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Abstract – k-connectivity is an important measure of network robustness and resilience to
random faults and disruptions. We undertake both local and global approaches to k-connectivity
and calculate closed-form analytic formulas for the probability that a confined random network
remains fully connected after the removal of k− 1 nodes. Our analysis reveals that k-connectivity
is governed by microscopic details of the network domain such as sharp corners rather than
the macroscopic total volume. Hence, our results can aid in the design of reliable networks, an
important problem in, e.g., wireless ad hoc and sensor networks.

Copyright c© EPLA, 2013

Introduction. – Random geometric networks [1]
consist of a collection of nodes randomly scattered in
a region of space, pairwise connected with a relative
position-dependent probability. An important application
of network theory (amongst many others) is in wireless
communications. Communication networks, provide rapid
transfer of information across space, with applications
ranging from the Internet, tele-medicine, intelligent trans-
port, tracking of endangered species, hazard detection
systems, security monitoring, etc. (see refs. [2–4] and
references therein). Consequently, resilience to random
faults or attacks are of paramount importance for the
smooth functionality of the system. A typical measure
of network robustness (particularly for communication
networks) is k-connectivity, that is, if any k− 1 nodes
are randomly chosen and removed the remaining network
remains fully connected. Equivalently, a network is said
to be k-connected if for each pair of nodes there exist at
least k mutually independent paths connecting them [1].
Figure 1 shows examples of k= 1, 2, and 3 connected
networks. In general, the random removal of nodes may
result from a technical failure (e.g., a software/hardware
malfunction) or a random attack that may disrupt
network functionality and lead to cascades of catastrophic
failures [5].
Historically, the classical problem of k-connectivity has

been addressed in the asymptotic limit of infinite network
size and deterministic link formation whenever nodes are
within a certain range [6,7]. Instead, we consider spatially

Fig. 1: Examples of networks with N = 13 nodes in a convex
domain satisfying k= 1, 2, and 3 connectivity from left to right.

confined networks formed by probabilistic link connec-
tions. Many real networks, although large, are not of infi-
nite size and are often confined within a finite region.
This makes classic percolation [8] and random graph [1]
approaches undesirable or even unsuitable in certain occa-
sions. Furthermore, noise, uncertainty, or the variation in
connectivity range of individual nodes justifies the use
of probabilistic link formations rather than deterministic
ones. In fact, probabilistic link-models are much preferred
in many applications, for instance in wireless communica-
tions where they can adequately account for small-scale
scattering and fading effects [9].
In this letter, we derive closed-form analytic formu-

las for the probability of a random network residing in
arbitrary 2- and 3-dimensional convex domains to be k-
connected. We achieve this by undertaking both local and
global approaches to k-connectivity. The former refers to
the local perspective of a single node, while the latter to
the global perspective of large clusters of nodes. Contrary
to the expected universal features of large networks, our
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analysis reveals that the global network observable of k-
connectivity is governed by distinct microscopic details
of the network boundary such as sharp corners rather
than macroscopic ones such as the domain volume. Signif-
icantly, our analytic results provide sufficient quantitative
detail to support optimization of system parameters in
order to design reliable networks [10], mitigate boundary
effects and avoid the need for heavy computer simulations.
Finally, the techniques presented below provide a flexi-
ble and mathematically tractable framework for further
analysis of confined random networks.

Description of the problem. – The networks we
wish to model consists of N randomly distributed nodes
with locations ri ∈ V a convex subset of Rd, with i=
1, 2, . . . , N , according to a uniform density ρ=N/V ,
where V = |V| and | · | denotes the size of the set using
the Lebesgue measure of the appropriate dimension or the
cardinality of a finite set. We consider convex geometries
as we only allow for line-of-sight links between nodes.
After deployment of the nodes in V, communication links
between pairs of nodes are established with probability
H(rij), often written as Hij where rij = |rj − ri| is the
distance between nodes i and j. Hence, the relevant
network g= (S,L) is formed, consisting of the set of nodes
S = {1, 2, 3, . . . , N} paired by the collection L⊆ {(i, j)∈
S2 : i < j} of direct links.
We maintain physical relevance by adopting a specific

pair connectedness function Hij derived from wireless
communication theory [9] and applicable to ad hoc and
sensor networks. In particular, we use a Rayleigh fading
model suitable when there is no dominant communication
channel along a single line of sight between transmitter
and receiver but rather a sum of many paths with
randomised phases. The resulting connection probability
between two nodes a distance r apart is given by

H(r) = e−βr
η

, (1)

where β depends on, for example, the transmission wave-
length, signal power, etc., and sets the characteristic
connection length r0 = β

−1/η and the parameter η is called
the path loss exponent and is typically set to η= 2 corre-
sponding to propagation in free space but is experimen-
tally observed to be η > 2 for cluttered environments,
e.g., heavily built-up urban environments [9,11]. Unless
otherwise stated, we will use η= 2. In doing so H(r)
is a Gaussian function thus rendering the mathematics
tractable. It is worth noting that in the limit of η→∞,
the connection between nodes is no longer probabilistic
and converges to the well-studied case in geometric graph
theory [12], the unit disk model with an on/off connec-
tion range at r0. However, much less effort has been dedi-
cated on the connectivity properties of networks formed
by probabilistic (or soft) connectivity functions H(r).
The connectivity of the network can be measured by

checking whether any node i can communicate in a multi-
hop fashion with any other node j �= i. If this is the

case then the network is said to be fully connected,
or 1-connected. In computer simulations, one initiates a
search algorithm to count the number of connected compo-
nents (clusters). If only a single cluster is found then 1-
connectivity is established. Typically such algorithms have
computation complexity of O(N lnN). For 2-connectivity,
a random node is removed from the network and the search
algorithm is run. If successful, the node is replaced and its
original links reconnected and a different node is removed
and the algorithm is repeated. If successful for all N nodes
then 2-connectivity is established. Therefore, the compu-
tational complexity is now of O (N(N − 1) ln(N − 1)). For
k-connectivity this number grows like ∼Nk(lnN).
For a given node density ρ we are interested in the

probability Pfc(k) of a randomly formed network to be
k-connected. Of course this depends on the connectivity
function Hij and the domain shape. In order to produce
the S-curve describing Pfc(k) as a function of the density
ρ, one needs to perform a Monte Carlo computer simu-
lation, averaging over many realizations of the above-
described algorithm. In this paper we will provide closed-
form analytical formulas which accurately predict this
function in 2- and 3-dimensional convex domains hence
eliminating the need for such heavy computer simulations.

Local approach. – We adopt a bottom-up approach
and begin our investigation from the local viewpoint of
a single node. The probability that node i situated at ri
connects with a randomly chosen node j is obtained by
averaging over all possible node positions rj ∈ V,

Hi(ri) =
1

V

∫

V
H(rij)drj . (2)

Note that Hi can be studied in detail for different
pair-connectedness functions H(r) (e.g., anisotropic), and
power and diversity scaling laws can be deduced through
in-depth analysis [13,14]. In the discussion that follows
however, we will mainly be concerned with global network
observables and concentrate on how local properties of
nodes contribute to them.
Since nodes are deployed independently with a uniform

density, the probability that node i connects with exactly
k other nodes (i.e., node i is of degree k) denoted here by
di(k), is given by the binomial distribution

di(k) =

(

N − 1
k

)

Hki (1−Hi)N−1−k, (3)

which for H(r), a hard step function (η=∞), would
correspond to the probability of finding k nodes (excluding
node i) in the r0-neighbourhood of ri, and (N − 1− k)
nodes elsewhere in the available domain V. Another way
of expressing (3) is achieved by noting that if N is large
and Hi is small, di(k) is well approximated by the Poisson
distribution,

di(k)≈
λki
k!
e−λi , Di(k) =

k
∑

m=0

di(m), (4)

28006-p2
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Fig. 2: (Colour on-line) (a) Log-log plot of p2 vs. V for
square and circular disk domains of equal volumes illustrated
with square/disk markers using β = 1. The dashed line is
the asymptotic distribution π/(βV ). (b) 3D plots of Hi(ri)
for square and circular disk domains both of equal volumes
V = 100.

where λi = (N − 1)Hi, and Di(k) is the corresponding
cumulative distribution function. This approximation is
justified here as V ≫ 1, thus making Hi≪ 1 and N ≫ 1.
Integrating (2) over ri gives p2, the probability that two

randomly selected nodes connect to form a pair,

p2 =
1

V 2

∫

V2
H(rij)dridrj . (5)

Numerical integration of (5) for a square and a circular
disk domain of equal volumes reveals that p2 is very much
insensitive to the domain’s shape and decays like ∼ π/βV
as V →∞ (see fig. 2(a)). Note that the important length
scale here is not the aspect ratio of the domain but the
ratio of the connection range r0 and the typical size of
the system. For example, p2 of an elongated rectangular
domain would decay as predicted above if its shortest side
is much greater than r0 and its total volume V is large.
The average number of nodes connected to a node in

a network is called the mean degree. From the degree
distribution (4) we can immediately deduce that the mean
degree (as well as the variance) is just λ=

∫

λidri/V =
(N − 1)p2 and is also highly insensitive to the domain
shape. Moreover, for N and V large, we have that λ∼
(N − 1)π/(βV )≈ ρπ/β.
Finally, we turn to investigate short-range correlations

and look at the 2-point correlation function in an infinite
domain. Here, we keep η general and consider 3 nodes with
polar coordinates (r1, θ1), (0, 0) and (r, 0) and define the
two-point correlation function as

C(r, η) =

∫

R2
H12H13dr1
∫

R2
H12dr1

. (6)

Equation (6) is nothing more than Bayes’ theorem measur-
ing how likely it is that node 1 connects with node 3, given
that node 1 is connected with node 2. The denominator
of (6) amounts to 2πΓ(2/η)/ηβ2/η. Expanding the inte-
grand of the numerator in powers of r≪ 1 we obtain

C(r, η) = 2−2/η − ηβ2/η

8Γ (1+2/η)
r2+O(r4). (7)

Note that for H(r), a deterministic step function (i.e.,
η=∞), eq. (7) diverges and instead is given by the

circle-circle intersection C(r,∞) = 1− 2r/(πr0)+O(r3).
This short calculation suggests that two nearby nodes are
strongly correlated for deterministic (hard) connectivity
functions with C(0,∞) = 1. This is not the case, however,
for probabilistic (soft) connectivity functions. Indeed for
the softest case of η= 2 we have C(0, 2) = 1/2. It is
reasonable to expect that this distinction of hard vs. soft
H(r) persists in higher dimensions and for correlations
between n> 2 nodes.

Minimum network degree. – For a given configura-
tion of node positions we define Pmd(r1, . . . , rN , k) as the
probability of the corresponding network to have a mini-
mum degree of at least k, i.e. every node is connected to
at least k other nodes. The average of this quantity over
all possible configurations Pmd(k) = 〈Pmd(r1, . . . , rN , k)〉
is the overall probability of a network with minimum
degree k. We define the spatial average of an observable
O over all possible node configurations as

〈O〉= 1

V N

∫

VN
O(r1, r2, . . . , rN )dr1dr2 . . . drN . (8)

Assuming that for N ≫ 1, the degree of node i is almost
independent of the degree of node j �= i, we write [15]

Pmd(k) =

〈

N
∏

i=1

P (degree(ri)� k)

〉

=

〈

N
∏

i=1

(1−Di(k−1))
〉

≈ [1−〈Di(k− 1)〉]N . (9)

The seemingly strong assumption of independence made
here is justified when performing the spatial average (8) as
two nodes i and j are sufficiently apart and thus uncorre-
lated for most node positions in V. This is particularly true
in dense networks and therefore we expect the approxima-
tion in (9) to improve as N grows. Furthermore, for soft
connectivity functions H(r), we expect only weak correla-
tions between n-tuples of nodes, as argued in the previous
section (see eq. (7)).
Substituting in (9) the definition of Di(k), performing

the average and omitting terms of O(1/N) we arrive at

Pmd(k)≈
[

1−
k−1
∑

m=0

ρm

m!

1

V

∫

V
MmH (ri)e

−ρMH(ri)dri

]N

,

(10)
where MH(ri) = V Hi. There are several important obser-
vations to be highlighted here. Firstly, in the high density
limit we expect the integrals appearing in eq. (10) to be
dominated by contributions where MH(ri) is small. This
is due to the exponential part of the integrand dominat-
ing over the power. Secondly, we expect that MH(ri) is
small near the domain boundaries, i.e. near the corners
and edges (see fig. 2(b)) which physically correspond to
the most hard to connect to regions of V. We conclude by
noting that unlike λ, Pmd(k) is strongly influenced by the
details of the domain boundary.

28006-p3
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Fig. 3: (Colour on-line) Decomposition of a house domain into
contributions from the bulk, the 5 edges and 5 corners.

General analytic formulas. – The integrals to be
approximated in (10) are of the form

Im =

∫

V
MmH (r2)e

−ρMH(r2)dr2, (11)

where MH(r2) =
∫

V H12dr1. Due to the short-range inter-
actions between nodes, hard to connect to regions become
almost independent of each other and so we approximate
the integral of (11) by a sum of independent contribu-
tions due to different boundary objects [16]. That is, for
an arbitrary convex domain V ⊂R2 the integral of (11) can
be approximated by the sum of the bulk contribution (B),
and a number of edge (E) and corner (C) contributions:

Im ≈ I(B)m +
∑

Ei

I(Ei)m +
∑

Ci

I(Ci)m . (12)

For instance, the “house” domain shown in fig. 3, as
far as Im is concerned, decomposes into a homogeneous
bulk contribution, 5 edges and finally 5 corners. The only
restriction in this approximation is that the individual
boundary elements are sufficiently apart (approximately
a distance greater than 2r0).
We now consider each of these contributions separately,

first for d= 2 and later for d= 3. Due to length restric-
tions, we will omit any tedious calculations and give only
important steps and final results. The bulk contribution
to (12) can be obtained by ignoring any boundary effects
and thus considering a homogeneous domain leading to

M
(B)
H = πβ , such that I

(B)
m = V

(

π
β

)m

e−ρ
π
β .

The edge contribution to (12) can be obtained by
ignoring any curvature effects and thus considering the
positive half-plane V = [0,∞)× (−∞,∞) entailing

M
(E)
H (x2) =

∫ ∞

−∞

∫ ∞

0

e−β((x1−x2)
2+(y1−y2)2)dx1dy1

=
π

2β
+

√

π

β
x2+O(x32),

(13)

I(E)m =

∫ L

0

∫ ∞

0

(M
(E)
H (x2))

ne−ρM
(E)
H (x2)dx2dy2

= L

√

β

π

Γ
(

m+1, ρπ2β

)

ρm+1
.

The corner contribution to (12) can be obtained by
considering a wedge domain V = {(r, θ) : θ ∈ (0, φ)} in
polar coordinates for general angle φ< π. Expanding

H(r12) to linear order in r2 ≈ 0, i.e. near the corner we
get

M
(C)
H =

∫ φ

0

∫ ∞

0

r1e
−βr21 (1+ 2βr1r2 cos(θ1− θ2))dr1dθ1

=
φ

2β
+

√

π

β

sin(φ− θ2)+ sin θ2
2

r2+O(r22), (14)

I(C)m =

m
∑

n=0

(

m
n

)(

φ

2β

)m−n
4βΓ(n+2)

π sinφρn+1
e−ρ

φ
2β .

Note that I
(C)
m can be expressed as a single term but does

not provide further insight and so is left as such.
We now repeat the above calculations for V ⊂R3.

Therefore, Im now decomposes into a homogeneous bulk
contribution (B), a surface area contribution (S), and edge
(E) and corner (C) contributions:

Im ≈ I(B)m + I(S)m +
∑

Ei

I(Ei)m +
∑

Ci

I(Ci)m . (15)

We will restrict the discussion to domains belonging to the
set of right prisms; a polyhedron that accurately models
many geometries that can be found in practice, e.g., many
room configurations in a modern building. As there is only
one variable angle to consider, we can benefit from the use

of cylindrical coordinates when calculating I
(E)
m and I

(C)
m .

Using spherical coordinates, we expand H12 for r2 ≈ 0
and find that for homogeneous domains M

(B)
H =

π3/2

β3/2
, and

I
(B)
m = V

(

π
β

)3m/2

e−ρ(
π
β )
3/2

.

For the surface area contribution, we expand H12 to
linear order in r2 ≈R, where R=

√

S/(4π) and S is the
total surface area of the domain. In doing so we are
effectively saying that the surface area contribution to (11)
for an arbitrary right prism is equal to that of a sphere of
equal surface area. Details such as corners and edges are
ignored at this stage as they will be considered separately

at a later stage. We find that M
(S)
H ≈ π3/2

2β3/2
+ πβ (R− r2),

I(S)m = S
β

πρ1+m
Γ

(

m+1,
ρπ3/2

2β3/2

)

, (16)

where two planes meet at an angle φ∈ (0, π), an edge of
length L is formed. To calculate the contribution to (11)
due to the edge we express H12 in cylindrical coordinates
such that the edge is centred along the z-axis. We expand
H12 about r2 ≈ z2 ≈ 0, keeping only linear terms we get
M
(E)
H =

√
πφ

2β3/2
+ π
2β (sin(φ− θ2)+ sin θ2)r2+O(r32),

I(E)m =L

m
∑

n=0

(

m
n

)( √
πφ

2β3/2

)m−n
4β2Γ(2+n)

π2 sinφρn+2
e
−ρ

√

πφ

2β3/2 .

(17)
Finally, corners in right prisms are formed where 3

edges come together, 2 of which are at an angle φ and
the 3rd is perpendicular to both. We center the corner
at the origin with the perpendicular edge running along

28006-p4
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Fig. 4: (Colour on-line) Left: computer simulation of Pmd(k)
(filled markers) and Pfc(k) (hollow markers) for k ∈ [1, 4] using
β = 1 in a 3D house domain of sides L= 5 and L/

√
2. The

thick red curves are the analytic approximation of (10). Right:
1−Pmd(k) and 1−Pfc(k) on a log-linear scale.

the positive z-axis. We expand H12 about r2 ≈ z2 ≈ 0
keeping only linear terms and calculate M

(C)
H =

√
πφ

4β3/2
+

φ
2β z2+

π
4β (sin(φ− θ2)+ sin θ2)r2,

I(C)m =

m
∑

n=0

(

m
n

)( √
πφ

4β3/2

)m−n
16β3Γ(n+3)

π2φ sinφρn+3
e
−ρ

√

πφ

4β3/2 .

(18)
In hindsight of the above calculations, it easy to see

that 2D and 3D contributions to (11) are similar in
structure, hence hinting towards possible generalization
to arbitrary dimensions d > 0. Furthermore, we observe
that the dominant contribution at hight densities ρ comes

from I
(C)
m . Physically, this makes sense as Pmd(k) is most

probable to fail near the hardest to connect to region of
V, i.e. the sharpest corner, in our case characterised by its
angle φ.

Global approach. – For a given configuration of node
positions we define Pfc(r1, . . . , rN , k) as the probability of
the corresponding network to be k-connected. The aver-
age of this quantity over all possible node configurations
Pfc(k) = 〈Pfc(r1, . . . , rN , k)〉 is the overall probability of
obtaining a k-connected network. It is clear that a k-
connected network has minimum degree k. The opposite is
not true, however, and hence the former set is a subset of
the latter and so Pfc(k)� Pmd(k). For instance, a network
consisting of two pairs of connected nodes has minimum
degree 1 but is not 1-connected. Nevertheless, the two
concepts are strongly correlated, particularly in the high
density limit where the two converge [12,15]. Indeed, in
fig. 4, Pfc(k) (shown in hollow markers) follows Pmd(k)
very closely from below. Understanding the subtle differ-
ences between Pfc(k) and Pmd(k) has posed a difficult
challenge to the graph theoretic community since the early
1980s and has ever since been approached from a variety
of different directions. Here, through simple argumenta-
tion and the use of a cluster expansion for Pfc(1) deriving
from statistical physics [13], we will show that Pfc(k) and
Pmd(k) have the same asymptotic distribution.
The probability that nodes connect (or not) leads to

the trivial identity 1≡Hij +(1−Hij). Multiplying over
all possible links with nodes in S, expresses the probability

of all possible combinations. This can be written as

1 =
∏

(i,j)∈S2;i<j
[Hij +(1−Hij)] =

∑

g∈GS
Hg. (19)

where Hg =
∏

(i,j)∈gHij
∏

(i,j) �∈g(1−Hij). Recall that g=
(S,L) is a network consisting of the set of nodes S =
{1, 2, 3, . . . , N} paired by the collection L⊆ {(i, j)∈ S2:
i < j} of direct links. As a slight abuse of notation we
have used (i, j)∈ g to denote that (i, j) is an element of
the set of links L associated with g.
The sum in eq. (19) contains 2N(N−1)/2 separate terms

and can be expressed as collections of terms determined
by their largest cluster:

1 =
∑

g∈GSN

Hg +
∑

g∈GSN−1

Hg + . . .+
∑

g∈GS1

Hg, (20)

where GS is the set of graphs with nodes in S, and GSj
the set of graphs with nodes in S and largest connected
component (cluster) of size j with 1� j �N . We identify
the first term on the RHS of (20) as the probability of the
associated network being 1-connected Pfc(r1, . . . , rN , 1).
Hence, rearranging eq. (20) and averaging over all possible
node configurations we get

Pfc(1) = 1−
〈

∑

g∈GSN−1

Hg
〉

−
〈

∑

g∈GSN−2

Hg
〉

− . . . . (21)

Equation (21) clearly confirms the physical picture that at
high densities, full connectivity is simply the complement
of the probability of an isolated node, i.e., a node of
degree 0. Moreover, second-order corrections are due to
scenarios involving a single cluster of size N − 2. At high
densities it was shown that (21) is given by Pfc(1) =
1− ρ

∫

V e
−ρMHr1dr1 [13].

The probability of a network to be 2-connected can
be expressed as Pfc(2) = Pfc(1)−X(1), where X(1)� 0
is the probability of obtaining a fully connected network
which is not 2-connected. This follows from the fact
that k-connectivity implies (k− 1)-connectivity. At high
densities, a fully connected network which is not 2-
connected will typically contain a single node which is of
degree one,

X(1) ≈
〈

N
∑

i=1

∑

j �=i
Hij

∏

k �=j �=i
(1−Hik)

〉

(22)

= ρ2
∫

V
MH(r1)e

−ρHM (r1)dr1,

for N ≫ 1. Repeating the same argument k times we get

Pfc(k) = Pfc(1)−
k−1
∑

m=1

X(m)= 1−
k−1
∑

m=0

X(m),

X(m) =
ρm+1

m!

∫

V
MmH (r1)e

−ρMH(r1)dr1,

(23)
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where X(m) and is the probability of obtaining an
m-connected network which is not (m+1)-connected.
Examples of networks where a single node prohibits
(k+1)-connectivity can be seen in fig. 1 for k= 1, 2, 3.
Finally, noting that (1−x)N ∼ 1−Nx for N ≫ 1 and
x< 1, and comparing eq. (10) to eq. (23), we can conclude
that Pfc(k) and Pmd(k) have the same asymptotic distri-
bution in ρ. Moreover, k-link-connectivity, where a
network remains connected whenever fewer than k links
are removed, is sandwiched by Pmd(k) and Pfc(k).

Numerical verification. – We numerically test our
results in a 3D house domain as seen in fig. 4 with sides
L= 5 and L/

√
2 (using β = 1). The left panel of fig. 4

shows in full markers the numerically obtained Pmd(k) for
k ∈ [1, 4], while the S-shaped red curves are the analytic
approximation of (10). An excellent agreement is observed,
especially for high densities, as can be seen in the right
panel of fig. 4 depicting 1−Pmd(k) on a log-linear scale.
The hollow markers correspond to Pfc(k) and closely
follow Pmd(k) from below. At high densities, the difference
becomes increasingly difficult to make, confirming that the
two observables have the same asymptotic distribution as
ρ→∞. We attribute the difference between theory and
simulations at low densities to the Poisson approximation
of (4) and the independence assumption in (9). Finally,
while the theoretical curve (in red) is systematically lower
than both simulation results at low densities, it overtakes
Pfc(k) and better approximates Pmd(k) at medium-to-
high densities (subject to small fluctuations) as expected.

Conclusions. – We have investigated the probability
of forming a k-connected random network Pfc(k) confined
within convex 2- and 3-dimensional domains and have
found that for probabilistic link models, Pfc(k) is governed
by boundary effects due to distinct microscopic details
of the network domain such as sharp corners and edges
which can be singled-out and analysed independently.
As a result, we have obtained accurate approximations
for contributions to Pfc due to the bulk, surface area,
edges and corners of the domain. These contributions
can now be easily calculated for an arbitrarily complex
(but convex) domain, and summed up to give accurate
predictions to Pfc(k). We have confirmed the validity
of our results through computer simulations in a three-
dimensional house domain.
The results presented here can have direct and applica-

ble benefits in the design of wireless multi-hop relay
networks where communication devices (nodes) pass
messages to each other without the need of a central
router. Significantly, our analysis enables network engi-
neers and researchers to glean important information
that will dictate how optimal deployments can be made
in practice, e.g., for wireless ad hoc vehicular and sensor
networks [17]. One timely example that is currently
receiving a considerable amount of attention in Europe
is the “smart meter roll-out” (see European commission
mandate M/441 [18]). Such networks, aimed at supporting
the so-called smart grid, are typically random and dense

at a local (e.g., neighbourhood) level, and require a high
degree of resilience to node failures owing to the signifi-
cance of their role in smart grid operation. Consequently,
one may consider ways to mitigate microscopic boundary
effects by, e.g., increasing the signal power or number of
communication channels.
Finally, our work is not, however, restricted to commu-

nication networks and can provide further insight on
the difficult problem of resilience reliability and control
[19] of large and highly interconnected real networks.
Example applications of our theoretical work may include
systems of water, food and fuel supply, financial trans-
actions [20–22] and power transmission [23], or smaller,
boundary dominated ones involving, for instance, the elec-
trical conductivity of carbon nano-tubes [24].

∗ ∗ ∗

The authors thank the directors of the Toshiba Telecom-
munications Research Laboratory for their support.

REFERENCES

[1] Penrose M., Random Geometric Graphs (Oxford Univer-
sity Press) 2003.

[2] Haenggi M. et al., IEEE J. Sel. Areas Commun., 27
(2009) 1029.

[3] Li J. et al., Sensors, 9 (2009) 7664.
[4] Wang P. et al., Science, 324 (2009) 1071.
[5] Buldyrev S. V. et al., Nature, 464 (2010) 1025.
[6] Almasaeid H. M. andKamal A. E., IEEE International
Conference on Communications (ICC 2009), Vol. 32
(IEEE) 2009, p. 195.

[7] Wan P. J. et al., IEEE Trans. Inf. Theory, 56 (2010)
2867.

[8] Bollobas B. and Riordan O., Percolation (Cambridge
University Press) 2006.

[9] Tse D. and Viswanath P., Fundamentals of Wireless
Communication (Cambridge University Press) 2005.

[10] Yun Z. et al., IEEE/ACM Trans. Netw., 18 (2010) 934.
[11] Seidel S. Y. and Rappaport T. S., IEEE Trans.

Antennas Propag., 40 (1992) 207.
[12] Penrose M., Random Struct. Algorithms, 15 (1999) 145.
[13] Coon J., Dettmann C. P. and Georgiou O., J. Stat.

Phys., 147 (2012) 1.
[14] Coon J. and Dettmann C. P., IEEE Commun. Lett.,

17 (2013) 321.
[15] Bettstetter C. and Hartmann C., Wirel. Netw., 11

(2005) 571.
[16] Coon J., Dettmann C. P. and Georgiou O., Phys.

Rev. E, 85 (2012) 011138.
[17] Bredin J. L. et al., IEEE/ACM Trans. Netw., 18 (2010)

216.
[18] EU M/441 http://www.cen.eu/cen/Sectors/Sectors/

Measurement/Documents/M441.pdf.
[19] Nepusz T. and Vicsek T., Nat. Phys., 8 (2012) 568.
[20] Palla G. et al., Nature, 446 (2007) 664.
[21] Gai P. and Kapadia S., Proc. R. Soc. London, Ser. A,

466 (2010) 2401.
[22] Vitali S. et al., PLoS ONE, 6 (2011) e25995.
[23] Motter A. E. et al., Nat. Phys., 9 (2013) 191.
[24] Kyrylyuk A. V. et al., Nat. Nanotechnol., 6 (2011) 364.

28006-p6


