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Computing the diffusion coefficient for intermittent maps: Resummation of stability ordered
cycle expansions

Carl P. Dettmann
Center for Chaos and Turbulence Studies, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

Per Dahlqvist
Royal Institute of Technology, S-100 44 Stockholm, Sweden

~Received 25 November 1997!

We compute the diffusion coefficient and the Lyapunov exponent for a diffusive intermittent map by means
of cycle expansion of dynamical zeta functions. The asymptotic power law decay of the coefficients of the
relevant power series is known analytically. This information is used to resum these power series into gener-
alized power series around the algebraic branch point whose immediate vicinity determines the desired quan-
tities. In particular, we consider a realistic situation where all orbits with instability up to a certain cutoff are
known. This implies that only a few of the power series coefficients are known exactly, and many of them are
only approximately given. We develop methods to extract information from thesestability orderedcycle
expansions, and compute accurate values for the diffusion coefficient and the Lyapunov exponent. The method
works successfully all the way up to a phase transition of the map, beyond which the diffusion coefficient and
Lyapunov exponent are both zero.@S1063-651X~98!05405-1#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Given the task of computing an average, such a
Lyapunov exponent or diffusion coefficient of a chaotic sy
tem, one can take two different approaches. First, simula
is usually simple, and it provides an answer without both
ing to understand the topology of the flow, but it may suf
from severe convergence problems.

Second, these averages can be extracted from dynamiz
functions and their expansions, known ascycle expansions.
The basic advantage of expanding the average over cycl
that the asymptotic limitt→` is already taken from the
beginning. Longer cycles provide corrections to the res
obtained from shorter ones@1#.

Real success applyingz functions has so far only bee
demonstrated for quite a restricted class of dynamical s
tems @1–3#. The topology of the flow should be
Markovian—symbolic dynamics may be introduced and t
symbolic dynamics is of finite subshift type~meaning that
there is only a finite number of forbidden substrings!. In
addition the system needs to be hyperbolic—the stability
cycles is exponentially bounded with length. The class
systems complying with these two properties is cal
Axiom-A. This class is far too restricted to have any ma
relevance in applications.

Success in expanding az function depends on its analyti
structure. Convergence is hampered by singularities clos
the zero being studied. However, if the nature of a disturb
singularity is known, one can utilize this knowledge in
resummation scheme. If the singularity is solely due to int
mittency the convergence problem is thus tamed to a la
extent@4#.

To appreciate the relevance of stability ordering of cy
expansions, we imagine a fairly generic system, given
some set of differential equations. The problem of findi
571063-651X/98/57~5!/5303~8!/$15.00
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periodic orbits in a systematic way is largely facilitated
one has some symbolic dynamics. For a few potentials th
possible, for example thex2y2 model @5#, the helium atom
@6#, the diamagnetic Kepler problem@7# and the anisotropic
Kepler problem@8,9#.

For generic flows it is often not clear what Poincare´ sec-
tion should be used, and how it should be partitioned
generate a symbolic dynamics. Cycles can be detected
merically by searching a long trajectory for near recurrenc
The long trajectory method for finding cycles discussed
Refs. @10,11# preferentially finds the least unstable cycle
regardless of their topological length. If you can find a
cycles with stabilityLp less than a certain cutoff, you ca
usestability ordered cycle expansions. Stability ordering w
introduced in Refs.@5,12#. It was later studied more system
atically in Refs.@13,14#. It is much easier to implement for
generic dynamical system than the curvature expans
which rely on finite subshift approximations to a given flow

A general stability ordered cycle expansion looks li
( i 50

Nmaxai exp(2sli), whereai is a monotonically decreasin
sequence butl i is not monotonic. In this paper we will re
strict our attention to maps.~It would then be relevant to
speak of stability truncation rather than stability orderin!
The expansion looks like( i 50

Nmaxaiz
i , where a few of the co-

efficients may be exact whereas the rest are only appr
mate. In particular, if the system is intermittent, the numb
of approximate coefficients greatly exceeds the numbe
exact ones and the main task of this paper is to extract
information they carry. Moreover, we will make use of oura
priori knowledge of the power law decay of the exact co
ficients, and employ the resummation technique of Ref.@4#
to improve convergence.

We believe that the idea of stability ordering has its la
est potential for systems which cannot be described b
symbolic dynamics of finite subshift type. However, in ord
5303 © 1998 The American Physical Society
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5304 57CARL P. DETTMANN AND PER DAHLQVIST
to identify the problems due only to intermittency, we w
study a map with complete symbolic dynamics.

II. THEORY

A. Averages andz functions

A nice introduction to chaotic averages is found w
proper references in Ref.@15#; we will take a slightly differ-
ent approach. The reason for this is that the key step in
@15# assumes that the leading zero of az function is isolated.
We will try to avoid this assumption by starting from a
expression for the invariant density in terms of periodic
bits. The price we pay is that this formula is not rigorous
proven for the intermittent systems we will study.

The aim is to compute averages like

^w~x,n!&5E r~x!w~x,n!dz, ~1!

where r(x) is the invariant density of the ergodic ma
x° f (x).

This density can be expressed in terms of periodic or
via

r~x!5 lim
n→`

(
p

(
r 51

` dn,rnp

uLpur
(

xiPp
d~x2xi !, ~2!

where r is the number of repetitions of primitive orbitp,
having periodnp , and stabilityLp5(d fnp/dx)ux5xi

with xi

being any point alongp.
The weight w(x0 ,n) is associated with the trajector

starting atx0 and evolving duringn iterations in such a way
that it is multiplicative along the flow:w(x0 ,n11n2)
5w(x0 ,n1)w„f n1(x0),n2…. As we are dealing with maps,
is simply

w~x0 ,n!5w~x0,1!w„f ~x0!,1…w„f 2~x0!,1…•••w~ f n21,1!.

The phase space average ofw(x0 ,n) may now be expanded
in terms of periodic orbits as

lim
n→`

^w~x0 ,n!&5 lim
n→`

(
p

np(
r 51

`

wp
r

dn,rnp

uLp
r u

, ~3!

wp is the weight along with cyclep. z functions are intro-
duced by observing that the average~3! may be written as

lim
n→`

^w~x0 ,n!&5 lim
n→`

1

2p i EC
z2n

d

dz
ln zw

21~z!dz, ~4!

with the z function

1/zw~z!5)
p

S 12wp

znp

uLpu D . ~5!

C is a small contour encircling the origin in clockwise dire
tion. Equation~4! may be verified by inserting thez function
~5! and let the integral pick up the residues fromz50. The
f.

-

ts

result can be recast into a sum over residues outsideC, that
is, it may be related to the analytic structure of thez func-
tion.

The Lyapunov exponentcan be expressed in terms of
generating function

l[ lim
n→`

1

n
^ lnuL~x0 ,n!u&5 lim

n→`

1

n

d

db
^L~x0 ,n!b&ub50.

One therefore introduces the multiplicative weight

w~x0 ,n!5L~x0 ,n!b. ~6!

One can now express the Lyapunov exponent in term
the associatedz function

l5 lim
n→`

1

n

1

2p i EC
z2n

d

db

d

dz
ln zl

21~z!ub50dz. ~7!

For a diffusive mapf̂ : R°R, the diffusion coefficient can
also be expressed in terms of a generating function

D5 lim
n→`

1

2n
^~ f̂ n~ x̂0!2 x̂0!2&

5 lim
n→`

1

2n

d2

db2
^eb„ f̂ n~ x̂0!2 x̂0…&ub50 , ~8!

motivating the introduction of the weight

wD~x0 ,t !5eb[ f̂ n~ x̂0!2 x̂0] . ~9!

If f̂ ( x̂1nL)5 f̂ ( x̂)1nL wherex̂PI (I is some interval of
lengthL) then the map can be reduced to a mapf : I °I on
the elementary cell.

This may be expressed in terms of az function with the
weight wp along cyclep on the elementary cell given by

wp5ebsp, ~10!

where

sp5 (
xiPp

@ f̂ ~xi !2 f ~xi !# ~11!

is the corresponding drift in the full system.
The diffusion coefficient may now be expressed in ter

of the associatedz function

D5 lim
n→`

1

2n

1

2p i EC
z2n

d2

db2

d

dz
lnzD

21~z!ub50dz. ~12!

In both Eqs.~7! and ~12!, the asymptotic behavior will be
determined by the leading singularity of the integrand. Sin
the integrand is evaluated atb50, the singularity is located
at z51. If this singularity is isolated, the asymptotic result
obtained by simply integrating around it. For the intermitte
system we are going to consider, there is a complication.
singularity is not isolated. Thez function has a branch cu
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57 5305COMPUTING THE DIFFUSION COEFFICIENT FOR . . .
along Re(z)>1 and Im(z)50. To extract the asymptotic
behavior of these integrals we need to integrate around
cut.

Let us return to the Lyapunov exponent and assume

1/zl~z,b!5@a1~12z!1O„~12z!g
…#1b@b01O~12z!#

1O~b2!, ~13!

where g.1. This particular assumption will be motivate
later in this paper. We need to evaluate

1

2p i EG0

~12s!2n
d

db

d

ds
ln zl

21
„z~s!…ub50ds

5
1

2p i EG0

~12s!2nS 2
b0

a1
D11O~sg21!

s2
ds

52
b0

a1
n1O~n22g!, ~14!

where we have changed variable tos512z. G0 is a contour
encircling the negative reals axis in an anticlockwise direc
tion.

When evaluating these integrals, the following formula
useful:

1

2p i EG0

1

sr
estds5

tr21

G~r!
. ~15!

The Lyapunov exponent is thus found to be

l52
b0

a1
. ~16!

For the diffusion case, we assume that

1/zD~z,b!5@a1~12z!1O„~12z!g
…#1b2@c01O~12z!#

1O~b4!. ~17!

We now need to evaluate

1

2p i EG0

~12s!2n
d2

db2

d

ds
ln zD

21
„z~s!…ub50ds

522
c0

a1
n1O~n22g! ~18!

and

D52
c0

a1
. ~19!

To obtain thea, b, andc coefficients of this section we nee
to expand thez function ~5! in powers ofz aroundz50
which will be discussed in Sec. II B. Then we will resum t
series aroundz51 in Sec. II C.

B. Expanding z functions

For the Lyapunov exponent calculation we expand thz
function
is

at

1/zl~z!5)
p

S 12
znp

uLu12bD
5)

p
S 12

znp

uLu
2b

znplnuLu
uLu

1O~b2! D
5)

p
S 12

znp

uLu
2b

znplnuLu
uLu D1O~b2!

[(
j 50

`

â jz
j1bS (

j 50

`

b̂ jz
j D 1O~b2!, ~20!

resulting in two power series. Similarly for the diffusion ca
culation we expand

1/zD~z!5)
p

S 12
znpebsp

uLu D
1/zD~z!5)

p
S 12

znp

uLu
2b

znpsp

uLu
2b2

znpsp
2

2uLu
2b3

znpsp
3

6uLu D
1O~b4!

[(
j 50

`

â jz
j1b2S (

j 50

`

ĉ jz
j D 1O~b4!. ~21!

We restrict our attention to systems with no net drift, that

lim
n→`

1

n
^ f̂ n~ x̂0!2 x̂0&50. ~22!

Therefore only even powers ofb appear in Eq.~21!.
The set of coefficients we obtain in this way depends

the truncation used in the expansion of the infinite produ
For truncation by topological length, we count cycles up to
given lengthNtop. For maps with a few branches, this num
ber is limited to roughly of order;101, due to the exponen
tial growth in the number of cycles with the topologic
length. All combinations of cycles with total length less th
or equal toNtop are also included, as these contribute to t
first Ntop coefficients in each series. Thus we obtainNtop
exact coefficients in each series by topological length tr
cation.

For truncation by stability, we count cycles up to a giv
stability Lmax, and combinations where the product of st
bilities is less thanLmax. They have lengths up toNmax, and
so contribute to all of the firstNmax coefficients in each se
ries, but are not the only contributions to such coefficien
They give us an approximation to thez function which, for
the intermittent case, is more accurate than that obtai
from the length truncation, but the values of the coefficie
themselves are not exact beyond someNexact(Lmax), a quan-
tity growing logarithmically:Nexact; ln Lmax. For intermit-
tent maps, as the one we will consider,Nmax increases as a
power ofLmax andNmax@Nexact.

Often it is found that stability ordered cycle expansio
lead to noisy results as a function ofLmax. This is due to the
breaking of shadowing pairs. For example, a cycleAB usu-
ally gives a contribution roughly equal to and of the oppos
sign as the combination of cyclesA andB ~we will refer to
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5306 57CARL P. DETTMANN AND PER DAHLQVIST
such a combination as apseudocycle!. This means the tota
contribution is quite small. The phenomenon is called sh
owing, and is the main mechanism for the rapid converge
of cycle expansions in hyperbolic systems. It is still pres
to some degree in intermittent systems. However, if one s
term is included but the other is excluded because they lie
opposite sides ofLmax, there may be a substantial error ge
erated.

Partial shadowing which may be present can be~partially!
restored by smoothing the stability ordered cycle expans
by replacing each term with inverse pseudocycle stab
L215(Lp1

•••Lpk
)21 by S(L)L21. HereS(L) is a mono-

tonically decreasing function, withS(0)51 and S(L
.Lmax)50.

A typical ‘‘shadowing error’’ induced by the cutoff is du
to two pseudocycles of stabilityL separated byDL, and
whose contribution is of opposite signs. Ignoring possi
weighting factors the magnitude of the resulting term is
orderL212(L1DL)21'DL/L2. With smoothing there is
an extra term of the formS8(L)DL/L, which we want to
minimize. A reasonable guess might be to keepS8(L)/L
constant and as small as possible, that is

S~L!5F12S L

Lmax
D 2GQ~Lmax2L! .

This function still contains a nonanalytic point atL
5Lmax, however the discontinuity is now in the derivativ
not in the original function, so a smoothing error estima
by S8(L)/L (L,Lmax) is finite. We use this smoothing
function below when evaluating thez coefficients, and dem
onstrate the improvement numerically.

C. Resummingz functions

The result of thecycle expansionsin Sec. II B is a set of
power series of the form( i âiz

i aroundz50. And, according
to Sec. II A, what we need are coefficients from some kind
~resummed! series aroundz51. We now describe a metho
of obtaining such a series, along the lines of Ref.@4#.

Suppose for a moment that the series( i 50
` âiz

i has a ra-
dius of convergence exceeding unity. In a practical calcu
tion we have only a finite numbern ~say Ntop or Nmax) of
coefficientsâi at our disposal. We assume them to be exa
the treatment of the approximate coefficients from stabi
ordered expansions are discussed in Sec. III C. Then we
in principle expand it into another truncated~resummed!
Taylor series aroundz51:

(
i 50

n

âiz
i5(

i 50

n

ai~z21! i . ~23!

This leads to a linear systems of equations which is trivia
invertible:

ai5(
j 5 i

n S j

i D â j . ~24!

In this way one obtains the standard formulae@1#
-
e
t
h
n

-

s
y

e
f

d

f

-

t;
y
an

y

l5

( ~21!k
ln L11•••1 ln Lk

uL1•••Lku

( ~21!k
n11•••1nk

uL1•••Lku

, ~25!

D5
1

2

( ~21!k
~s11•••1sk!

2

uL1•••Lku

( ~21!k
n11•••1nk

uL1•••Lku

, ~26!

where the sums run over all distinct pseudocycles.
This approach is particularly cumbersome for intermitte

systems, whereâi ~as well asb̂i andĉi) decays according to
some power law. Then the coefficients either diverge or c
verge slowly asn→`. So, for intermittent systems, the re
summed series cannot be a Taylor series; it has to be s
generalized power series.

Assume that the asymptotic behavior of the coefficient
a power law

âi;n2~g11!. ~27!

Then the leading singularity is of the form (12z)g, and the
simplest possible expansion would be

(
i 51

`

ai~12z! i1~12z!g(
i 50

`

āi~12z! i5(
i 50

`

âiz
i . ~28!

Having only a finite numbern of coefficientsâi , we propose
the following resummation@4#

(
i 51

na

ai~12z! i1~12z!g(
i 50

n̄a

āi~12z! i5(
i 50

n

âiz
i1O~zn11! .

~29!

If na1n̄a125n11, we obtain just a linear system of equ
tions to solve in order to determine the coefficientsai andn̄a

from the coefficientsâi . It is also natural to require tha
una1g2n̄au,1.

The basic philosophy is to build in as much informatio
as possible into the ansatz. If the original power series c
responds to the unweightedz function, we know thata0
50. The ansatz is thus accordingly modified. We fixa050
and modifyna or n̄a so we still obtain a solvable system o
equations.

III. NUMERICAL STUDIES OF AN INTERMITTENT
DIFFUSIVE MAP

A. Map

In the intervalx̂P@2 1
2 , 1

2 ), which we call the elementary
cell, our model map, following Ref.@14#, takes the form

f̂ ~ x̂!5 x̂~112u2x̂ua!. ~30!

The parameter range we consider here isaP(0,1), where the
Lyapunov exponent and diffusion coefficient are both no
zero. For any value ofa, this maps the intervalx̂P@2 1

2 , 1
2 )
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57 5307COMPUTING THE DIFFUSION COEFFICIENT FOR . . .
monotonically to@2 3
2 , 3

2 ). Outside the elementary cell, th
map is defined to have a discrete translational symmetry

f̂ ~ x̂1n!5 f̂ ~ x̂!1n, nPZ.

See Fig. 1. A typical initialx̂ in the elementary cell diffuses
wandering over the real line. The map is parity symmet
f̂ (2 x̂)52 f̂ ( x̂), so the average value ofx̂n112 x̂n is zero,
and there is no mean drift, as expressed in Eq.~22!.

We now restrict the dynamics to the elementary cell; t
is, we define

x5 x̂2@ x̂11/2#,

where@z# is the greatest integer less than or equal toz, so
thatx is restricted to the range@2 1

2 , 1
2 ). The reduced map is

f ~x!5 f̂ ~x!2@ f̂ ~x!1 1
2 #. ~31!

As discussed in Ref.@14#, the intermittency of this map
appears in the form of long cycles near the marginal po
with power law stabilities. This is in contrast to Axiom-A
systems, for whichL may be bounded by exponentials of th
topological length.

The map has three complete branches in the elemen
cell. Symbolic dynamics is introduced by labeling th
branches$2,0,1%, with cycles denoted by an overbar. Du
to the completeness of the symbolic dynamics, thez func-
tions are approximated by@16#

1/zl~z!'12 (
n50

`
zn11

uL20nu12b
2 (

n50

`
zn11

uL10nu12b
~32!

and

FIG. 1. Map~30! for a50.7.
,

t

t

ry

1/zD~z!'12e2b (
n50

`
zn11

uL20nu
2e1b (

n50

`
zn11

uL10nu
. ~33!

This approximation may seem crude. For instance, thz
functions ~32! and ~33! fail to preserve flow conservation
However, in Ref.@4# we presented evidence that they captu
the leading singularity structure correctly. This was obtain
by comparing coefficients of the piecewise linear approxim
tion of the intermittent map~sharing the singularity structur
with the approximation above! by the exact cycle expansion
The asymptotic behavior of the fundamental cycles is giv
by

L20n5L10n;n111/a, ~34!

see, e.g., Refs.@4,14# for a derivation. We immediately ob
tain, from Eqs.~32!–~34!,

ân;n2121/a, ~35!

b̂n;n2121/alnn, ~36!

ĉn;n2121/a. ~37!

This leads to forms~13! and ~17!, with g51/a, as long as
a,1.

For a general orbit we can only bound the stability in t
range

Cnp
111/a,uLpu<~maxu f 8u!np5~312a!np, ~38!

so, when using stability cutoff, for the parametersNmax and
Nexact discussed in Sec. II B we obtain:

Nmax;Lmax
a/~11a! ~39!

and

Nexact.
ln Lmax

ln~312a!
. ~40!

B. Resumming topologically ordered cycle expansions

We will, most of the time, concentrate on the diffusio
coefficient, but a similar analysis holds for the Lyapun
exponent, to which we return at the very end. We calcula
the diffusion coefficient from resummed cycle expansio
obtained using topological ordering, as described in S

FIG. 2. The diffusion coefficient ata50.7, from direct simula-
tion ~solid line!, and topological ordered cycle expansions w
~diamonds! and without~pluses! resummation.
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5308 57CARL P. DETTMANN AND PER DAHLQVIST
II C, with the number of coefficientsn determined by the
maximum topological length, up to 10. We also used
direct formula~26!, and performed direct simulations wit
roughly the same amount of computer time. The results
shown in Fig. 2, showing that the resummation gives mu
improvement, and is consistent with direct simulation.

C. Resumming stability ordered cycle expansions

Now we come to the central part of our numerical wo
the resummation of stability ordered cycle expansions. F
we calculateâi , as described in Sec. II B. The coefficien
are all negative exceptâ051, and their magnitudes are plo
ted in Fig. 3, where we have usedLmax5105 which corre-
sponds toNexact58 andNmax581. The unsmoothed coeffi
cients are thus exact forn<Nexact. The smoothed are no
exact but are still quite accurate. Forn.Nexact, we clearly
see how the unsmoothed begins to oscillate in an irreg
fashion, whereas the smoothed ones are stable for m
largern.

The next issue is how to best make use of the informa
contained in theân coefficients. As pointed out in Sec. II B
these coefficients are not exact, but they give a better re
sentation of thez function than the limited number of exac
coefficients obtained from topological ordering. In order
match the series atz51, we must again solve a linear set
equations, but the number of coefficients (Nmax) for intermit-
tent systems is much larger than for the topological order
We cannot match such a large number of coefficients in b
series, because the solution would be unstable to the erro
the coefficients, so we must represent the information c
tained inân in the~fewer! number of degrees of freedom th
the expansion really contains.

There may be more than one solution to this problem;
solution we use here is to performtwo resummations, the
first from z50 to an intermediate 0,z8,1, and the second
from z5z8 to z51:

(
i 50

Nmax

âiz
i5 (

i 50

Nmax

ai8~z2z8! i , ~41!

which can be explicitly inverted

FIG. 3. The magnitude of thez coefficients for stability ordered
cycle expansions ata50.7 unsmoothed~points! and smoothed
~solid line!.
e

re
h

:
st

ar
ch

n

e-

g.
th
in

n-

e

an85 (
i 5n

Nmax S i

nD âiz8~ i 2n!. ~42!

With z8 suitably chosen, we have thus used the informat
available in theân approximately in proportion to their reli
ability. That is, the accurate low order coefficients app
with large weights in the first fewan8 , while the less accurate
high order coefficients appear with small weights. As we w
see, this approach is better than one which simply ignores
higher order coefficients~this corresponds to puttingz850
below!.

As for the topological length truncation, the resummati
from z5z8 to z51 leads to a set of linear equations obtain
by equating coefficients in

(
i 51

na

ai~12z! i1~12z!g(
i 50

n̄a

āi~12z! i

5(
i 50

n8

ai8~z2z8! i1O~zn11!. ~43!

Again, we adjustna andn̄a so as to obtain a consistent seri
in powers ofz21 and a consistent set of linear equations

We have two parameters in the double resummat
scheme,n8 and z8. The idea is to calculatel or D for a
range of both parameters and look for the most consis

FIG. 4. Diffusion coefficient calculated using resummed stab
ity ordered cycle expansions, showing a dependence onn8 ~labels
on curves! andz8 ~horizontal axis!. Note the scales on the vertica
axes.
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solution. The general behavior is shown in Fig. 4. For ea
stability cutoff Lmax, small values ofn8 lead to a variation
of D with z8, which has a single maximum. Larger values
n8 lead to functions that are either monotonically decreas
or oscillatory. We estimate the diffusion coefficient by fin
ing the maximum for the largest value ofn8 before mono-
tonic or oscillatory behavior sets in. The convergence of t
method with the stability cutoff is shown in Fig. 5.

This figure also contains the direct simulation results,
tained by estimating the left side of Eq.~8! for 33103 itera-
tions over a sample of 33103 trajectories, similar to the
computer time required to find the cycles withL,105. The
errors were obtained by looking at the scatter in this stat
cal sample of trajectories; for intermittent maps, the diffus
coefficient always tends to be too high, because long in
mittent episodes are not sampled sufficiently. Close to
phase transition ata51, convergence is practically logarith
mic in the number of iterations, with exponentially lon
times required to achieve convergence. For example, w
the numerical procedure described above, we findD
50.052460.0005 ata51, where we knowD50. Even at
a50.7, a reasonable distance from the transition, the
summed cycle expansion result is more accurate than d
simulation.

Our final value for the diffusion coefficient ata50.7 is
D50.126760.0003 with the resummation method. It is th

FIG. 5. Diffusion coefficient calculated using resummed sta
ity ordered cycle expansions, showing a dependence on the sta
cutoff. The horizontal lines are the range indicated by direct sim
lation ~also see the discussion in the text!.

FIG. 6. Diffusion coefficient calculated using resummed sta
ity ordered cycle expansions fora50.99.
h

f
g

is

-

i-
n
r-
e

th

e-
ct

quite compatible with the topological ordering discussed
Sec. III B, which yielded the resultD51.26260.0003. In
this example, it is clear that resummed cycle expansio
whether ordered by topological length or stability, provide
accurate method of analyzing intermittent systems. Stab
ordering is most important in more complicated syste
where topological ordering is not a realistic alternativ
There is an additional advantage with the stability orde
expansion, in that it provides a large number of approxim
coefficients, thus facilitating a numerical estimate of t
power law if it is not known analytically. Recall that thi
power law is used in the resummation ansatz, and was a
lutely essential for the good result in Sec. III B.

D. Phase transition

Having gained confidence in the resummation method
a50.7, far from the phase transition ata51, we now vary
a, including values for which direct simulation is totally im
practical, due to logarithmically slow convergence. Ata
50.99 we obtain Fig. 6 for the diffusion coefficient, showin
a consistent value ofD50.006660.0001. PlottingD vs a
~Fig. 7!, we find a linear dependence near the phase tra
tion ata51. Finally, we performed the same analysis for t
Lyapunov exponent, which has a similar dependence ona,
shown in Fig. 8.

-
lity
-

-

FIG. 7. The diffusion coefficient as a function of the parame
a, showing the approach to the phase transition ata51, beyond
which D50.

FIG. 8. The Lyapunov exponent as a function of the parame
a, showing the approach to the phase transition ata51, beyond
which l50.
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IV. CONCLUSION

We have demonstrated that resummed stability orde
cycle expansions can provide accurate estimates of dyn
cal averages for intermittent maps, even close to a ph
transition. This analysis could equally apply to maps w
uncontrolled symbolic dynamics, as long as a relia
method exists for locating the cycles.

Our methods can also be applied without much modifi
tion to flows. Then the variablez is replaced by exp(2s), and
the cycle expansion is actually a Dirichlet serie
( iaiexp(2sli), where the lengths of the pseudo orbitsl i are
not restricted to integer values. With an additional resumm
tion step ats8 ~corresponding toz8 in this paper!, the z
st

.

d
i-

se

e

-

,

-

function may be represented as a standard power series,
allowing it to be matched to a generalized power series
s50. For intermittent systems,s50 is again a branch point
and information about it can be obtained from the metho
described in Refs.@12,17# or numerically from the stability
ordered expansion.
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