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Random geometric graphs with general connection functions
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In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson
point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks
“soft” or “probabilistic” connection models have recently been introduced, involving a “connection function”
H(r) that gives the probability that two nodes at distance r are linked (directly connect). In many applications
(not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every
other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two
or three dimensions is expressed in terms of contributions from boundary components for a very general class of
connection functions. It turns out that only a few quantities such as moments of the connection function appear.
Good agreement is found with special cases from previous studies and with numerical simulations.
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I. INTRODUCTION

A. Background

A random geometric graph (RGG) is constructed by placing
points (nodes) according to a Poisson point process with
density p in a domain ¥V € R and linking pairs of nodes
with mutual distance less than ry [1]. It remains a very
important model of spatial networks [2], where physical
location of the nodes is important in, for example, climate [3],
infrastructure [4], transport [5], and neuronal [6,7] networks.
Perhaps surprisingly, it has also been shown to be relevant to
protein-protein interaction networks [8]. Many graph proper-
ties have been studied; here we focus on the property of being
connected, the existence of a multihop path between each pair
of nodes. We will sometimes use the synonymous term “fully
connected” for consistency with previous literature.

RGGs are also increasingly being used to model wire-
less networks [9], with the focus on continuum percolation
thresholds [10] and clustering coefficients [11]. In the context
of wireless ad hoc networks, the nodes are devices that
communicate directly with each other rather than via a central
router and whose locations are not specified in advance. The
edges represent the ability of a pair of nodes to communicate
effectively. Percolation and connectivity thresholds for such
models have previously been used to derive, for instance, the
capacity of wireless networks [12]. Ad hoc networks have
many applications [13], for example, smart grid implementa-
tions, environmental monitoring, disaster relief, and emerging
technologies such as the Internet of Things.

Theoretical properties of RGGs have been widely studied
by probabilists and combinatorialists [ 14]. A sequence of RGG
is often considered, in which p, ry, and the system size L
are varied at a specified rate such that the average number of
nodes const x pL¢ — oo. Scaling all lengths (and hence these
parameters), it is possible to fix any one of these quantities
without loss of generality. Here we fix ry; for a discussion
of limits with fixed p or L see Ref. [15]. Thus the following
statements are made “with high probability” (whp), meaning
with a probability tending to unity in the combined limit. At
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low densities (relative to rg), the network consists of small
clusters (connected components). Beyond the percolation
transition, the largest cluster becomes a macroscopic fraction
of the size of the system. If the domain is suitably well
behaved and L is not growing too rapidly, then there is a
further connectivity transition at which the graph forms a single
cluster. The latter may be described by Py, the probability of
(full) connectivity, which is a function of the density and the
shape and size of the domain.

The scaling for the connectivity transition that fixes Pg.
makes L grow roughly exponentially with p. For this scaling,
the connection probability is dominated by isolated nodes in
the bulk (that is, far from the boundary) for d = 2 and near a
two-dimensional (2D) surface ind = 3 [14]. Thatis,ind = 2
the larger number of nodes in the bulk dominates the lower
probability of links for nodes near the boundary. However,
the present authors [16] have pointed out that for practical
purposes, namely approximating Py, in a realistic system, the
size is not exponentially large, and the bulk, edges, or corners
may dominate the connection probability [16] depending on
the density. Thus, we are interested in results involving more
general limiting processes, as well as useful approximations
for finite cases.

Also motivated by the wireless applications, RGGs have
been extended to a “random connection model” [9,17,18], also
called “soft RGG” [19], in which pairs of nodes are linked with
independent probabilities H(r) where H typically decreases
smoothly from 1 to O as the mutual distance r increases
from 0 to co (more general functions will be considered; see
Sec. II). Thus there are two sources of randomness, the node
locations and their links. There are, however, a number of
qualitative differences in connectivity between the hard and
soft connection models, for example, soft connections permit
minimum degree as an effective proxy for k-connectivity [20].

The present authors have developed a theory to approximate
P for soft connection functions and finite densities, express-
ing it as a sum of boundary contributions [16,21]. This can
also be extended to anisotropic connection functions [22,23]
to k-connectivity [24] and to nonconvex domains [25,26].
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B. Summary of new results

The purpose of the present work is to upgrade this
theory, increasing the generality and reducing cumbersome
calculations and uncontrolled approximations. We start from
the following approximate expression for Py ford > 2, which
effectively states that the dominant contribution to lack of
connectivity is that of isolated nodes, independently (Poisson)
distributed

Pf. = exp |:—,of e_"M(r)dr:| (D
%

with
M(r) = f H(lr — ¥/’ ®)
%

the position-dependent connectivity mass. In the case of k-
connectivity we also need the related integrals [24]
m

—— | e PMWgr.  (3)
dp’“fv

The integrals for connectivity and k-connectivity are four or
six dimensional ford = 2,3, respectively, and are almost never
analytically tractable.

Conditions under which Eq. (1) is known rigorously (in the
limit) are given in Ref. [19]; see also Ref. [27]. Results are
given for both Poisson and binomial point processes (the latter
fixing the total number of nodes N rather than the density
p), including justifying the connection between connectivity
and isolated nodes for a class of connection functions of
compact support, and the Poisson distribution of isolated nodes
in a more general class that includes connection functions
that decay monotonically and at least exponentially fast at
infinity. However, it is expected that most results and the
above formula should be valid more generally. One exception
isd = 1 as isolated nodes are less relevant as the network may
more readily split into two or more large pieces; the study of
this system for soft connection models remains an interesting
open problem. In practical situations we may be interested
in Py. very close to unity; some literature approximates the
exponential accordingly: exp(—z) =~ 1 — z.

The connection (and hence k-connection) probability Pg.
can then be written in “semigeneral” form [16] as a sum of
contributions from different boundary elements,

/ M) e PMOqy = (—1)"
v

Pre=exp| =Y > p' G Voe Pt | (4)
i beb;

where 0 < i < d is the codimension of a boundary component
b; Gfibj. is a geometrical factor obtained by expanding Eq. (1)
in the vicinity of the boundary component; V, is the (d — i-
dimensional) volume of component b (e.g., volume, surface
area or edge length for d = 3); €, the magnitude of the
available angular region, that is, its (solid) angle; and H;_,
is a moment of the connection function, defined in Eq. (9)
below. To illustrate the notation, we give the case of a square
domain:
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TABLE I. Geometric factors appearing in Eq. (4) in terms of the
dimension d and boundary codimension i as first derived in Sec. IV
below. Where w appears it is the angle of a 2D corner or right-
angled 3D corner. H,, is the corresponding moment of the connection
function, Eq. (9).

G, i=0 i=1 i=2 i=3
— 1 1
d=2 1 2Hy Hgsinw
_ 1 1 4
d=3 1 27 H) nZlesinw nzH?a)sinm

where the first term corresponds to the bulk, the second to
the edges, and the last to the corners. If we specialize further
to H(r) = ™", the case of Rayleigh fading with n = 2 and
B =1 (see Tables II and III below), the relevant moments are
Hy = /7 /2 and H; = 1/2, and it becomes

4L 16
Ps. = —oL%e TP — —np/2 _ —7p/4 | 6
fe exp|: pLe ﬁe npe ©)

This is now an explicit analytic expression of much more
practical utility than Eq. (1).

In previous work these contributions were computed
separately for each connection function H(r) by an asymp-
totic approximation to the integrals involving a number of
uncontrolled approximations. Here we provide the following
improvements:

Deriving these expansions for much more general connec-
tion functions, including all those commonly considered in the
literature, allowing nonanalytic behavior at the origin and/or
discontinuities: See Sec. II.

Showing that the geometrical factor can be expressed
simply as moments of H: See Table I.

Justifying the separation into boundary components, and
stating it in a precise limiting form: See Sec. IV A.

Finding the subleading (lower density) corrections, thus
giving more accurate results at high density and a quantitative
estimate of the range of validity: See Secs. IV B-IV D.

Deriving the effects due to curvature for general smooth
geometries in two and three dimensions: See Sec. V.

It should be emphasized that the approximation methods
presented herein, encapsulated by Eq. (4), significantly reduce
the complexity of numerically calculating the d-dimensional
nested integrals of Eq. (1). This is particularly useful when
H(r) is some special function (e.g., the Marcum Q function).
Moreover, the linear form of the exponent in Eq. (4) enables
direct analysis and comparison of contributions to Py. due to
separate boundary components.

Section II reviews previously used connection functions
and defines the class of functions we consider here. Section I1I
states the (more general) conditions on the connection func-
tion and derives expressions for the connectivity mass near
boundaries. Section IV then derives corresponding expressions
and clarifications for Py.. Section V extends the above
calculations to domains with curved boundaries. Section VI
gives examples, showing that the results agree with previous
literature and giving numerical confirmation of newly studied
connection functions. Section VII concludes.
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II. GENERAL CONNECTION FUNCTIONS

A. Connection functions appearing in the wireless
communications literature

The connection function H(r) gives the probability of a
direct link between two nodes at distance r. We want to
construct a class of connection functions H : [0,00) — [0,1]
that includes virtually all of those appearing in the existing
literature; refer to Table II. While the most developed models
have appeared in the wireless communications literature, it
is not difficult to measure and model the distance-dependent
link probability in other spatial networks; see, for example,
Ref. [7].

The original Gilbert random geometric graph (“unit disk” or
“hard disk”) model [1], considered in most of the subsequent
literature [14], is deterministic—all links are made within a
fixed pairwise distance ry and none otherwise. In Table II it is
the soft disk with @ = 1. The soft disk itself was considered
by Penrose [19], who noted that its edge set corresponds to
the intersection of those of the Gilbert and Erd6s-Rényi (fixed
probability for links) random graph models. A (deterministic)
annulus has also been considered [30]. Such models may be
of interest when dealing with encrypted messages of packet
forwarding networks where communication links should only
form with distant neighbors as to avoid interference or a
security breach. A quasi-unit-disk model [31] is one in which
all links are made within a range r_ and none with range
greater than r. While this is sufficient to observe interesting
phenomena and prove bounds, a specific model requires a
method for determining (deterministically or probabilistically)
the links lying between r_ and r.. One natural such approach,
given in Ref. [32], gives an H(r) decreasing linearly between
these points, as presented in Table II. In all these examples, the
connection function is not a smooth function of distance, so our
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class of functions must allow discontinuities in the function
and/or its derivatives.

Another main class of connection functions comes from
fading models that take account of noise in the transmission
channel but neglect interference from other signals. Interfer-
ence is often of relevance but leads to models beyond the scope
of this work [33]; it may be mitigated by transmitting at differ-
ent frequencies and/or at different times. The received signal is
in general a combination of specular (coherent) and diffusive
(incoherent) components [34]. The diffusive component leads
to the Rayleigh fading model of Table II, while a combination
of diffusive and a single specular component leads to the Rician
model. The parameter K controls the relative strength of these
two components, so the Rician model limits to Rayleigh as
K — 0. Models with more than one specular component lead
to similar but more involved expressions, which can also be
approximated using the same functions as in the Rician case
but with slightly different parameters [22,34].

A further extension is to consider multiple antennas for
transmission and reception (MIMO, i.e., multiple input and
multiple output) or for one of these (MISO, multiple input
single output or SIMO). Combining Rayleigh channels with
maximum ratio combining (MRC) at the receiver leads to
the expressions given in Table II; see Refs. [25,35,36]. Note
that SIMO or MISO reduces to the original (SISO) Rayleigh
model when n = 1; for real parameter m = n > 1/2 it takes
the same form as the Nakagami-m fading model, of more
general applicability and interest [37].

Finally, slow fading, due to larger obstacles that do not
move appreciably on the time scale of wireless transmis-
sion, is often modelled by the log-normal distribution [38].
This leads to a connection function which is smooth
but has vanishing derivatives of all orders at the origin.
Note, however, that the assumption of independence of the

TABLE II. Explicit examples discussed in Sec. II A. H, = H,, form > 0, Eq. (9); otherwise the relevant generalization, Eq. (15). Q,, is
the Marcum Q function and Q,, , its generalization, the Nuttall Q function [28,29].

H(r) H,_, Small r expansion of H(r)
Soft disk {“ r=To aps a
0 r>nr s
a r.<r<ry . .
Soft annulus { 0 otherwise Sy —r) 0
1 r<r_ Py 4
> o
Quasi unit disk H o <r<ry SNy —r—) 1
r+=r _InGry/ro) §=—1
0 r>ry T
—pr s B aB?r?
Waxman ae ap—T(s) a—afr+ -+
. _s 2
Rayleigh SISO e P Nl F(%) 1= Brn4+ L.
r(wpr") BN (s g Bt
SIMO/MISO (1,n) i £hp () L= g I
— _ B _ ) 2 . 4 5
MIMO (2.2) e (B 42— e P o=z D<) 1= By B
ici / Q2 ((V2K.0) (K=1)p K+D2(K-Dp® 2
Rician 01(V2K,2(K + D)Brn) i 1 — S8 — 2 rn. ..
s2(K+DBP/ e 2e
i 10 ’ 1ofth o 3O 1 (AL togig(prn- )
Log-normal zerfc(n—ﬁ log,,(Br") — 0‘—ﬁ) e — 1= sl=e Vo )
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TABLE III. Examples from Table II for n = 2 and specific s. /,, denotes a modified Bessel function.

H, H, Hy H_,
1 T 1 1 T
SISO (1,1) WE 35 2B —/7p
23-V2 7 11-2v2 [z 4/2-17
MIMO (2,2) e % 7 2 H g /7B
- _kK K K
Rician N Ee L e L —VKFDape?
17 (K Ky (K K
X [0 (K 4 K22 g, (£)) <[5 00(5) + £1(%)] xho(3)

probability of each link may be more difficult to justify
here.

In all of these models, the expression 72 appears naturally,
coming from the inverse square law for signal intensity in
three-dimensional space, see Table III. However, many authors
consider a more general ", with the path loss exponent [39] n
varying from 1 (signal strictly confined to a two-dimensional
domain with no absorption) to about 6 (more cluttered or
absorptive environments). The path loss exponent may also be
used to interpolate between random and deterministic models,
for example, the Rayleigh fading function exp[—(r/r()"] tends
to the unit disk model as n — oo. The inclusion of noninteger n
requires us to allow series expansions of H (r) with noninteger
powers at the origin.

Normally in ad hoc networks the path loss exponent
is significantly greater than unity. However, Waxman [40]

Unit disk  ro=1

developed a model with n =1 and in general a nontrivial
coefficient in front of the exponential for more general
large networks. Zegura et al. [41] use this as a model
of the Internet and also propose the connection function
H(r) = aexp[—r/(L —r)]; however, long-range links pro-
portional to the system size are beyond the scope of our
approximations.

Some works add a small length scale to avoid an unphysical
divergent signal strength at the origin, for example, replacing
r by 7 4+ ¢. For an explicit number of transmitters »n it is
straightforward to perform the integrals in the case of Rayleigh
fading SISO/MISO/MIMO, but for reasons of clarity have
been omitted from Table II.

Figure 1 shows the effects of several connection functions
in forming a RGG; note the striking differences in network
topologies. In the simulations, spatial coordinates for N nodes

Soft annulus 1<r<2 , a=03
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FIG. 1. Networks of N = 400 nodes in a square domain of side L = 20 resulting from five different connection functions using the same
random seed. Clusters of nodes are color coded. In the top right panel we plot these five H(r) functions in the respective panels. In the lower

three we use 8 = 1.
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are chosen at random inside a square domain. Nodes i and
J are then paired with independent probabilities H(r;;). The
resulting links are stored in a symmetric zero-one adjacency
matrix, and a depth-first search algorithm identifies the
connected components of the graph, a process of complexity
order O(N In N). For Fig. 1 we use the same random seed as
to allow comparison between the different H(r) functions as
plotted in the top right panel of Fig. 1; however, the process
can be repeated in a Monte Carlo fashion (with random seeds)
and for different values of p = N/V to generate Fig. 6 below.

B. Assumptions and notation

Based on these existing examples, we make the following
assumptions:
(1) Near the origin, H(r) is described by the expansion

H(r)=HO0)+ ) aar®, (7)
acA

where A C (0,00) has a positive lower bound on the gap size.
The minimum of A is denoted opip.

(2) H(r) is piecewise smooth, with nonsmooth points at a
discrete and possibly empty set {r¢},k € K, also with a positive
lower bound on the gap size.

(3) The bulk connectivity mass

27'er(r)rdr d=2
My = , @®)
4r [H(ryr*dr d =3
is finite.
(4) All derivatives of H(r) are monotonic for sufficiently
large r.

We have H(0) € [0,1] in all cases. In the case of log-normal
fading, corrections for small r are smaller than any power
of r, i.e., the expansion is just H(0). If the connectivity
mass is finite but H(r) decays very slowly at infinity, then
some of the local assumptions [and hence Eq. (1)] may fail;
Mao and Anderson [15] insist on H(r) = o[r—2In(r)~?] at
infinity, which is slightly stronger than finite connectivity
mass in d = 2, for some of their results, but we are mostly
interested in exponential decay. The final assumption is to
ensure sufficiently rapid decay of the derivatives of H(r) at
infinity.

The function H(r) describes the link probability on a
line passing through a particular node; we will need various

J
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moments of this:

o0
H, =/ H(ryr"dr
0

H, = /DO H'(ryr"dr )
0

o0
H"(r)r"dr.
0

H, =
Integration by parts gives H, = —mH,,_; for m > 0 and
H) = m(m — 1)H,,_, for m > 1; however, the form of H(r)
implies that H), and H, have a greater range of validity,
since the constant H(0) is removed by differentiation: Our
assumptions imply that H,, is defined for —1 <m < d —
1,H), is defined for —amin < m < d, and H,, is defined for
1 — amin < m < d + 1. Where there is an explicit formula for
noninteger H,, and hence for sufficiently large m for H,, and
H, it may be used to analytically continue the expression to
lower m; examples are given in Sec. VI below.

The moments may be considered as a Mellin transform
evaluated at particular values which depend on the path loss
exponent 1. So if we have H(r) = g(Br") for some scaled
function g, a straightforward change of variables gives

1 K
H,_ | = W{Mﬁ(;), (10)

where
{Mglu) = /0 " tg(t)dt (11)

is the Mellin transform of the function g.
Occasionally, we also define incomplete versions of the
moments

H,(e) = /00 H@ryr"dr 12)

and similarly for the primed versions.
We will also need to define contributions from discontinu-
ities,

A=Y rlH(+) — Hire-), (13)
kek

A, =Y r'lH () — H (re=)). (14)
kel

For the most general calculations we use the further notation

Omin > 1

Omin > 3

HL] + A—l
H—2 = . ’ aéa—l ’
lime_o [H_l(e) +arn(aile) + Yoo, aaﬁ] YA amn <1
- Hﬁz - ng + A/_z + A—3
3H, =

It turns out, however, that in most cases we need the expansions
only to second order in the small parameter and can also
assume o, > 1 (except for the Waxman model). In this

lime_¢ [Hﬁz(e) — H'5(e) + 3azIn (Jas]'Pe) + 3, 3 aaw] +AL+A S Ogin <3

(15)
@=3)

(

case most of the technical details can be aV0~ided, and we find
that H_, is given only by the first option, H_4 is not needed
at all, and terms involving a, (including the hypergeometric
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functions below) are also not required. So the reader can safely
omit these terms at first sight and consider them only when a
fuller and more general understanding is required.

III. CONNECTIVITY MASS

A. Integration on a noncentered line

The computation of connection probability, Eq. (1), for
moderate to large density is dominated by contributions from
the bulk and various boundary components. Each boundary
component is controlled by the form of the connectivity mass
at and near the boundary, the calculation to which we turn first.
This subsection deals with the first integral of H(r), that is, an
off-center line, that is needed for the calculations in the later
subsections, on the 2D and 3D connectivity mass, respectively.

The connection function is first integrated on a line passing
a small distance x > 0 from the node:

F(x):f H(v/x? + 12)dt. (16)
0

If apin > 3 we can expand for small x to get

2

X
F(x) = Hy + ?[Hl,l + A_{]
x4
8

This may be derived by splitting the integral at the discontinu-
ities, differentiating the result (including integrand and limits)
with respect to x2 to get the coefficients of the Taylor series.
If omin < 3 theintegrals H' ; and H”, diverge, and if amin <
1 the integral H', also diverges. In this case we need to split
the integrals at a point € < 1 and use the small r expansion
of H(r) to treat the contribution near the origin separately. We
require that € is much larger than any positive power of x;
formally we take the limit x — O and only then € — 0. By
analogy with the incomplete gamma function, we denote

f()c,tf)z/E H(/x2 4+ 1?)dt, (18)
0
F(x,e) = /OO H(v/x%+ 1?)dt. 19)

For f(x,e), make a change of variable:

+[H'y—H s+ A ,+As]+0xY. 17

V(€)1 xs ds
fx,€) =/ H(xs)
1 52 —
(20)
s =+/(3/x?) + 1.
Then, expanding for small x (at fixed €), we have
f(x.€) = HO) + ) aq fulx,€)
VAL o et ae!
fuxi) = T T e
oo —2)e*3 4 4
_ 21
3@ _3) X"+ o(x"), 21
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except that if any of the o are odd integers two of the terms
diverge and are replaced by a logarithm, then

e 1 2 e\ , x* 4
f1(x,e)=3+zln< P )x +16€2+0(x)
et 32 3 2634
f3(x,e) = Z+TX2+§1H< S >x4+0(x4).

For even integers [for example, the well-studied case H(r) =
e”z], the x**! term is zero, and the series is finite.

The upper integral F(x,e) has the same expansion as
Eq. (17) but with incomplete moments H,(¢), H, (¢), and
H) (e).

Putting it back together, we have

F(x) = HO) + ) dq fu(x,€) + Ho(e)

)C2
+ S H (O + A
4
+ S LH () = H.(€) + ALy + As] + o),

(22)

Note that F'(x) does not depend on €: All € where the relevant
series converge should be equivalent, and in particular we may
set € = 0 where possible to reconstitute the full moment and
otherwise take the limit of a regularized version. So collecting
terms by powers of x we have, finally,

2
F(x)= H0+x?|:1:12+a11n<2\/z>i|

lay|x

3x4T - ! 2e3/4
—__ |H_ -
i [ LT “<|a3|1/3x>}
(—etl
+ > aaﬁgx”wou“), (23)
2 T(-%)
ag{l,3} 2

where a; and/or a; are deemed to be zero if they do not
appear in the expansion of H(r). If they do appear, then |a;|
and |as|'/? are included to ensure that the argument of each
logarithm is dimensionless. An a, term contributes only at
order x2: Both x* and x* coefficients vanish. Note that if
there are no discontinuities, H_, and H_, correspond to the
continuation of the integration by parts expression of H_, and

H_4 (respectively) to negative index.

B. Connectivity mass of polygons

Here we find expansions for the connectivity mass defined
in Eq. (2) on and near the boundary. We will use M, ; to denote
the mass near a boundary where d is the dimension and i the
boundary codimension. The dependence of M, ; on variables
may be implicit in the notation; in general it may depend on a
parameter (for example, the wedge angle) as well as the node
location in an appropriate coordinate system.

This section deals with d = 2, while the next deals with
d = 3. We consider a wedge of total angle w and node position
in polar coordinates (r,¢p) with connectivity mass denoted
M3, (r,¢). Using first the simplified geometry of Fig. 2 with &
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(@)

FIG. 2. (a) Geometry for the connectivity mass of a wedge, with
the node at the indicated point. We split the domain into two wedges,
each with the node located at the edge. (b) The resulting wedge is
further split into three parts.
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a small parameter and (for now) the node on the boundary, the
connectivity mass is the sum of three contributions A, B, and
C as follows:

Mé’,z(é csc0,0) = Mas + Map 4+ My, (24)
6 oo
M4 :/ dqﬁ/ H(r)rdr = 6H,, (25)
0 0
& o0
Mjp Zf dx/ dtH(\/X2+t2)
0 0
3
= f dx F(x), (26)
0
& x cotf
My :/ d.X/ de(\/x2+t2)
0 0
&
:/ dxf(x,x cotf), 27
0

where the 2 in 2A, etc., denotes the dimension. M,z may be
found by integrating the expressions in the previous section,
noting that &, and hence x, is small. For M;¢, we have x small,
but we do not have x cotf > x, so the previous separation
between € and x does not apply. Instead, integrate Eq. (20)
directly to obtain f(x,x cot®) and hence

(= atlg Il —l—a 1-
Mye = Z aa€a+2|: ( 272 b 2F1(—, a’ a,Sin29>]
i) 2 +29r(5) @+ De+2)" \2° 2 2
H(0)e?cos®  a£3[ cosh 1 + cos® az&> [ cos O 2 1 4+ cosf s
3 3In — . 28
2 sinf 6 |sin2@ sin 6 + 40 | sin20 + sin? 6 +oin sin 6 o) (28)
Thus, for the whole wedge we have
H()cosd &3 - cos 6 1+ cosf 2e5/6
MY 6,0) = 0H, + EHy + £>—— —1H_ 1
226 ¢50.0) = 0Hy + §Ho + 8= S0 | Fa v | Gy sne " \arle
35 . cos® 2 1 +cos® 219720
-—13H_ 3 3In ——— +3In| ————
Tl T e P se ) T  ine " a7e
(== atlg 1l - 1—a 1-—
+ Z aa€a+2|: vl 2_) = 2F1<—,—a, a,sinzé‘)}vLo(és). (29)
2(a ~|—2)F(—°‘) (¢ + ) +2) 2 2 2
ag{l,3} 2
There are special values of the hypergeometric function for even «:
(LI 1% Gy (3 — cos® ) (30)
-, , , sin = cos — cos” 0),
M2 2 2 v
Il -1l-al-a ., ) 4
2K =, R ,sin” @ = —cosf(15 —20cos” 0 + 8cos™ 9), 31
2 2 2 wet
and for limiting angles:
R l -1—-a l—«a 20 R l -1—-a 1l—«a 20 ! (32)
a0 5 , S = S 5 , SIn =1,
M2 2 2 o C\27 2 2 o
Il -1—a I - (5%
AL Iime o Geg)|  — YRR (33)
2 2 2 gz ')

Thus the two terms in the sum over « cancel when 6 = 7/2.
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Combining two wedges, we have the connectivity mass at a general point of a wedge of angle (and solid angle) w, with the
node at polar point (r,6):

MS,(r,0) = M3 ,(r.0) + M3 (r,0) (34)
. . HO¥? . ,
= wH; 4+ rHy[sin6 + sin6'] + > [sinf cos O + sin 6’ cos ']
H ,r3 3H 413
+ 2 [sin® 6 + sin® 0’1 + Tzﬂ’[sinS 0 + sin’ 0’1 + Or* 2 Inr) + o(r), (35)

where 6" = w — 6 and omitted terms involving a, can be found from Eq. (29).
An important special case is that of an edge, M ;, where @ = 7 and we may take # = 7 /2, and so the a, terms cancel. The
above expressions reduce to

r3 5 265/6 3,.5 B 2619/20
sz](F):]TH]-}-ZI’Ho—}—— H_2+a1 In + — H_4~|—a3ln — —|—0(r5). (36)
3 lay|r 20 las|13r

Together with the bulk connectivity mass M, ¢ = 27 H; we have all the ingredients for convex polygons.

C. Connectivity mass of polyhedra

Here we find the connectivity mass near the boundary in three-dimensional geometries. The connectivity mass of the bulk is
M3,y = 47 H,. For a node a small distance r from a face we use cylindrical coordinates and a transformation s = 1/x2 + p2 in
the second line:

o) 9] 2 r 0
M;,(r) = / dx/ 0 d,o/ df H(v/x*+ p?) = M5,1(0) + 271/ dx/ ds sH(s)
—r 0 0 0 x

=2mH, +2 /rd |:H—/xd H()}—z H+H—r3H(O)—Z o (37)
= ZTT ) T A X 1 A s Ss S = LT 2 s 6 _ aa(()l+2)(0l~|—3) .

For an edge in 3D of angle 6, use the same splitting and coordinates as in Fig. 2, that is, first consider a node on the boundary,
and then the interior case consists of two combined 3D wedges. Noting that the solid angle is 26, we find

MS (& csc0,0) = M3 + Msp + Mac, (38)
Mss =20 H,, (39

. £3H(0) g3t
MSB —]T[EHI— —Xa:aam}. (40)

Note that the B region is half the slab considered for the face above. Using cylindrical coordinates we have

w/2—-0 Eseco [e'e] ) w/2—6 Eseco
c= [ [ [ en s azapae =2 [ [ pFordpas
0 0 —00 0 0

7/2—0 ect 3/4 _atl
= f Hog? sec® ¢ + >——— s 1 <o |:H_2 +arln <—2€ )} +) a7 I — )§3+“ sec’ ™ ¢ 1d¢ + o(€")
0 et 5

a1 |& sec ¢ (3+a I'(-9%)
g4 cot’ 0 ~ 263/
= Ho€?cotd + = cotf H_ In(——
& cotf + 1 cotf + 3 >+ a;ln ar]E osc @
/T o 1 4+a 3 ]
“cosOrR( =, ——,=, cos’ 0 . 41
+§3+ r(—%) cos i 5.5, 0’0 ) + (&) 41)

Thus the combined edge contribution is

3 4
éﬂH(O)_i_‘EHz

: (3cotd + cot’ 0) + O(E* " Ing) + o(€Y)  (42)

M{,(& csc0,0) = 20 H, + £ Hy + E*Hy cot  —
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with omitted terms given in Egs. (40) and (41). As in the 2D case, we can now treat a general point [polar coordinates (r,0)] near
an edge of angle w (and hence solid angle 2w) as a sum of two such contributions, leading to

MS(r,0) = MY 5(r,0) + M3 ,(r,0)

=2wH, +rm H [sin@ + sin 6”] + rzHO[sinG cosf + sind’ cos 9’] -

r4ﬁ_2

+

where 6’ = w — 6.

Finally, we consider a node near a right angled vertex, with
angle and solid angle w and located at (,0,¢) in cylindrical
coordinates; the distance to the angled planes are as before
& = rsinf and n = r sinf’: See Fig. 3. The connectivity mass
is obtained by combining previous results for eight regions,
for which we keep terms up to and including third order in the
small quantities &, n, and ¢:

M3 y(r,0,8) = M.+ M + My, + M; + Mg, + Mg,
+ My + Mgy (44)
Here
M. = wH, (45)

is from the interior region obtained by translating the vertex
so it coincides with the node,

3
M, = %[gm — %H(O)—i—...} (46)

is from a quarter slab of width &, and, similarly, M,; see the
face contribution above.

3
M, :a)|:§’H1 —%H(O)+...} (47)
is from a similar slab with an angle w rather than /2.

1
Mey = Z[Mc3(6.8) + Mc3(0',m)]

H
= TO[gzcotQ +n?cotd]+ ... (48)
g
n
(O]
4

FIG. 3. Geometry for the connectivity mass of a 3D corner,
with the node at the indicated point and the section between it and
the corner cut away. The quantities &,7,¢ denote the perpendicular
distances to the three faces. The domain is split into eight pieces,
uniquely labeled by which of these are relevant, for example, Mg,
is the connectivity mass of the piece that was cut away, and Mg, is a
semi-infinite kite shaped prism.

3H(O
T HO) v 4 sin 0]

[3sin® 0 cos 6 + sin6 cos® O + 3sin’ 6’ cos @’ + sin6’ cos® 6’1 + O3 1Inr) 4+ o(r*),  (43)

(

is from a semi-infinite strip with cross section formed by two
right-angled triangles with common hypotenuse r and angles
0 and &', respectively.

1
Mg = E[Mcs(arCtan(S/C)ﬁ) + Mcs(arctan(¢ /£),¢)]
= Hpé¢ + ... (49)

is from a semi-infinite strip with rectangular cross section of
lengths & and ¢ that may be split into two right-angled triangles
along the diagonal, and similarly for M, . Finally,

HQO) 5 . o ,
Mg, = ¢re[sinf cosf +sinf cosO'1+ ... (50)
is from a prism with the same cross section as M, and length
¢; since its extent is small in all directions its contribution (to
third order) is given by H (0) multiplied by its volume. Putting
this together and expressing &£ and 7 in terms of r and 6 we
have

M§j3(r597§)

=wH, + [%r(sin@ +sinf’) + a){]Hl

2
+ |:%(sin9 cos @ + sin@’ cos ') + r(sinf + sin 9/)j| H,
— [r3(sin® @ + sin® @") — 6r>¢ (sin O cos O

H©O
+ sin@’cose/)+2w§3]l—(2) +o(r3,2%), (51)

where again 6’ = w — 0. As expected, we have Mg‘jz(rﬁ) =
2MZ5(r,0,0) and M31(r) = M3 ,(r,7/2).

IV. CONNECTION PROBABILITY

A. Separation into boundary components

Having obtained the connectivity mass in the vicinity of
various boundaries in two and three dimensions, we are
now in a position to evaluate Eq. (1) asymptotically (using
Laplace’s method) for large p, and system size L, summing
the dominant bulk and/or boundary contributions leading to
Eq. (4). We do not have a fully rigorous justification for
this separation; however, the neglect of contributions from
intermediate regions may be justified as follows (in two
dimensions; we expect three dimensions to be similar).

Split the integration region V of the outer integral appearing
in Eq. (1) into regions by lines a distance €; and a distance €;
from the boundary. We will take p and L large, and then choose
1"7’) K € < 1and 1 K €3 « L. Then the contribution from
the intermediate regions (i.e., a distance from the boundary
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between €; and €;) can be estimated and is always of a
lower order than at least one of the main (corner, edge,
bulk) contributions. For example, the edge contribution in two
dimensions [Eq. (59) below] is of the form

Py = PeP™i[1 4 o(1)], (52)

where P is the perimeter, proportional to L; this corresponds
to a region in which the distance to an edge is less than ¢, but
the distance to other edges is greater than €,. Comparing with
the bulk and corner contributions, this dominates when

p—le,o(rr—a))Hl S L S p—leprrH]' (53)

There are three intermediate regions, where one or both of
these distances is in [€,€;]. Taking the region where both are
in this range I,,;, near a corner of angle w, for example, we can
estimate it by

Iwb S pe—p(a)HH—Zel sin(w/2)Hy) (54)

using the connectivity mass at the point closest the corner (an
angle w/2), Eq. (34). So we find that under our assumptions
P> > I,,. The other combinations of regimes may be
estimated similarly, leading to the conclusion that in all cases,
one of the bulk, edge, or corner contributions dominates all
three intermediate contributions. We expect a similar analysis
to work in three dimensions also. So formally we conjecture
that [compare with Eq. (4)]

1 — Py,
), =
2o 2pep, P lGE,}V;,e P iy

— 1 (55)

in any limit where both p and L go to infinity. Including terms
in the denominator that are subleading in p will not change
the result but should improve the rate of convergence.

J

PHYSICAL REVIEW E 93, 032313 (2016)

B. Polygons

We now present the results of Laplace’s method for
expanding Eq. (1) for large p in the two-dimensional case;
three dimensions is considered in the next section. For convex
polygons we have the following results from Sec. III B above:

Mzg() = 27TH1
Py &5/6
My (r)=nH +2rHy+ —|H_2+a;ln
7 3 lay|r
+o(r®)
M) s(w;r,0) = wH, + r[sin€ +sin6'1H,
H(0)r?
©r [sin® cos O + sin 6’ cos 0']
+ O Inr,r?Hemn), (56)

where w is the angle of the corner, (r,0) are polar coordinates
of the node position, and other symbols and details are given
in the above section. The argument (as yet only semirigorous)
is that for combined limits p — 00,L — 00 so Py — 1, a
sum of boundary contributions takes into account correctly the
connectivity mass at locations of order ry from the boundary,
which is not explicitly estimated above. We have

Pre=1—Pg— Py — Z P, (57)
corners

where the corner contributions are separated out to allow
for differing angles, while the bulk and edge contributions
involve only the total area and perimeter, respectively. The
bulk contribution is

Py = pf e*ﬂMbulkdxdy
bulk

= pAe FPHI (58)

Here A is the area. The edge contribution is (using y to denote
displacement along the edge and x normal to it)

0 o 2e
Py = p/ M) gy = ,oP/ Pl 26 Ho b 5 Ty G- OGS ] g
’ edge

0

3

1 Ho+a[y+1n (4”H°)]

3
= pPePrih /OO esz“X{l _
0

N ol
[H_z +a; ln( )} + O(xslnx)}dx

lay|x

elai|

= PerTH {— —

2Hy 8p2Hy

+0(p* lnp)}. (59)

Here P is the perimeter and y is Euler’s constant. Each corner contribution is

Py, = p/ e MO drde
w

H_

w oo HOp2 3
= / do / rdre—p[wl-ll ~+r Hy(sin 0+sin H)-}—%(sinﬁcosé?-ksin 0’ cos ')+ 62 (sin® O+sin® 0)+ 0 (remint2 n ., 9)]
0 0

w o] . o H(©O 2
= pe Pt / dQ/ rdre”rHO(Sme“me)[l — %(sin@ cos @ + sin6’ cos0’)
0 0

pH_»13

— = (sin’ 0 +sin’ 0') + O(r**? In r,r4)] (60)

6
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—pwH, /w d 1 3H(0)(sin® cos O + sin ' cos6’)
=e _
0 pHZ(sin6 + sin )2 p2Hy(sin6 + sin6')*
B 4H_,(sin® O + sin®0’)
p3HJ(sin6 + sin ')
—poH, 1 H(O)2cosw+ 1)
= ¢ P@H _
pHZ sinw p2Hy sin?

O(p™ " 21np, p“‘)}

2H_
— +0(p‘°’"“‘”‘2lnp,p‘4)}.
p°Hjy sinw

C. Polyhedra
We can perform the same analysis on 3D shapes, using the results of Sec. III C. We find
Pje=1-Pyg—Ps1— Y Pia— Y Pi3, (61)
edges vertices

where as above the edge and corner contributions are considered separately to allow for different angles, while the bulk and
surface involve only the total volume and surface area, respectively. The bulk, surface, and edge contributions are, respectively,

Pso = pVe it (62)
B 1 27 H(0) ayT2 + ) B
P — S 27{sz e — 0 5 s 63
e LMﬁﬁwmm+;ﬁwmmw+(p) ©9
a 1 2Hy 2cosw+ 1 2r H(0) e — _
P2 — Le 2wpHy _ + [0) Cnin—3 In , 4 , 64
3.2 |:pn2H12 sino  p2r*H}  sin?w P35S HY sinw (,0 PP (4

where V is the volume, S the surface area, and L the length of an edge. For a right-angled vertex of angle @ we have using the
same approach

00 13) ) 5
P3w3 — )0/ dé./. d9/ rdre—p[wHﬁ—(%r(sin0+sin0')+w§)H1+(%(sin9c0s9+sin9’cos9’)+r§(sin9+sin9’))Hg+0(r3,(3)]
' 0 0 0

00 o= PO(Ha+C H) Hye PeUR+EH) 9 cog¢) + 1
0 Pz(%Hl +§H0)2 sin w pS(%Hl +Hyt  sinfo

+ O(,O_4):|. (65)

Noting again that p is large and hence that only small ¢ contribute, we expand the denominators in positive powers of ¢ and

integrate to give

4 16H,

T sinw + 2w cosw + w

o __ —wpH,
Py =e |:

D. Leading and nonleading terms

Comparing the 2D and 3D results of the previous sections
with the geometrical factor Eq. (4) we find the quantities given
in Table I, which are remarkably simple and general and one
of the main results of this paper. In particular, the geometrical
factor depends only on the connection function via the —i
power of a single integral, namely H;_,.

The nonleading terms involve smaller moments and the
ay, that is, behavior of the connection function near the origin.
Comparing the leading and second terms in the P’; and noting

that H,, scales as r(’)”Jrl in terms of a typical length scale r(, we
find they are the same order of magnitude if ,org is of order
unity. Physically this corresponds both to the average degree
and to the argument of the exponentials. Thus for densities
much above this, the terms in the expansions decrease rapidly,
as we expect.

There are, however, a few caveats. The coefficients of the
higher-order terms may increase. This is very common in

2H3 720 sinw o3 HI4
p*Him*wsinw  p Hym

—— +0m44. (66)
w~ S1IN“- w

(

asymptotic results; formally the series may not converge, but
in practice the first few terms remain a useful approximation
of the function at values of the variable (density) for which
they decrease.

A more serious issue occurs for sharp corners. The value
of density at which the first two terms of the 2D corner
contribution Pz“fz, Eq. (60), are equal is

H)2cosw+ 1

H_oz (67)

Pea = sinw
which increases for sharp angles (small w) and also angles
approaching . Thus care must be taken when approximating
Py, at moderate densities. The optimal angle is 27/3,
for which the second term vanishes; this corresponds to a
hexagonal domain, popular in cellular networks. The same
holds for P3’; for P’; the term vanishes at a slightly higher
angle of approximately 2.56125 (for example, close to a
hendecagonal prism).
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V. CURVATURE EFFECTS

The previous calculations may be extended to geometries
with curved boundaries. If the boundary is smooth, then at
sufficiently large system size L, we can assume that the radius
of curvature is much greater than the connection range and so
treat the curvature as a small parameter. In two dimensions a
generic smooth boundary may be taken to have equation

sz

i=—+ ox?) (68)

and we place a node at x =0,z =r > 0. This convention
makes the curvature k¥ > 0 for convex domains. Neglecting
terms of order «2 and > for consistency, we find the curvature
correction

e kx2/2
—M{l(r)=/ dx/ dzH(/x? 4+ (z —r)?)
—00 0

00 kx%/2 r2
:/ dx/ dz|:H(x)+—H’(x)+...i|
—o0 0 2x

r2
=K|:H2+3H1,+...i|

r2
=K|:H2—EH0+...i|, (69)

using the integration-by-parts formula following Eq. (9). Thus
we update the calculation in Eq. (59) to obtain

P, | = PePtrHi—KH) I«
’ 2H0 ngOZ

+ 0<p—2>]. (70)

Notice that the curvature affects the exponential, hence
reducing the effective angle slightly below 7. However, the
leading-order geometrical factor remains unchanged.

In three dimensions, the corresponding leading-order ex-
pression for the boundary is

2=t + 0y + .., (71)
where (k1,k,) are principal curvatures and (x, y) displacements

in the corresponding mutually orthogonal directions. Using
polar coordinates we have

00 27 (k1 cos? O+ sin® 0)/2
— M3 (r) :/ ,odp/ d@/ dz
0 0 0

x H/ p* + (z —1r)?)

00 27 (k) cos? O+, sin® 0)/2
/ pdp / do / dz
0 0 0

2
X |:H(p)+ YH/(P)+...j|

}’2
mc<H3+3H2/+...>

=nk(Hy —r*H, + ..., (72)
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200 1.00
0.99

150 0.98
L 0.97
100 0.96
0.95

50+ 0.94
0.93
05 i 6 g T

p

FIG. 4. Test of Eq. (55) for a square domain of side length L and
node density p. The expression should tend to 1 in any limit for which
p — oo and L — oo. The boundary between regions in which the
corners (right), edges (middle), and bulk (left) dominate are shown in
black; these appear to have no effect, thus illustrating the uniformity
of the expansion.

where k¥ = (k] + k2)/2 is the mean curvature. From this we
find

1 K
27TH1 ,0(27TH1)2

Py = Se”P(ZH”Hﬁ)[ + O(pz)},

(73)

which has a similar structure to the two-dimensional case. Note
also that it depends only on the mean curvature « and not the
individual principal curvatures.

VI. COMPARISON WITH PREVIOUS RESULTS
AND NUMERICS

The above expressions for Py, require only a few specific
integrals of H(r) for its evaluation, which for commonly
used connection functions are given in Table II. Note that the
expressions are valid whenever H,_, is defined; for the soft
disk and annulus models, the contribution for negative s comes
from the discontinuity(-ies), while in the Rayleigh fading case
from continuation of the integration-by-parts expressions. In

1.15 .ll.-..
1.10 ] =
I..

1.05 "tea,
. I......
] PURRIPS S Ah taataass: sesssessessinl]

*

*
0.95¢ - ......ooooooooooooooooooo0004
[ ]
0.90 . o®
[ ]
0.85 .®
n
0.80 hd
5 10 15 20

P
1—Pgc—

FIG. 5. The ratio # for the square considered in
Fig. 4 and side length L = 10, showing convergence as more terms
are included in P, ,: Blue circles, purple squares, yellow diamonds to

order p~!, 072,073, respectively.
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o 0.1} ;- m N L TN
« Q* . e ~m e Ty
A 020t & ] 1m=l0 4~ 0.20 ® TN
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FIG. 6. Full connection probability for a right triangle (side lengths 20 and 15) Left: Rayleigh with n = 3 (top), n = 2 (lower dark) and
Rician with n = 2,K = 4 (lower light). Center: MIMO with n = 3 (top) and n = 2 (bottom). Right: Soft annulus r_ =1, r, =2,a =1/3

(top) and hard disk ry = 1 (bottom).

the latter, H_, converges only for > 1 and H_4 converges
only for n > 3. Some specific values for n = 2 are given in
Table III.

We now compare the general results found above with
geometric factors in specific cases studied previously, finding
agreement with the above results. The Rayleigh SISO model
was considered in Ref. [21], giving, for n = 2,

i(d=1)

e 2
Gili = 2’“‘”@) , (74)

T
for bulk, edges or faces, and purely right-angled corners in
either two or three dimensions. A general angle and path loss
exponent was also considered in two dimensions:

” B

2= G wl(1 4 n~1)2 (75)
The earlier paper [16] gave special cases of these, namely
G;T/l-z and GY;, with a typo for G ,. The other paper with
diréctly comf)arable results is Ref. [35]. Here the model is
2 x 2 MIMO with n =2, for which H, and H, are given
in Table III. Finally, a circular or spherical boundary and
Gaussian connection function were considered in Ref. [42].
In all cases the results agree with the more general expressions
herein.

We test Eq. (55) for the case of a square domain of side
length L as shown in Fig. 4. The contributions from separate
terms can be seen in Fig. 5. For both of these cases, the
comparison is between the sum of boundary contributions
and numerical integration of Eq. (1). A further test in Fig. 6
compares the sum of boundary contributions with an ensemble
of directly simulated random graphs for a variety of connection
functions for a triangular domain. Thus it implicitly also
confirms the validity of the assumptions undergirding Eq. (1)
for these connection functions.

VII. CONCLUSION

For random geometric graphs in finite geometries, the
probability of (full) connection P;. can be conveniently
approximated at high but finite node densities as a sum of sepa-
rable boundary contributions. Showing that these contributions
can be obtained from a few moments for a very general class of
connection functions and geometries, thus vastly simplifying
the evaluation of the relevant multidimensional integrals and

hence the evaluation and design of ad hoc wireless networks,
is the main contribution of the current article. The results are
in agreement with previous work and with numerics.

A number of previous works considered some examples
where the above model and/or geometrical assumptions were
relaxed but not to the level of generality considered here:

Dimensions other than 2 or 3: Equation (74) suggests
further generalization of the formulas and approach to d >
3 might be possible (though perhaps with fewer practical
applications). On the other hand, for d = 1 the connection
probability is not dominated by that of an isolated node; it
is quite likely in many parameter regimes for the network to
split into two or more large pieces. For the unit disk model
it is rather straightforward to calculate the probability of a
gap of given size, but for soft connection functions it remains
open.

Anisotropic connections: These are of particular relevance
in three dimensions (where antenna patterns are never exactly
isotropic) and where beam forming is desirable to mitigate
interference from other nodes. The link pairwise connection
probability depends on orientation as well as mutual distance;
see Refs. [22,23].

Nonsmooth boundaries: Reference [35] considered a con-
ical corner, which is not within the scope of the calculations
presented in Sec. V. See also “nonconvex” below.

Nonconvex domains with a line-of-sight condition: Ex-
amples have included keyhole geometries with [25] or
without [26] reflections, circular or spherical obstacles [42],
and fractal domains [43]. In the latter, remarkably, it is
found that P;. decreases toward zero in the limit of high
density.

It would be interesting to extend the theory presented here
to include these cases as well, providing a practical framework
for understanding connectivity in diverse spatial networks.

Data from the numerical simulations are available from the
University of Bristol Research Data Repository at [44].
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