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Abstract—Nodes in ad hoc networks with randomly oriented
directional antenna patterns typically have fewer short links and
more long links which can bridge together otherwise isolated
subnetworks. This network feature is known to improve overall
connectivity in 2D random networks operating at low channel
path loss. To this end, we advance recently established results to
obtain analytic expressions for the mean degree of 3D networks
for simple but practical anisotropic gain profiles, including those
of patch, dipole and end-fire array antennas. Our analysis
reveals that for homogeneous systems (i.e. neglecting boundary
effects) directional radiation patterns are superior to the isotropic
case only when the path loss exponent is less than the spatial
dimension. Moreover, we establish that ad hoc networks utilizing
directional transmit and isotropic receive antennas (or vice versa)
are always sub-optimally connected regardless of the environment
path loss. We extend our analysis to investigate boundary effects
in inhomogeneous systems, and study the geometrical reasons
why directional radiating nodes are at a disadvantage to isotropic
ones. Finally, we discuss multi-directional gain patterns consisting
of many equally spaced lobes which could be used to mitigate
boundary effects and improve overall network connectivity.

I. INTRODUCTION

Wireless ad hoc networks do not rely on any pre-existing
infrastructure such as routers or access points and so can
be deployed on the fly [1]. Equipped with multihop relay-
ing and signal processing capabilities, they can self-organize
and dynamically optimize network performance, traits which
are becoming increasingly useful in sensor and vehicular
network applications [2], including, inter alia, exploration
and environmental monitoring over extended 3D regions [3],
[4], disaster detection and/or search-and-rescue operations in
hazardous/disaster relief areas [5], [6], swarm robotics [7],
road safety message dissemination, traffic management and
dynamic route planning [8], [9]. Commonality in these appli-
cations can be found in that the number and distribution of
nodes in the networks is often random, as was realized and
studied by Gupta and Kumar in 1998 [10]. From a communi-
cations perspective, understanding the connectivity properties
of random networks1 has ever since been of paramount im-
portance as it can lead to improved network design, protocols
and deployment methodologies [14], [15].

orestis.georgiou@toshiba-trel.com
1A plethora of relevant problems and solutions can be found in the

mathematical literature under random graph theory [11], and in physics under
percolation theory [12], [13].

It is often assumed, that when deployed, ad hoc networks
will be well connected. To date, many works have challenged
this assumption and have theoretically investigated a number
of network features and variants. Most however adopt one or
more of the following assumptions: the network resides in
an extended two dimensional domain2, nodes are isotropically
radiating, links between nodes are formed deterministically
according to a fixed range (i.e. unit-disk type connections),
and/or the number of nodes N →∞. In what follows we will
lift all of these assumptions.

We are specifically interested in the effect of randomized
beamforming strategies3 which are known to improve network
connectivity at low path loss exponents. How this improvement
is achieved was first addressed in [17], and later in [18]
where it was argued that randomized beamforming cannot be
said to strictly improve/degrade connectivity. To this end, it
was numerically estimated in [19] (and similar papers by the
same authors) that the critical path loss exponent below which
improvements are observed is 3. This was analytically pushed
down to 2 in [20] where it was also shown that this number is
independent of the small-scale fading model used. Finally, the
possibility of using multi-directional antennas was proposed
and studied in [21], and although unmotivated, was reported
to enhance connectivity at low path loss.

It is not surprising however that most (if not all) relevant
studies are restricted to two dimensional networks. This par-
tial understanding is what motivates the current investigation
where we consider finite and confined three dimensional
networks with anisotropically radiating nodes, that connect
in probability space using well established statistical fading
models. To this end, we provide general analytic formulas
for the connectivity mass4 of several simple but practical
radiation pattern approximations (including those of patch,
dipole and end-fire array antennas) and conclusively show
when and how randomized beamforming of anisotropically
radiating nodes can improve or worsen the connectivity of
ad hoc networks5. Namely, we find that in the absence of

2Some works consider bounded domains but scale volume exponentially
with the number of nodes, thus ignoring any boundary effects [16].

3In randomized beamforming, each anisotropically radiating node selects a
boresight direction randomly and independently on the unit sphere.

4The connectivity mass (defined below) is a measure of the likelihood that
any given node will be connected, and is related to several other network
connectivity observables.

5In all cases, the gain is properly normalized as to ensure a fair comparison.
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boundary effects, directional antennas yield superior perfor-
mance when the path loss exponent η is less than the spatial
dimension d, and inferior when η > d. Moreover, when η = d,
network connectivity is found to be invariant to the antenna
gain details. This simple and attractive picture is however
radically different in confined spaces. We show that in the
presence of boundaries, the advantages of directional antennas
are significantly undermined due to the existence of ‘blind
spots’, which effectively decrease the network mean degree
and increase the likelihood of node isolation. Therefore, we
propose and investigate multi-directional radiation patterns as
a means to mitigate boundary effects.

The paper is structured as follows: Sec. II introduces the
system set-up and all relevant parameters and assumptions.
Sec. III discusses various network observables and identifies
the connectivity mass M as a key quantity of interest. Sec. IV
investigates the connectivity mass for homogeneous systems
(i.e. ignoring boundary effects) and derives analytic expres-
sions for M for simple but practical gain profiles which are
then verified through computer simulations. Based on these
expressions, Sec. V reveals that the connectivity properties of
ad hoc networks scale with the solid angle over which the gain
is concentrated on. Sec. VI examines the effect of boundaries
in inhomogeneous systems and identifies the weaknesses of
directional patterns. Sec. VII proposes a multi-directional
solution to mitigate boundary effects and investigates the
optimal radiation pattern for a rectangular cuboid domain.
Finally, Sec. VIII summarises and discusses the main results
and highlights some ideas and challenges for future research.

II. NETWORK AND SYSTEM MODEL

We begin our discussion by describing the system set-up
and all relevant parameters and assumptions. We consider a
network consisting of N identical nodes with locations ri for
i = 1, . . . , N , chosen randomly inside a three dimensional
domain V ⊆ R3 of volume V . The density of nodes is
assumed uniform and is given by ρ = N/V . Such spatial node
distributions are often used to model vehicular, ad hoc, and
wireless mesh sensor networks, which are either dynamically
evolving or are free from any pre-existing infrastructure [1],
[2]. Assuming negligible inter-node interference, we say that
two nodes i and j separated by a distance rij = |ri− rj | ≥ 0
are connected if the channel between them supports a rate of
at least ℘

Hij = P (log2(1 + SNR · |h|2) > ℘), (1)

where SNR denotes the long-term average received signal-to-
noise ratio and h is the channel transfer coefficient for single
input single output (SISO) antenna systems. For the sake of
simplicity, we will assume only small scale scattering effects
and thus adopt a Rayleigh fading model where |h|2 is modelled
as an exponentially distributed random variable [22]. It should
be noted however that more exotic fading models such as
the two-wave with diffuse power (TWDP) [23] which can
approximate channels with arbitrary combinations of specular
and diffuse components, offer little additional insight to the
present discussion as our approach will be concentrated on

Fig. 1. Simplified gain patterns of a patch, dipole, and horn or end-fire array
antennas.

the antenna radiation patterns rather than the detailed fading
parameters [20].

Assuming lossless antennas with equal transmit and receive
performances we have from the Friis transmission formula that

SNR ∝ GiGjr−ηij (2)

where η is the path loss exponent6, Gi is the gain of the
antenna at node i observed in the direction of node j and Gj
is the gain of the antenna at node j observed in the direction
of node i. Hence, we may express the pair connectedness
probability of nodes i and j as

Hij = exp

(
−
βrηij
GiGj

)
, (3)

where β defines the characteristic connection length

r0 =

(
β

GiGj

)−1/η

, (4)

and depends on for example the transmission wavelength,
signal power, etcetera.

The gain functions represent the ratio between the signal
intensity in a given direction, and the signal intensity had
the same power been radiated isotropically. In order to keep
the mathematics tractable, we will ignore small sidelobes
and backlobes (as done in many other studies) and mostly
restrict our analysis to rotationally symmetric gain patterns
(i.e. surfaces of revolution) about some orientation unit vector
v̂. It follows that isotropic radiation patterns have a constant
gain G = 1, while anisotropic ones are functions of the polar
angle θ about v̂, appropriately normalized by the condition∫ 2π

0

∫ π

0

G(θ) sin θdθdφ = 4π. (5)

At a later stage, we will also consider multi-directional radi-
ation patterns of the form

G(θ, φ) =

n∑
k=1

gk(θ(k)), (6)

6Typically η = 2 corresponds to propagation in free space but for cluttered
environments it is observed to be η > 2. Values of η < 2 have been reported,
typically for indoor environments, for example in grocery stores [24].
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where the gk characterize the gain function for the k-th direc-
tional lobe, and θ(k) is the angle measured from a collection
of unit vectors Θ = {v̂(k), for k = 1, . . . , n}. Note that
multi-directional radiation patterns are typically not surfaces
of revolution, but their individual components gk are. We
adjourn further development of this notation until the relevant
subsections.

Complicated radiation patterns can be achieved using beam-
forming techniques [25]. In the simplest case this would
involve a number of isotropic radiating antenna elements
arranged in a linear, circular or planar array with variable trans-
mit and receive powers and appropriately tuned phase shifts.
If done correctly, the constructive/destructive electromagnetic
interference results in the desired radiation pattern. Achieving
perfect beamforming across large networks however is an
idealized and relatively costly system requirement. Therefore,
we adopt here a simpler strategy by choosing the antenna
orientation vector v̂ of each node at random thus offering
a simple and practical deployment method at low hardware
complexity and minimal communication overhead.

In summary, our system model, as defined above, has
three sources of randomness: random node positions, random
antenna orientations, and random pair connection probabilities
according to the channel fading model. In what follows, we
investigate the network connectivity properties for simple but
practical radiation patterns characteristic of relatively cheap
and readily available antennas, e.g., patch, dipole, and horn or
end-fire arrays (see Fig. 1).

III. NETWORK CONNECTIVITY AND CONNECTIVITY MASS

There exist a plethora of measures of the connectivity
properties of a complex network [13]. These include for
example clustering statistics, network modularity measures,
the number of independent paths, algebraic connectivity, etc.
Each of these measures offers different information and one
must choose wisely which ones are useful to the intended
application. Here, we restrict our attention to three closely
related observables, namely we study 1) the pair formation
probability p2, 2) the degree distribution d(k), and 3) the
probability that a random network with randomly oriented
antennas is fully connected Pfc. In what follows, we will
argue that all three observables can be effectively characterized
through the connectivity mass M thus rendering it the key
metric of interest which we will then study in some detail in
the subsequent sections.

A. Pair Formation Probability

The probability that node i situated at ri connects with
a randomly chosen node j is obtained by averaging over
all possible node positions rj ∈ V and all possible antenna
orientations

Hi =
1

4πV

∫ ∫
V
HijdrjdΩj , (7)

where dΩ = sinϑdϑdϕ denotes the differential solid angle in
spherical coordinates. Note that we will use curly symbols

(ϑ, ϕ) for orientation coordinates, and normal ones (θ, φ)
for position coordinates. Integrating (7) once more gives the
probability that two randomly selected nodes connect to form
a pair

p2 =
1

(4πV )2

∫ ∫
V2

HijdridrjdΩidΩj

=
1

4πV

∫ ∫
V
HidridΩi.

(8)

B. Degree Distribution

Since node locations and orientations are independent, the
probability that node i has degree k (i.e. connects with exactly
k other nodes) is given by the binomial distribution

di(k) =

(
N − 1

k

)
Hk
i (1−Hi)

N−1−k. (9)

If N is large and Hi is small, (9) can be well approximated
by the Poisson distribution

di(k) ≈ µki
k!
e−µi , Di(k) =

k∑
m=0

di(m), (10)

where µi = (N − 1)Hi, and Di(k) is the corresponding
cumulative distribution function. The Poisson approximation
is justified here if V � 1, thus making Hi small7. Finally,
to obtain the degree distribution we average over all possible
node positions ri ∈ V and all possible antenna orientations to
obtain

d(k) =
1

4πV

∫ ∫
V
di(k)dridΩi

=
1

4πV

∫ ∫
V

µki
k!
e−µidridΩi.

(11)

The average number of nodes connected to a typical node in
the network is called the mean degree and is simply given by

µ =
1

4πV

∫ ∫
V
µidridΩi = (N − 1)p2. (12)

C. Full Connectivity

A network is said to be fully connected if any node can
communicate with any other node in a multihop fashion. While
a very strong measure of connectivity, Pfc is compatible with
delay and/or disruption tolerant networking recently popu-
larized by the Defence Advanced Research Projects Agency
(DARPA) in an attempt to increase wireless network reliability
and prevent disruption due to: radio range, node sparsity,
energy resources, attack, noise, etc. [26], [27]. It should be
noted that the commonly discussed metric P (path) defined as
the percentage of nodes that are connected via a multi-hop
fashion is equivalent to Pfc at high node densities.

For isotropic radiation (G = 1), a theory for Pfc was
recently developed in [28] for arbitrary dimension d ≥ 1 using
an exact cluster expansion approach derived from statistical
physics. We briefly highlight the key findings of [28] as
they are implicitly relevant in understanding the connectivity

7This is due to division by V in (7).
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aspects of networks with anisotropically radiating nodes. Their
main result was a general formula expressing Pfc at high node
densities as the complement of the probability of an isolated
node

Pfc = 1− ρ
∫
V
e−ρ

∫
V Hijdrjdri

≈ 1− ρ
∑
B

GBVBe−ρMB ,
(13)

where the spatial dri integral is approximated in the second
line by a sum of separable contributions. Namely, for d = 3,
the domain V was partitioned (see also [29] for a simple two
dimensional square, and [30] for a three dimensional ‘house’
domain) into a bulk component, a surface area component, and
a number of edge and corner components. Each component
was then integrated on its own giving different volume VB and
geometrical GB factors. Most importantly however, to each
component corresponds a different connectivity mass

MB = ωB

∫ ∞
0

rd−1H(r)dr, (14)

where ωB is the solid angle subtended by boundary component
B. For example ωB = 4π, 2π, π, and π/2 for the bulk, the
surface area, a right angled edge, and right corner respectively.
The novelty of (13) lies in the logical decomposition of
the domain into components of different full connectivity
importance at different densities. That is, at low to medium
densities ρ, the bulk component dominates Pfc, followed by
the surface area component at medium values of ρ, the edges
at higher ρ, and finally corners at very high densities (see Fig.
5 of [28]). Significantly, the asymptotic behaviour of Pfc as
ρ→∞ is characterized by the sharpest corner of the domain
where ωB is smallest.

Equation (13) can be generalized for anisotropic radiation
patterns and can account for the randomly oriented nodes in
a straightforward way as follows

Pfc = 1− ρ

4π

∫ ∫
V
e−

ρ
4π

∫∫
V HijdrjdΩjdridΩi. (15)

There are several important observations to be highlighted
here. Firstly, we notice that at high node densities Pfc = 1−
Nd(0) and therefore the two observables are intimately related
and can be studied simultaneously. Secondly, if V = R3, the
system becomes homogeneous and isotropic8 and therefore the
ith node’s position and orientation is arbitrary such that (15)
simplifies to

Pfc = 1−Ne−ρM, (16)

as there are no boundary components and the connectivity
mass is given by

M =
1

4π

∫ ∫
R3

exp

(
−
βrηj
GiGj

)
drjdΩj . (17)

Significantly, in this case we have that the pair formation
probability is simply p2 = Hi = M/V , and the mean degree

8Isotropic here refers to the whole network (i.e. appears uniform in all
orientations) and not the radiation pattern of each individual node.

is µ = ρM when N � 1. Note that (16) and (17) also hold
for any translationally or rotationally invariant surface in R3.
One such example is if the nodes are situated on the surface of
a sphere. In conclusion, for a homogeneous system, M is the
key observable of interest as it contains information about Pfc,
p2, µ, and d(0). Furthermore, M acts as a proxy to d(k) which
is then related to the k-connectivity [31]; a strong measure of
reliability and robustness.

Alternatively, if the domain is finite V ⊂ R3 (and not
translationally or rotationally invariant), the system becomes
inhomogeneous and non-isotropic, and hence boundary effects
can have a significant impact [32]. In analogy to (13) we
therefore expect Pfc in the high density asymptotic limit
to be dominated by contributions where the integrals in the
exponents of (15) are small, i.e. when ri is situated near the
sharpest corner of V and is also oriented such that its main
connectivity beam is steered outside of V .

Finally, we remark that contrary to Pfc and d(k), the pair
formation probability p2 and the mean degree µ are local
observables involving only 2 nodes (rather than global ones
involving N � 1 nodes9). Consequently, if the typical system
size is much larger than the typical connectivity range r0, we
expect p2 and µ to be very much insensitive to the domain
shape details leading to p2 . M/V and µ . ρM. This is
because Hi is approximately constant for the majority of node
positions (away from the domain boundary) and orientations,
and decreases (approximately linearly) when closer than ∼ r0

to the boundary. We will confirm this expectation later through
computer simulations (see Fig. 7).

In this section we have argued that the connectivity mass
is a key metric which characterizes network connectivity
in the high density limit. Our aim in what follows is to
analyse and understand the connectivity mass for different
anisotropic radiation patterns and thus offer intelligent and
useful design recommendations which improve connectivity
of communication networks. We begin with the simple case
of a homogeneous system i.e. ignoring any boundary effects.

IV. HOMOGENEOUS ANISOTROPIC CONNECTIVITY MASS

Since the system is homogeneous, we chose ri as the
origin of the reference frame. Furthermore, since the system is
isotropic we can conveniently choose v̂i = (1, 0, 0) in spheri-
cal coordinates. The position coordinates of node j are given
by rj = (rj , θj , φj), while its orientation by v̂j = (1, ϑj , ϕj)
as shown in Fig. 2. Note that since the gain functions are
rotationally symmetric, ϕj is a free parameter.

We may now write the pair connectedness function explic-
itly as

H(rj , θj , ϑj) = exp

(
−

βrηj
Gi(θj)Gj(ϑj)

)
. (18)

Notice that Gi is a function of the position of j whilst Gj is
a function of the orientation of antenna j as described in the

9Intuitively, this is why the position and orientation integrals of node j
appear in the exponents of (11) and (15).
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Fig. 2. Reference frame centred at ri. Assuming that the gain functions are
rotationally symmetric, then Gj is a function of the angle between v̂j and
−rj given by ϑj , while Gi a function of the angle between v̂i and rj given
by χ = arccos(cos θj cosϑi +cos(φj −ϕi) sin θj sinϑi). Note that when
ϑi = 0, then χ = θj .

caption of Fig. 2. Performing the rj , φj and ϕj integrals in
(17) and simplifying we arrive at our first main result

M =
1

4π

∫ ∫ 2π

0

∫ π

0

∫ ∞
0

r2
j sin θjH(rj , θj , ϑj)drjdθjdφjdΩj

=
πΓ(3/η)

ηβ3/η

(∫ π

0

sin θjGi(θj)
3/ηdθj

)(∫ π

0

sinϑjGj(ϑj)
3/ηdϑj

)
(19)

where Γ(x) is the gamma function and the separation of the
integrals is analogous to that obtained in the 2D case [20].
We notice that when η = 3, the connectivity mass M is
invariant10 with respect to the specific radiation pattern due to
the normalization condition in (5). Moreover, it follows from
the structure of (17) that in a d-dimensional homogeneous
domain e.g. V = Rd the connectivity mass would involve a
radial integral of Gd/η such that M becomes invariant with
respect to G when η = d. Therefore, we conclude that the
ratio d/η is a key system parameter whose importance will be
highlighted in the following subsections.

Since the gain integrals in (19) of Gi and Gj factor out
nicely and are equivalent to each other, we define

Sη[G] =

∫ π

0

sin θG(θ)3/ηdθ, (20)

and investigate its dependence with respect to the path ex-
ponent η, for simple but practical gain functions in order
to identify which ones yield better (or worse) connectivity
properties.

A. Isotropic Radiation

As a benchmark for our theoretical analysis we set G = 1
corresponding to isotropic radiation. In this case we have the
following trivial result for the functional of interest

Sη[G] =

∫ π

0

sin θdθ = 2. (21)

Fig. 3. The cardioid pattern for ε = 1/4, 1/2, 3/4, and 1, from left to right.

B. Wide-Angle Unidirectional Radiation
Wide-angle unidirectional radiation patterns are character-

istic of microstrip antennas, also called patch antennas. Patch
antennas are relatively cheap and easy to manufacture using
modern printed-circuit technology. Moreover, they are me-
chanically robust and therefore are generally used in wireless
communications where size, weigh, cost, performance, and
ease of installation are often the main constraints [33]. Their
narrow bandwidth is being somewhat mitigated by the fact
that many communications protocols are nowadays moving
towards CDMA and TDMA techniques which use a single
band.

Patch antenna gains typically have a single wide-angled
major lobe with a number of small minor ones. We ignore
the minor lobes and approximate the patch antenna radiation
pattern by the cardioid function G(θ) = 1 + ε cos θ, for
θ ∈ (0, π) with ε ∈ [0, 1]. The parameter ε measures the extent
of deformation from the isotropic case as shown in Fig. 3 with
ε = 1 corresponding to the most directional case. To obtain
the 3D radiation pattern, the gain profile of Fig. 3 is rotated
about the x-axis, thus producing a surface of revolution. For
general ε we find

Sη[G] = η
(1 + ε)1+3/η − (1− ε)1+3/η

ε(η + 3)
. (22)

Notice that when ε = 0 we recover (21), whilst when ε = 1
we have Sη[G] = 21+3/η

1+3/η .

C. Omnidirectional Radiation

Fig. 4. The donought pattern for m = 1, . . . , 5, from left to right.

Omnidirectional radiation patterns are characteristic of
dipole antennas, commonly used in wideband wireless ap-
plications. Their radiation pattern is shaped like a doughnut
and is symmetric about the axis of the dipole. In the simplest
case of a half-wavelength dipole antenna we may approximate
this pattern by G(θ) =

2Γ( 3+m
2 )

√
πΓ( 2+m

2 )
sinm θ, for θ ∈ (0, π) with

m > 0 [33]. The parameter m measures the directivity of the
donought ring as shown in Fig. 4. For general m we find

Sη[G] =

(
2Γ( 3+m

2 )
√
πΓ( 2+m

2 )

)3/η √πΓ(1 + 3m
2η )

Γ( 3(m+η)
2η )

. (23)

10A similar observation was made for two dimensional domains in [20]
where the critical path loss was found to be η = 2.
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D. Narrow-Angle Unidirectional Radiation

Fig. 5. The highly directional horn pattern for λ = 1, 2, 3, from left to right.

Highly directional patterns are characteristic of horn an-
tennas and can also be generated by end-fire arrays. Typical
applications include high powered satellite communications
and radio telescopes, although beamforming techniques have
recently attracted much attention in low-power wireless mul-
tihop networks [17], [19]. We approximate their radiation
pattern by G(θ) = (2(λ2 − 1) cosλθ)/(λ sin π

2λ − 1) in the
interval θ ∈ (0, π2λ ) with for λ ≥ 1 and G = 0 elsewhere. The
parameter λ measures the directivity of the beam as shown in
Fig. 5. For the case of λ = 2 we find

Sη[G] =
η(6 + 6

√
2)3/η

2(3 + η)
2F1(1,

3

2
+

3

2
, 2 +

3

η
,−1), (24)

where 2F1 is the Gauss hypergeometric function. Closed form
expressions exist for other values of λ but become increasingly
complicated and do not offer further insight.

E. Narrow-Angle Multi-directional Radiation

As a generalization to the above unidirectional radiation pat-
tern we allow for the possibility of multiple, non-overlapping,
highly directional, identical lobes (see the left panel of Fig. 8
for an example with n = 6 lobes). Although such exotic
gain patterns are not often encountered in practice11, the
following theoretical investigation presents an interesting ex-
ercise and can offer some useful design recommendations.
For a radiation pattern with n > 1, the gain function
is given by (6) with each lobe described by gk(θ(k)) =
(2(λ2 − 1) cosλθ(k))/(nλ sin π

2λ − n) for k = 1, . . . , n, with
θ(k) ∈ (0, π2λ ), and λ ≥ 1. For the case of λ = 2 and general
n we find

Sη[G] =

n∑
k=1

∫ π
2λ

0

sin(θ(k))gk(θ(k))3/ηdθ(k)

=
n1−3/ηη(6 + 6

√
2)3/η

2(3 + η)
2F1(1,

3

2
+

3

2
, 2 +

3

η
,−1),

(25)

where we have assumed no overlapping lobes and thus con-
sidered each lobe’s contribution to the integral individually.
Notice that for η < 3, increasing the number of lobes n,
ceteris paribus, has the effect of decreasing Sη[G]. This is
particularly interesting since it implies for example that at
low path loss (η = 2) and identical receive and transmit gains
(i.e. Gi = Gj), doubling the number of lobes (normalized at
constant total power (5)) would result to halving the network
mean node degree µ. Similarly, at high path loss (η = 6),
doubling the number of lobes doubles µ.

11Experimental realizations of multi-directional radiation patterns have
reported substantial benefits and point towards successful application to large-
scale wireless sensor networks [34].

Fig. 6. Comparison of the functional Sη [G] as a function of the path
loss exponent η for the various radiation patterns considered in this section.
Directional radiation patterns are superior to the isotropic case only when
η < 3.

Fig. 7. Comparison of the computer simulated mean degree µ (showing using
solid markers) and the theoretical prediction (curved line) for different antenna
gains and for a range of path loss values η ∈ [2, 6]. The simulation was run
in a cube domain of side L = 10, at a density ρ = 0.1 and β = 10.

F. Single Sector Radiation

To simplify matters, we also consider a sectorized radiation
model [25], [35] where G(θ) = f(ν) = const > 0 for the
interval θ ∈ (0, νπ) for some ν ≤ 1 and G = 0 elsewhere.
This would result in a conical radiation pattern ending in a
spherical cap. In complete analogy to the 2D case [20], by
employing Lagrange multipliers in the calculus of variations
we find that the constant gain function G(θ) = csc2(νπ2 ) yields
the stationary path of Sη[G]. For general ν we find

Sη[G] = 2
[
sin
(νπ

2

)]2− 6
η

, (26)

implying that the path defined by the isotropic radiation gain
(i.e. when ν = 1) is a maximum of Sη[G] for η > 3, and
a minimum for η < 3. Therefore, we may conclude that
isotropic radiation offers optimal connectivity properties when
η > 3 but the worst possible when η < 3.

G. Numerical Verification and Discussion

Fig. 6 provides a qualitative comparison of Sη[G], and thus
M, for the various gain functions considered above. It is clear
that directional radiation patterns can significantly improve
network connectivity in homogeneous domains at low path
loss η < 3. This observation is in good agreement with the
numerical results in two dimensional networks of [19], [36],
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yet further highlights the importance of the ratio d/η as well as
its generality to any directional antenna gain profile or small-
scale fading model12. Significantly, equation (19) suggests that
homogeneous networks with antennas which have different
receive and transmit gains, for example directional transmit
but isotropic receive gains (often adopted to avoid antenna
misalignments) are in fact in great disadvantage to directional-
directional for η < 3 and isotropic-isotropic for η > 3. This
is a generic observation, independent of i) the gain pattern
details (e.g. minor lobes or sectorized approximation), ii) the
fading model used, and should therefore be contrasted against
the multitude of related research works (see [37]–[39] and
references therein).

Fig. 7 shows a comparison between theory and computer
simulations. The observable of choice is the mean degree
µ of a random network with randomly oriented antennas at
different path loss values within the range of η ∈ (2, 6).
Note that in Fig. 7 we divide µ by ρ since for V � 1,
the mean degree increases linearly with the number of nodes
in the network. This allows for a direct comparison with the
theoretical prediction of the homogeneous connectivity mass
M. The simulation confirms that at η = 3 all curves meet and
the mean degree is independent of the gain pattern details.
A good agreement is observed between theory and simula-
tion, although the theoretical curve appears to systematically
overestimate that of the simulation data. The reason for this
is that the numerical simulation was performed in a finite
cube domain (of side length L = 10) therefore inducing
boundary effects, which have thus far been ignored in the
theoretical model under the assumption of a homogeneous
system. Therefore, in the numerical simulations, nodes near
the boundary may occasionally steer their main beam outside
of the domain and are typically of lower degree. While this
phenomenon applies to all directional radiation patterns, it is
most significant for patterns whose gain is concentrated over a
narrow solid angle. Indeed, the curve for the highly directional
end-fire array radiation pattern is noticeably above that of the
data at low path loss η < 3. We will elaborate on this further
in Sec. VI.

V. DIRECTIVITY SCALING

Expressions (23), (24) and (26) have highly directional
limits, for m → ∞, λ → ∞, and ν → 0 respectively, in
which the gain pattern and derived quantities scale. Physically
we see that if the gain G is concentrated on a small solid
angle ω, hence (due to normalisation) having values of order
ω−1, the integral Sη[G] will scale as ω1−3/η . We can see this
in more detail for each of the two models. Define ω to be
the solid angle over which G takes at least half its maximum
value. Then for the dipole case of G(θ) =

2Γ( 3+m
2 )

√
πΓ( 2+m

2 )
sinm θ,

we require that sinm θ ≥ 1/2, which gives a small interval (to
leading order in m−1): |θ − π/2| ≤

√
2 ln 2/m. Multiplying

12The ratio d/η was shown to play an important role when considering
diversity scaling laws for SIMO, MISO and MIMO systems [30]. Specifically,
when d/η > 1, one should expect progressive (i.e. superlinear) improvements
in power and diversity scaling. It would therefore be interesting to investigate
directivity and diversity in parallel from the point of view of the ratio d/η.

the width of this interval 2
√

2 ln 2/m by the length of the
equator 2π gives

ω =

√
32π2 ln 2

m
, (27)

for m→∞. Applying the asymptotic formula for the ratio of
gamma functions in (23)

Γ(z + a)

Γ(z + b)
∼ za−b, (28)

(see [40] 5.11.12) for z → ∞ and comparing with (27) we
find that

Sη[G] ∼ C1(η)ω1−3/η, (29)

for an explicit (but rather unilluminating) function C1(η).
For the highly directional radiation pattern G(θ) = (2(λ2−

1) cosλθ)/(λ sin π
2λ − 1) for θ ∈ (0, π2λ ), we use the same

definition of ω, this time finding θ ≤ π/(3λ) and hence

ω = 4π sin2
( π

2λ

)
∼ π3

9λ2
. (30)

Making a change of variable t = λθ in the integral of interest,
we find

Sη[G] =

(
2(λ2 − 1)

λ sin(π/2λ)− 1

)3/η ∫ π/2

0

sin(t/λ) cos3/η t

λ
dt.

(31)

Taking the limit λ→∞, the sines take their forms for small
argument, and so

Sη[G] ∼
(

2

π/2− 1

)3/η

λ6/η−2

∫ π/2

0

t cos3/η tdt

∼ C2(η)ω1−3/η,

(32)

where now C2(η) involves a non-elementary integral for most
values of η.

Finally, for the single sector radiation pattern we have that
in the directional limit of ν → 0, equation (26) becomes

Sη[G] ∼ 2
(νπ

2

)2− 6
η

∼ 2
3
η

( ω
2π

)1− 3
η

,

(33)

since ω = 2π(1− cos νπ) = π3ν2 +O(ν4).
Significantly, we find that when Gi = Gj , in either of

the above three cases cases the connectivity mass scales as
M ∼ C3(η)ω2−6/η . Thus when η < 3, scaling the density
as ρ ∼ ω6/η−2 will keep the exponent ρM in (16) constant
but result in a decrease in N , and hence lead to an increase
in the probability of full connectivity. For example, when
η = 2, this suggests that by making a directional beam of
half the solid angle, we may reduce the number of nodes by
a significant factor of 2 without affecting M or any of the
associated network connectivity properties described in Sec.
III. We conclude this section by noting that it is reasonable to
expect our results to generalize to general dimension d such
that M ∼ ω2−2d/η .
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Fig. 8. An example of a narrow-angled multi-directional radiation pattern
with n = 6 evenly spaced non-overlapping lobes is shown on the left with
its corresponding multi-sectorized approximation on the right.

VI. INHOMOGENEOUS ANISOTROPIC CONNECTIVITY
MASS AND BOUNDARY EFFECTS

Random networks confined within a bounded domain V ⊂
R3 are no longer homogeneous nor isotropic. As a result,
boundary effects can have a significant impact on the con-
nectivity properties of such networks [29], [32], [41]–[43].
The main reason behind this is that nodes situated near the
boundary have a higher probability of being isolated (i.e.
of degree 0) than nodes in the bulk component of V . This
feature is quantified by (13) in the isotropic case, and further
intensified in the case of anisotropic radiation patterns where
nodes near the boundary may steer their connectivity beam(s)
outside the network domain and hence increase their isolation
likelihood. Therefore, unlike in homogeneous systems where
directivity significantly improves network connectivity at low
path loss, in inhomogeneous systems, directional radiation
patterns present us with some serious drawbacks.

In order to understand the negative effects of directional
radiation patterns, we examine the high density asymptotic
behaviour of Pfc. From (15), we expect this behaviour to
stem from the extreme situation where ri is situated exactly
at the sharpest corner of V . For simplicity we will consider a
right angled corner13 and naturally choose this as the origin
of the reference frame, with the corner edges aligned with the
positive coordinate axes. We also restrict the current discussion
to rotationally symmetric gain patterns and thus exclude the
multi-directional case. Note that the system is not isotropic
and so Gi is a function of the angle between v̂i and rj given
by χ = arccos(cos θj cosϑi + cos(φj − ϕi) sin θj sinϑi) as
illustrated in Fig. 2. We therefore have that

Pfc ≈ 1− ρ

4π

∫
e−ρMCdΩi, (34)

where MC is the connectivity mass associated with the right
angled corner and is given by averaging Hij over all possible

13Without this assumption all the results generalize but exposition and
notations become a little more cumbersome.

positions and antenna orientations of node j

MC =
1

4π

∫ ∫ π
2

0

∫ π
2

0

∫ ∞
0

r2
j sin θje

−
βr
η
j

Gi(χ)Gj(ϑj) drjdθjdφjdΩj

=
Γ(3/η)

4πηβ3/η

∫ ∫ π
2

0

∫ π
2

0

sin θj(Gi(χ)Gj(ϑj))
3/ηdθjdφjdΩj

=
Γ(3/η)

2ηβ3/η

(∫ π
2

0

∫ π
2

0

sin θjGi(χ)3/ηdθjdφj

)
Sη[Gj ],

(35)

where we have extended the radial integral in the first line of
(35) to infinity (even though V is finite) since Hij is decaying
exponentially - a reasonable approximation if the connectivity
range is much smaller than the size of the system. Note that
unlike the homogeneous case where the connectivity mass
was invariant to the gain details at η = 3, here, MC depends
strongly on Gi through the antenna orientation of the cornered
node i for all values of η. Consequently, in order to make
further progress, we now focus at the asymptotic exponential
decay of Pfc given by the minimum of MC over the orientation
of antenna i which we henceforth denote asM. Therefore, we
must seek the minimum value of the integral

IGi(ϑi, ϕi) =

∫ π
2

0

∫ π
2

0

sin θjGi(χ)3/ηdθjdφj (36)

with respect to the orientation vector v̂i. We do this for the
four simple gain functions described in the previous section.

A. Isotropic Radiation

In this case G = 1 and we obtain the trivial result that IGi =

π/2 and so M = MC = Γ(3/η)π
2ηβ3/η . More generally, for corner

of solid angle ωC we would have M = MC = Γ(3/η)
ηβ3/η ωC .

B. Wide-Angle Unidirectional Radiation

In this case, G(θ) = 1 + ε cos θ, which leads to a global
minimum in (36) at (ϑi, ϕi) = (π − θj , φj + π), i.e. when
ri = −cv̂i for any c > 0 which can only occur if v̂i is
pointing outside of V . Such a configuration amounts to

IGi(π − θj , φj + π) =
π

2
(1− ε)3/η. (37)

Note that when ε = 1, we have that IGi = 0 which is indicative
of a blind spot, meaning that any node directly behind node
i finds it impossible to connect with it. However such a
configuration is highly unlikely as it is of zero probability
measure.

C. Omnidirectional Radiation

In this case, G(θ) =
2Γ( 3+m

2 )
√
πΓ( 2+m

2 )
sinm θ, which leads to two

global minima in (36) at (ϑi, ϕi) = (π − θj , φj + π) and
(ϑi, ϕi) = (θj , φj), giving IGi = 0 in both cases. This is
expected due to the zero gain in both ±v̂i directions, however
as with the previous case, such a configuration is highly
unlikely.
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D. Narrow-Angled Unidirectional Radiation

In this case, G(θ) = (2(λ2 − 1) cosλθ)/(λ sin π
2λ − 1),

which leads to I = 0 for a range of orientations independent
of (θj , φj), i.e. whenever the entire lobe is oriented outside of
the domain V . Therefore, the blind-spot phenomenon is much
more likely. For this reason, we conclude that while highly
directional antennas improve connectivity in homogeneous
domains at low path loss, they are in some disadvantage
to wide-angle unidirectional or omnidirectional antennas in
inhomogeneous domains.

VII. INHOMOGENEOUS CONNECTIVITY MASS FOR
MULTI-DIRECTIONAL RADIATION

Networks operating in homogeneous environments at low
path loss can improve their connectivity by using highly
directional antennas. Networks operating in inhomogeneous
domains however suffer from boundary effects (especially
near sharp corners) where nodes with unidirectional radiation
patterns (and especially narrow-angle ones) may steer their
main beam outside the domain thus suffering from blind-
spots. In the absence of any a posteriori knowledge or control
over antenna orientations (e.g. beamstearing capabilities) it is
therefore desirable to identify ways of mitigating blind-spots
and achieve a high connectivity mass both near and away from
the domain boundary.

One possible approach to the above stated problem is to con-
sider multi-directional patterns where the gain is concentrated
on n ≥ 2 evenly spaced lobes. Similar radiation patterns have
been experimentally realized in [34] using a number of patch
antennas. Since we are interested in the performance of G in
low path loss we now lift the assumption that the connectivity
range is much smaller than the size of the system14.

A. Two Dimensional Case

In order to aid in the discussion of the impact of boundaries
in 3D multi-directional radiation patterns, we first discuss the
2D case. In two dimensions, distributing n ≥ 2 points evenly
on the unit circle is a trivial problem with Θ = {v̂(k) =
(1, 2πk/n + x), for k = 1, . . . , n and x ∈ [0, 2π/n)}. Each
lobe has gk(θ(k)) = λπ cosλθ for θ ∈ (− π

2λ ,
π
2λ ) and λ ≥ 1,

and the total gain profile G is defined by (6). Following the
discussion in Sec. V, we may simplify the multi-directional
gain function for λ� 1 by considering a multi-sectorized ra-
diation model where each 2D lobe is approximated by a sector
of angular width ω = 2π/(3λ) and gain gk(θ(k)) = 3λ/n for
θ(k) ∈ (− π

3λ ,
π
3λ ) measured from v̂(k) and 0 otherwise, such

that the total power is normalized by∫ 2π

0

G(θ)dθ =

n∑
k=1

∫ π
3λ

− π
3λ

gk(θ(k))dθ = 2π. (38)

Also, to avoid overlap between lobes we require that λ ≥ 3n.
Having defined G, we now examine M = minxMC for

a right angled corner of a square domain V ⊂ R2. The

14This assumption was used to extend the radial integral of (35) to infinity.

Fig. 9. Schematic of a multi-directional gain pattern (n = 4) of a node
situated at one of the corners of a square domain.

contribution to MC from a single sector of antenna i is given
by

n

2π

∫ π
3λ

− π
3λ

∫ π
3λ

− π
3λ

∫ Lk

0

rj exp

(
−βrηj

gk(θ(k))2

)
drjdθ

(k)
j dϑj , (39)

where the factor of n in the front is due to the n lobes of
antenna j, and Lk is the radial distance from the corner to the
adjacent boundary of V in the direction θ

(k)
j measured from

v̂
(k)
i , as illustrated for n = 4 in Fig. 9. Performing the drj

integral and summing over k we obtain

MC(n) =
ng4/η

2πηβ2/η

n∑
k=1

∫ π
3λ

− π
3λ

∫ π
3λ

− π
3λ

γ

(
2

η
,
βLηk
g2

)
dθ(k)
j dϑj ,

(40)

where γ(s, x) is the lower incomplete gamma function. Note
that we have dropped the subscript k from g as all lobes are
identical. For highly directional sectors (λ � 1), we may
approximate Lk by L̂k given by the length of the vector v̂(k)

i

projected onto the adjacent boundary of V . Notice that L̂k is
zero if the lobe is pointing outside the domain. After some
simplifications we finally to arrive at

M(n) ≈ min
x

[
2πg4/η−2

nηβ2/η

n∑
k=1

γ

(
2

η
,
βL̂ηk
g2

)]
, (41)

indicating that the finite size effect of truncating radial in-
tegration at L̂k is of variable importance at different path
loss. Equation (41) is difficult to calculate analytically, but
straightforward numerically using a fine grid of values for
x ∈ [0, 2π/n). We now turn to the full problem in three
dimensions.

B. Three Dimensional Case

In three dimensions, there are a number of ways of arranging
n > 2 points evenly on the unit sphere. One way is through
the Thomson problem (proposed in 1904 by J.J. Thomson, see
[44] and references therein) concerning the minimum energy
configuration of n electrons confined on the surface of a sphere
which repel each other with a Coulomb force. Other ways
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Fig. 10. Numerical calculation of the minimum connectivity mass (44) due
to a multi-directional antenna situated at right angled corner for η = 2, 3,
and 6. The n evenly spaced vertex coordinates were taken from [45], and the
minimum is taken over all possible orientations Θi using rotation matrices
and a finite grid of Euler angles. The top panel keeps the lobe widths constant
while the lower one shrinks them for increasing n by scaling λ by

√
nπ/3.

The insets show the vertex positions for n = 14 and n = 30.

involve packing and covering problems called the Tammes
and Fejes Tóth type problems respectively. We will adopt
the Thomson interpretation for its connection with spherical
molecule symmetries.

An analytic description of the n-point coordinate con-
figuration is impossible. However, computer programs have
generated them to very good accuracy and have also identified
their symmetry types for very large values of n. One can try
to imagine such configurations as the vertices of a polyhedron
whose 2(n − 2) faces are almost equilateral triangles15. An
extensive table with the minimal energy, group symmetry, dual
polyhedron and Cartesian coordinates of the n vertices can be
found online at [45].

We consider a multi-sectorized radiation model where each
lobe is approximated by a cone ending in a spherical cap of
radius gk = 1

n csc2( π6λ ), each of solid angle ω = 4π sin2( π2λ )
as in (30), thus satisfying the normalization condition (5).
Fig. 8 shows an example multi-sectorized radiation model
with n = 6. Notice that the resulting multi-directional gain
pattern is not rotationally symmetric and so in general we
have Θ = {v̂(k) = (1, ϑ(k), ϕ(k)), for k = 1, . . . , n}. Finally,
using

√
4π/n as a rough estimate of the typical angular

distance between neighbouring lobes we require λ ≥
√
nπ/3

to avoid lobe overlapping.

15For n = 4, 6, and 12, the triangles are perfect equilaterals and so the
polyhedrons formed are the regular tetrahedron, octahedron, and icosahedron
respectively.

Having defined G, we now examine the connectivity mass
MC associated with a right angled corner of a cube domain
V ⊂ R3. Taking the same approach as in the two dimensional
case, we calculate

MC(n)=
n

4π

n∑
k=1

∫∫ 2π

0

∫ π
3λ

0

∫ Lk

0

r2
j sin θje

−β
r
η
j

g2 drjdθjdφjdΩj

=
ng6/η

4πηβ3/η

n∑
k=1

∫∫ 2π

0

∫ π
3λ

0

γ

(
3

η
,
βLηk
g2

)
sin θjdθjdφjdΩj

=
g6/η−1

ηβ3/η

n∑
k=1

∫ 2π

0

∫ π
3λ

0

γ

(
3

η
,
βLηk
g2

)
sin θjdθjdφj ,

(42)

where we have restricted the dΩj integral over ϑj ∈ (0, π3λ )
and ϕj ∈ (0, 2π) where the gain is non-zero. Approximating
Lk by L̂k as in the 2D case, we finally arrive at

MC(n) ≈ 4πg6/η−2

nηβ3/η

n∑
k=1

γ

(
3

η
,
βL̂ηk
g2

)
, (43)

and thus obtain M by finding the minimum of MC over all
possible antenna orientations

M(n) = min
Θi

MC(n). (44)

This is difficult to calculate analytically, but straightforward
numerically, using rotation matrices and a fine grid of Euler
angles. The result is shown in Fig. 10 for the range n ∈ [2, 30]
using a cube domain of side L = 1, β = 1, λ =

√
30π/3

in the top panel and λ =
√
nπ/3 in the lower one. For

comparison, all simulations were preformed for path loss
values of η = 2, 3, and 6. We observe that for n ≤ 13,
there always exist at least one orientation Θi such that the
pattern does not cover the cubic corner and therefore M = 0,
i.e., the multi-directional gain has blind spots. Interestingly,
the case of n = 14 (corresponding to a polyhedron called a
“gyroelongated hexagonal bipyramid” also shown in the inset
of the top panel of Fig. 10) covers such corners whilst that
of n = 15 does not. For larger values of n ≥ 16, blind spots
are always covered, i.e., M > 0. For constant lobe widths
characterised by λ =

√
30π/3, the minimum connectivity

mass M(n) increases with n modulo small fluctuations with
better performance at lower path loss. When the lobe widths
are scaled by λ =

√
nπ/3, the minimum connectivity mass is

approximately constant atM≈ 0.15 for n ≥ 16 (and n = 14)
when η = 2, but decreases steadily for η = 3, and 6. For
comparison, we point out that isotropic radiation would give
MC ≈ 0.416, 0.427, and 0.446 for η = 2, 3, and 6 respectively,
which is significantly higher than that observed for the multi-
directional radiation patterns investigated in Fig. 10. We stress
however that Fig. 10 shows the minimum of MC(n) over
all possible orientations Θi and further recall the benefits of
directional patterns in homogeneous systems at low path loss
as discussed in Sec. IV.

The above results hint towards an interesting generalization
for arbitrarily shaped three dimensional domains. Since at low
path loss, increasing the number of lobes and scaling their
widths by λ =

√
nπ/3 improves M while also covering any
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corner, we propose as an optimal (yet unrealistic) limit a radi-
ation pattern consisting of an infinite number of infinitesimally
thin lobes which we call (with a bit of imagination) ‘the hedge-
hog’ pattern; an extreme deformation of the isotropic radiation
pattern with G = 1 which we showed was optimal for η > d.
Interestingly, the hedge-hog pattern is by definition uniform
in all orientations and therefore in some sense isotropic.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated the connectivity proper-
ties of 3D ad hoc networks with randomly oriented anisotrop-
ically radiating nodes. We have shown that for homogeneous
systems (i.e. in the absence of boundary effects) the con-
nectivity mass M is a key observable which characterises
many important network properties: i) the probability that two
randomly selected nodes connect to form a pair p2, ii) the
network mean degree µ, iii) the probability of an isolated
node d(0), and finally iv) the probability of obtaining a fully
connected network Pfc at high node densities. We therefore
have focused on the explicit calculation of M for simple but
practical antenna gain profiles (e.g. patch, dipole, and end-fire
array antennas). Using the analytic expressions obtained, we
have identified the ratio of spatial dimension d to path loss
η, as a key system parameter. We have shown that when the
antenna gain is concentrated on a small solid angle ω, the
connectivity mass M will scale as ∼ ω2−2d/η . Significantly,
we have shown that for η < d, any directional deformation
of the isotropic gain profile will increase M and therefore
improve overall network connectivity. In fact, we find that the
more directional the gain, the better connected the network
will be. For η > d however, all these observations are reversed
and isotropic radiation leads to optimal network connectivity.
We have validated our results through Monte Carlo computer
simulations of the network mean degree and have seen that
border effects typically reduce the network mean degree - a
feature particularly noticeable for highly directional radiation
gains.

Random networks confined within a bounded domain are
inhomogeneous systems and therefore boundary effects can
have a significant impact on the network connectivity prop-
erties. This is because nodes situated near the confinement
boundary are likely to be of lower degree than those situated
further away. Therefore, the mean network degree is less than
expected, particularly for highly directional gains which a)
may steer their main beam outside of the domain leading to so
called blind spots, and b) at low path loss exponents may have
a characteristic connection range r0 in their boresight direction
which is greater than the typical domain size. We have
argued that these two effects have a greater impact for highly
directional radiation patterns such as those of an end-fire
array. Thus, in contrast to homogeneous systems, directionality
in radiation gains is undesirable for networks operating in
confined spaces, unless the network can be configured to
eliminate the possibility of these eventualities. To this end
we have investigated multi-directional radiation patterns as a
means to cover both bases (homogeneous and inhomogeneous
systems). We emphasize that the results presented in this paper

are independent of the small-scale fading model used and
therefore provide qualitative insight for wireless researchers
and practitioners to consider in the future.
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