Special Relativity Sheet 3

- 1. If Λ^{μ}_{ν} is the matrix that generates the Lorentz transformation from S to \bar{S} (in standard configuration) and $\bar{\Lambda}^{\mu}_{\nu}$ is the corresponding matrix that generates the transformation from \bar{S} to S,
 - show that for any 4-vector \mathbf{A} , $A^{\gamma} = \bar{\Lambda}^{\gamma}_{\mu} \Lambda^{\mu}_{\nu} A^{\nu}$;
 - show also that $A^{\gamma} = \delta^{\gamma}_{\beta} A^{\beta}$, where δ^{γ}_{β} is the Kronecker delta-symbol;
 - hence prove that $\bar{\Lambda}^{\gamma}_{\mu}\Lambda^{\mu}_{\beta} = \delta^{\gamma}_{\beta}$;
 - prove in the same way that $\Lambda^{\gamma}_{\ \mu} \bar{\Lambda}^{\mu}_{\ \beta} = \delta^{\gamma}_{\beta}$;
 - it follows from the previous two results that the matrices Λ and $\bar{\Lambda}$ are mutual inverses. Show this explicitly by direct matrix multiplication.
 - 2. Given $\mathbf{A} = (9, -2, 3, 5)$ and $\mathbf{B} = (1, 1, 0, -2)$ in S, find
- a) the components of **A** and **B** in \overline{S} , which moves at speed 0.8c relative to S in the positive x-direction;
 - b) the magnitude of **A** in both S and \overline{S} ;
 - c) the value of $\mathbf{A} \cdot \mathbf{B}$ in both S and \overline{S} .
 - 3. Show that
- a) if $\mathbf{X}(\neq \mathbf{0})$ is timelike, there exists an inertial frame in which it has zero spatial components;
- b) if $\mathbf{X}(\neq \mathbf{0})$ is spacelike, there exists an inertial frame in which it has a zero time component.
 - 4. Two 4-vectors **A** and **B** are orthogonal if $\mathbf{A} \cdot \mathbf{B} = 0$. Show that
 - a) if **T** is a timelike 4-vector and $\mathbf{T} \cdot \mathbf{V} = 0$ then **V** is spacelike;
- b) the sum of two timelike vectors which are isochronous (ie. both pointing into the future, or both into the past) is also timelike and isochronous with them;
- c) every spacelike 4-vector may be expressed as the difference of two isochronous timelike 4-vectors.

(Hint: use the result of question 3 to find the easiest inertial frames to work in.)

1.

• Writing \bar{A}^{α} as the components of A in \bar{S} ,

$$\bar{A}^{\alpha} = \Lambda^{\alpha}_{\beta} A^{\beta} \tag{1}$$

$$A^{\gamma} = \bar{\Lambda}^{\gamma}_{\alpha} \bar{A}^{\alpha} \tag{2}$$

$$A^{\gamma} = \bar{\Lambda}^{\gamma}_{\alpha} \Lambda^{\alpha}_{\beta} A^{\beta} \tag{3}$$

• Since

$$\delta^{\alpha}_{\beta} = \begin{cases} 1 & \alpha = \beta \\ 0 & \alpha \neq \beta, \end{cases} \tag{4}$$

this is obvious.

 \bullet Inserting $A^{\gamma}=\delta^{\gamma}_{\beta}A^{\beta}$ in the first result, we have

$$(\bar{\Lambda}^{\gamma}_{\alpha}\Lambda^{\alpha}_{\beta} - \delta^{\gamma}_{\beta})A^{\beta} = 0. \tag{5}$$

Since this must be true for any A^{β} ,

$$\bar{\Lambda}^{\gamma}_{\alpha}\Lambda^{\alpha}_{\beta} = \delta^{\gamma}_{\beta}. \tag{6}$$

• In the same way

$$\bar{A}^{\alpha} = \Lambda^{\alpha}_{\beta} A^{\beta} = \Lambda^{\alpha}_{\beta} \bar{\Lambda}^{\beta}_{\gamma} \bar{A}^{\gamma} \tag{7}$$

hence, relabelling the dummy indices and using $\bar{A}^{\alpha}=\delta^{\alpha}_{\gamma}\bar{A}^{\gamma}$, the result follows directly, as above.

_

$$\Lambda = \begin{pmatrix} \gamma & -\frac{v}{c}\gamma & 0 & 0\\ -\frac{v}{c}\gamma & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{8}$$

By substituting v by -v

$$\bar{\Lambda} = \begin{pmatrix} \gamma & \frac{v}{c}\gamma & 0 & 0\\ \frac{v}{c}\gamma & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{9}$$

Then, trivially

$$\Lambda \bar{\Lambda} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \tag{10}$$

2. v = 0.8c, so $\gamma = 5/3$ and this implies that

$$\Lambda = \begin{pmatrix} \frac{5}{3} & \frac{-4}{3} & 0 & 0\\ \frac{-4}{3} & \frac{5}{3} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

It follows that

$$\begin{pmatrix} \overline{A}^0 \\ \overline{A}^1 \\ \overline{A}^2 \\ \overline{A}^3 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} & \frac{-4}{3} & 0 & 0 \\ \frac{-4}{3} & \frac{5}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 9 \\ -2 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 17\frac{2}{3} \\ -15\frac{1}{3} \\ 3 \\ 5 \end{pmatrix}$$

and

$$\begin{pmatrix} \overline{B}^0 \\ \overline{B}^1 \\ \overline{B}^2 \\ \overline{B}^3 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} & \frac{-4}{3} & 0 & 0 \\ \frac{-4}{3} & \frac{5}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ 0 \\ -2 \end{pmatrix}$$

b) in S, $\mathbf{A}^2 = -9^2 + (-2)^2 + 3^2 + 5^2 = -43$ and in \overline{S} , $\mathbf{A}^2 = -(17\frac{2}{3})^2 + (15\frac{1}{3})^2 + 3^2 + 5^2 = -43$.

c) in S, $\mathbf{A} \cdot \mathbf{B} = -9 \cdot 1 + (-2) \cdot 1 + 3 \cdot 0 + 5 \cdot (-2) = -21$ and in \overline{S} , $\mathbf{A} \cdot \mathbf{B} = -(17\frac{2}{3}) \cdot \frac{1}{3} + (-15\frac{1}{3}) \cdot \frac{1}{3} + 3 \cdot 0 + 5 \cdot (-2) = -21$.

3. Choose the spatial axes so that $\mathbf{X}=(ct_0,x_0,0,0)$, where $t_0,x_0\neq 0$, in S. Since \mathbf{X} is timelike, $\mathbf{X}^2<0$. Thus $-c^2t_0^2+x_0^2<0$, so $x_0^2< c^2t_0^2$. Let $v=x_0/t_0$ (|v|< c), then transform to frame \overline{S} which moves along the x-axis of S with speed v. Now we have

$$t'_0 = \gamma(v) \left(t_0 - \frac{x_0 v}{c^2} \right) \neq 0 \text{ (since} |v| < c)$$

$$x'_0 = \gamma(v) (x_0 - vt_0) = 0.$$

That is, in \overline{S} , **X** has zero spatial components.

b) if **X** is spacelike, $\mathbf{X}^2 > 0$, and so $x_0^2 > c^2 t_0^2$. Now let $v = \frac{c^2 t_0}{x_0}$. Clearly

$$t'_{0} = \gamma(v) \left(t_{0} - \frac{x_{0}}{c^{2}} \frac{c^{2}t_{0}}{x_{0}} \right) = 0$$

$$x'_{0} = \gamma(v) \left(x_{0} - \frac{c^{2}t_{0}}{x_{0}} t_{0} \right) \neq 0.$$

4. a) If **T** is timelike, there is a frame such that $\mathbf{T} = (ct_0, \mathbf{0})$. Let $\mathbf{V} = (ct_1, x_1, y_1, z_1)$, so $\mathbf{T} \cdot \mathbf{V} = -c^2t_0t_1 = 0$. This implies that $t_1 = 0$, and so **V** is spacelike.

b) Let $\mathbf{T}_1 = (ct_1, \mathbf{0})$ and $\mathbf{T}_2 = (ct_2, x_2, 0, 0)$. Assuming t_1 and t_2 have the same sign, and using $\mathbf{T}_1 + \mathbf{T}_2 = (ct_1 + ct_2, x_2, 0, 0)$,

$$(\mathbf{T}_1 + \mathbf{T}_2)^2 = x_2^2 - c^2 (t_1 + t_2)^2$$

$$= [x_2^2 - c^2 t_2^2] - c^2 t_1^2 - 2c^2 t_1 t_2.$$

In the above expression, the quantity in the square brackets is negative because \mathbf{T}_2 is timelike, the middle term is clearly negative and the last term is also negative as t_1 and t_2 have the same sign. Therefore $(\mathbf{T}_1 + \mathbf{T}_2)^2 < 0$ and so $\mathbf{T}_1 + \mathbf{T}_2$ is timelike.

The time component of $\mathbf{T}_1 + \mathbf{T}_2$ is $c(t_1 + t_2)$ which clearly has the same sign as the corresponding components of \mathbf{T}_1 (ct_1) and \mathbf{T}_2 (ct_2), and so is isochronous with them.

c)If **V** is spacelike, there is a reference frame such that $\mathbf{V} = (0, x_0, 0, 0)$. This may be written $\mathbf{V} = (t_0, x_0, 0, 0) - (t_0, 0, 0, 0)$. These two vectors are isochronous and the second is timelike. If we choose $|t_0| > |x_0|$, then the first is timelike also.