Quantifying connectivity of ad-hoc networks

Orestis Georgiou*, and Carl P. Dettmann**
* Telecommunications Research Laboratory, Toshiba Research Europe Ltd, 32 Queen Square, Bristol, BS1 4ND
** School of Mathematics, University of Bristol, University walk, Bristol, BS8 1TW

We have discovered universal properties of confined random geometric graphs ${ }^{1}$ by developing mathematical models for adhoc networks ${ }^{2}$. We use these models to design reliable wireless mesh networks at reduced deployment and running costs.

Urbanisation is a significant worldwide trend which Smart City technologies address. These rely heavily on wireless communications for sensing and control purposes; however the cost and complexity of planning and deploying such infrastructures is often prohibitive, a problem that this research aims to alleviate.
${ }^{1}$ A collection of nodes randomly distributed in some finite domain, pairwise connected with a probability depending on mutual distances.
${ }^{2}$ Networks which do not rely on a pre-existing infrastructure and can be deployed "on the fly"

Universality in network connectivity

Group graphs together according to their largest cluster size:

Rearranging we can study the probability of full connectivity:

$$
\begin{equation*}
P_{f c}=1-\sum_{g \in G_{N, N-1}} \mathcal{H}_{g}- \tag{1}
\end{equation*}
$$

Expectation values are averages over spatial realizations:

$$
\begin{equation*}
\langle A\rangle=\frac{1}{V^{N}} \int_{\mathcal{V}^{N}} A\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \mathrm{d} \mathbf{r}_{1} \ldots \mathrm{~d} \mathbf{r}_{N} \tag{2}
\end{equation*}
$$

Network reliability

This can be quantified by k-connectivity; the property that the network remains connected if any $k-1$ nodes fail. Our analytic expressions provide a useful
 tool for design specifications.

$M\left(\mathbf{r}_{i}\right)=\int_{\mathcal{V}} H\left(r_{i j}\right) \mathrm{d} \mathbf{r}_{j}$ $P_{f c}(k) \approx 1-\sum_{m=0}^{k-1} \frac{\rho^{m+1}}{m!} \int_{\mathcal{V}} M\left(\mathbf{r}_{i}\right)^{m} e^{-\rho M\left(\mathbf{r}_{i}\right)} \mathrm{d} \mathbf{r}_{i}$
[3] "k-connectivity for confined random networks", Europhysics Letters, 103, 28006, (2013).

Anisotropic radiation patterns

Ad-hoc networks with randomly oriented directional antenna gains $G(\theta)$ have fewer short links and more long links which can bridge together otherwise isolated sub-networks. Whether this is advantageous (or not) is governed by the functional:

$$
S_{\eta}[G]=\int_{0}^{\pi} \sin \theta G(\theta)^{3 / \eta} \mathrm{d} \theta
$$

Using (1) and (2), we have derived a general expression for network connectivity in the high density regime:

$$
P_{f c} \approx 1-\rho \sum_{B} G_{B} V_{B} e^{-\rho M_{B}}
$$

- A sum of separable boundary contributions B which exhibit universal properties, distinct but complementary to those of classical percolation phenomena.

- Independent of the connectivity model $H_{i j}$.
- First uniform treatment of boundary effects across density regimes.
"Connectivity is governed by the microscopic details of the network domain such as sharp corners rather than the macroscopic total volume".

[1] "Full Connectivity: Corners, edges and faces", Journal of Statistical Physics, 147, 758-778, (2012). [2] "Impact of boundaries on fully connected random geometric networks", Phys. Rev. E, 85, 011138, (2012),

Non-convex domains

The network is connected if its subnetworks are connected, and there exists at least one "bridging" link X through the opening:

$$
\begin{aligned}
& P_{f c}^{(\mathcal{V})}=P_{f c}^{(\mathcal{A})} P_{f c}^{(\mathcal{B})} X \\
& X=1-\left\langle\left\langle\prod_{i=1}^{N_{\mathcal{A}}} \prod_{j=1}^{N_{\mathcal{B}}}\left(1-\chi_{i j} H_{i j}\right\rangle_{\mathcal{B}}\right\rangle_{\mathcal{A}}\right.
\end{aligned}
$$

Semi-quenched disorder

To analyse the bridging link we keep nodes on one side frozen ("quenched") while averaging over the positions of those on the other side. This realization leads to:

