielded the resulb=1.262+0.0003. In
stability cutoff A5, small values oh’ lead to a variation  this example, it is clear that resummed cycle expansions,
of D with z', which has a single maximum. Larger values of whether ordered by topological length or stability, provide an
n’ lead to functions that are either monotonically decreasingccurate method of analyzing intermittent systems. Stability
or oscillatory. We estimate the diffusion coefficient by find- ordering is most important in more complicated systems
ing the maximum for the largest value of before mono- where topological ordering is not a realistic alternative.
tonic or oscillatory behavior sets in. The convergence of thisThere is an additional advantage with the stability ordered
method with the stability cutoff is shown in Fig. 5. expansion, in that it provides a large number of approximate

This figure also contains the direct simulation results, obcoefficients, thus facilitating a numerical estimate of the
tained by estimating the left side of E@) for 3x 10° itera-  power law if it is not known analytically. Recall that this
tions over a sample of 810° trajectories, similar to the power law is used in the resummation ansatz, and was abso-
computer time required to find the cycles with<10°. The lutely essential for the good result in Sec. Ill B.
errors were obtained by looking at the scatter in this statisti-
cal sample of trajectories; for intermittent maps, the diffusion
coefficient always tends to be too high, because long inter- ) ) ) ) i
mittent episodes are not sampled sufficiently. Close to the Having gained confidence in the resummation method for
phase transition at=1, convergence is practically logarith- @=0.7, far from the phase transition at=1, we now vary
mic in the number of iterations, with exponentially long & mgludmg values for Wh|ch direct simulation is totally im-
times required to achieve convergence. For example, witRractical, due to logarithmically slow convergence. At
the numerical procedure described above, we find = 0.99 we obtain Fig. 6 for the diffusion coefficient, showing
=0.0524+0.0005 ate=1, where we knowD=0. Even at @ consistent value oD =0.0066=0.0001. PlottingD vs a
a=0.7, a reasonable distance from the transition, the relFig- 7), we find a linear dependence near the phase transi-
summed cycle expansion result is more accurate than direfn ata=1. Finally, we performed the same analysis for the
simulation. Lyapunov exponent, which has a similar dependenceron

Our final value for the diffusion coefficient at=0.7 is ~ Shown in Fig. 8.

D=0.12670.0003 with the resummation method. It is then

D. Phase transition

0.007
0.8
0.0068
06}
0.0066 A
D 0.4
0.0064
02}
0.0062
12 0
0.006 6 0.5 0.6 0.7 08 0.9 1
0 0.2 0.4 0.6 0.8

(87
’

z
FIG. 8. The Lyapunov exponent as a function of the parameter

FIG. 6. Diffusion coefficient calculated using resummed stabil-«, showing the approach to the phase transitiomratl, beyond
ity ordered cycle expansions far=0.99. which A=0.



5310 CARL P. DETTMANN AND PER DAHLQVIST 57

IV. CONCLUSION function may be represented as a standard power series, thus

We have demonstrated that resummed stability ordereglowmg It to be' matched to a_ge'nerah;ed power series at
S=0. For intermittent systems=0 is again a branch point,

oy expansans can provce aoourale esUmales of YT i ot can e obieed hom he oo

verages . PS, PNafescribed in Refd.12,17] or numerically from the stability
transition. This analysis could equally apply to maps with :

: . . ordered expansion.
uncontrolled symbolic dynamics, as long as a reliable
method exists for locating the cycles.
Our methods can also be applied without much modifica-

tion to flows. Then the variableis replaced by exp{s), and C.D. was supported by the Danish Research Academy.
the cycle expansion is actually a Dirichlet series,P.D. was supported by the Swedish Natural Science Re-
>;a;exp(—sl), where the lengths of the pseudo orbitare  search Counci(NFR) under Contract No. F-AA/FU 06420-
not restricted to integer values. With an additional resumma311. We thank the Gan Gustafsson Foundation and NOR-
tion step ats’ (corresponding taz’ in this papey, the ¢ DITA for support.
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