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Abstract— One limiting factor to the performance of mobile ad-
hoc networks is the amount of interference that is experienced by
each node. In this paper we use the Random Waypoint Mobility
Model (RWPM) to represent such a network of mobile devices,
and show that the connectivity of a receiver at different parts
of the network domain varies significantly. This is a result of a
large portion of the nodes in the RWPM being located near the
centre of the domain resulting in increased levels of interference
between neighbouring devices. A non-trivial trade-off therefore
exists between the spatial intensity of interfering signals and non-
interfering (useful) ones. Using tools from stochastic geometry,
we derive closed form expressions for the spatial distribution of
nodes in a rectangle and the connection probability for an inter-
ference limited network indicating the impact an inhomogeneous
distribution of nodes has on a network’s performance. Our novel
results can be used to analyse this trade-off and optimize network
performance.

I. INTRODUCTION

A mobile ad-hoc network (MANET) is a self-configuring
network of mobile devices making direct wireless links with
each other rather than a central router; the topology of the
network evolves with time as links are continually being
made and broken. This network has various advantages over
networks which have a fixed topology or a centralized struc-
ture including scalability (can continue to add more nodes),
flexibility (can create temporary ad-hoc networks anytime any-
where) and continuous reconfiguration which can enable the
network to resolve any problems itself [1]. Such applications
of these networks include environmental monitoring, disaster
relief [2] and military communications [1].

With the next generation of wireless communication (5G)
in mind and as the number of personal devices such as mobile
phones and tablets with access to the internet continues to soar
there has been a lot of work into the performance of MANETS.
One of the first papers to highlight the potential advantages
of an ad-hoc network was by Grossgauler and Tse [3] who
showed that by exploiting a networks mobility the increased
throughput increases linearly, although this did not take into
account the delay of the packets. As such this self configuring
arrangement is seen to be a desirable feature for future mobile
phone networks but would need to preserve coverage where
mobile devices could disconnect and reconnect independent of
location [4].

The aim of this paper is to look at modeling MANETS using
the stochastic Random Waypoint Mobility Model (RWPM),
which was proposed as one of the best and simplest models

of MANETSs mobility patterns [5]. We analyse the networks
performance using the metrics of connection probability and
mean degree. We build upon previous work from Bettstetter
and Hyttid, Lassila and Virtamo [6], [7] where both considered
the RWPM and investigated the probability of full connectivity
on the unit disk, but give little indication as to the impact of
interference would have on their results. This motivates our
work for any realistic network we need to account for the
interference of neighbouring devices since it has been shown
that large amounts of interference leads to high power con-
sumption by individual nodes as packets need to be continually
resent [8] which in turn can cause nodes to disconnect from
the network. In particular we focus on the interference field,
which is heavily dependent on a network’s geometry [9], in an
inhomogeneous distribution of mobile nodes and see how it
compares with that of the results obtained in [10] where nodes
are uniformly distributed. We extend the interference models
with inhomogeneous node distributions to domains other than
circles [11], [12].
The main contributions of this paper are:

1) We give an exact expression for the probability density
function for the Random Waypoint Mobility model in a
rectangle, and use the result to analyse the performance
of the network.

2) We give an expression for the interference in a network
for a non-homogeneous density, and derive an analytic
formula for the case where the receiving node is posi-
tioned at the centre of a circular domain.

3) We give an explicit expression for the mean degree of
the network in the signal-to-noise regime and analyse
it by comparing it with numerical calculations for the
signal-to-interference-plus-noise regime.

User mobility in finite regions has a significant effect on
the spatial distribution of internet-enabled devices. Employing
tools from stochastic geometry, our analytical findings suggest
that regions of high node density suffer from an intensified
interference field thus hindering connectivity and coverage.
Under the RWPM, such regions are typically found away
from the domain borders, i.e. near the domain centre therefore
strengthening the case for location aware MAC and routing
protocols.

The remainder of the paper is structured as follows: Sec.
Il defines the Random Waypoint Mobility Model (RWPM)



Fig. 1. Top: A random realisation of the RWPM where a node on the
domain V has travelled from its initial point P; to P>, and then P3, where
it has chosen its next waypoint P4 from a uniform distribution. Bottom: A
representation showing how a1 and ao are defined (see eq (4)), along with
the angle ¢ at apoint = within V.

and gives an explicit expression for the probability density
function (pdf) in a rectangular domain. Sec. III defines the
connectivity metric of interest and calculates the connection
probability under the RWPM for different domain shapes and
interference limits. Sec. IV utilises the expressions obtained
for the connection probability to investigate the spatial den-
sity of successful transmissions. Sec. V provides concluding
remarks and discusses potential areas of future work.

II. RANDOM WAYPOINT MOBILITY MODEL
A. RWPM definition

The RWPM assumes N nodes randomly distributed inside
a convex domain V C R? of area V using a Binomial Point
Process (BPP) of density p = N/V. At any given instance
the node locations are given by r; € V for ¢ = 1,... N.
Each node moves independently from the other N — 1 nodes
so we can explain the process just by considering a single
node (refer to Fig. 1). A node located at P, chooses a
random waypoint P, uniformly inside V' and travels to it
in a straight line at a constant speed. The speed is chosen
from a uniform distribution of speeds [Upin,VUmas| Where
0 < Ymin < kUmin = Umaz- This results in a sequence
of waypoints defined as {Py, P,...} and legs {L1, Lo,...}
which completely characterise the paths taken by a node. At
each waypoint the node may pause for a “think time” drawn
from yet another uniform distribution [0, T},4]. The RWPM
reduces to a random walk model if the think time is zero.

B. Spatial distribution of nodes under the RWPM

Defining g, € [0,1] to denote the probability that a node is
thinking (i.e. is not moving) we have that the RWPM nodes
remain static if g, = 1, in which case the spatial distribution
of nodes in V is uniform by definition. This enables us to
express the spatial distribution of nodes under the RWPM as
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Fig. 2. Top: The 8 elementary segments of the rectangular domain in which
fx ,m(7) is symmetrically identical. Bottom: The difference between the
approximate distribution (8) and the exact one which follows from (7).

a combination of mobile and static nodes probability density
functions fx ., (r) and fx ,(r) respectively

fX(T) :ppr,p(r)“i’(l*pp)fX’m(r); (1)
such that fx ,(r) =1/V and [, fx(r)dr =1 and where
op = B )
= E[T,] + E[T]’

as shown in [13], where E[T},] is the expected pause time and
E[T] is the mean time taken for a single leg. Using the fact
that the speed is taken from a uniform distribution and that
Umaz = kUmin, the expected time for each leg is given by

E[T] In(k) 1 3)

k*l’l}min7

where [ is the mean leg length and is exactly given by [14]

_ 1 ™
l = W/ / alag(al —+ ag)d¢dr, (4)
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for any convex domain V, where the lengths a; and as depend
on the position 7 € V of the node as demonstrated in the lower
panel of Fig. 1 for a rectangular domain. The values of a1, as
are defined by choosing a point € V and drawing a straight
line through it. The length of the line to the right is a; and to
the left ao.

Similarly, the exact spatial distribution of nodes in any
convex shape V can be found by calculating [7]

1
&
It is interesting to note that the distribution of nodes in
the RWPM, given by (5) is proportional to that for the
betweenness centrality measure where a node is said to have
a high betweenness if it is frequently used to transmit data
between two different nodes along the shortest path [15]. This
allows for some intuition as to what the spatial distribution of
nodes in the RWPM will be like since in [15] it was shown

Fxm(r) /O araz(ar + as)ds. 5)



the nodes located at the centre had a high betweenness value
so analogously we should expect the distribution of nodes to
be highest in the centre also.

1) Rectangular domain: Writing a; and a9 as functions of
position r and ¢ € [0, 7] one can calculate that for a rectangle
of sides a and b [13]

d a? d+b b> d—a a® — d®
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where a > b and d = 2v/a? + b2. Note that when aq and as
meet the corners of the rectangle the integrands above are not
smooth functions thus requiring that the integrals be performed
within the elementary cells A; for ¢ = 1,...8 as shown in
Fig. 2

We give here for the first time the exact spatial distribution
of mobile nodes under the RWPM within 4; elementary cell
of a rectangular domain, where the full expression follows
through symmetry.
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where ¢; = a(a—z)(a+x), ca =bb—y)(b+y), c3 = (a+
2)(b—y)?, ¢4 = (a+2)%(b—y), ¢5 = (r—a)(b—y)? and c5 =
(@ — b -y & = Ja—2PTb-yP? d =
Vie+2)2+(b+y)?2 d3 = (a—2)2+(b+y)? dy =
Vet o7+ 6y

Several approximations to the above have been reported in
the literature the simplest one being [6]
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folz,y) = 16(173[)3(332—@2)(,@2—52)7 ®)
by assuming two linearly independent processes in the z
and y directions. The [J is used to indicate the rectangular
domain. Equation (8) deviates from the exact solution as
seen in the lower panel of Fig. 2. Hyytid et al [7] give a
more accurate polynomial approximation than (8) however,
unlike the exact expression (7), all known approximations are

smooth everywhere whereas the exact solution is piecewise
continuous.

Later in this paper we will use the approximation given
by (8) due to its simplicity and thus ease in calculating
complicated connectivity integrals.

2) Circular domain: A circular domain is much easier to
analyse than the rectangle as there are no discontinuities due
to corners. Therefore, by using (5), it can be shown that

folr,0) = W/”md¢7 )
0
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in polar coordinates (r,6), and I can be found by integrating
(9) over V, which can be approximated to [6]

folr) = %RQ (1 - (;>2> ;

where R is the radius of the circular domain.

(10)

III. CONNECTIVITY ANALYSIS

Given N nodes which move under the RWPM within some
convex domain V), in this section we will investigate the
connectivity of the resulting network. We first present the
information theoretic model [16] that we adopt and later define
the observables of interest.

A. System Model

The attenuation in the wireless channel of any ad-hoc
network affects the overall connectivity and capacity of that
network [17]. As a result we introduce the path loss function
g(d;;) describing how the power of a propagating signal
decays with the distance d;; = |r; — ;| between two nodes.
We assume that he function g(d;;) is only concerned with the
long time average of the signal to noise ratio (SNR) at the
receiver which behaves like SNR;; oc d;j" and so we define
the path loss function g(d;;) as

1
g(dij):rd?j , €20, (11)
where 7 is the path loss exponent and e is chosen to be non-
zero so the path loss function is non-singular. For free space
propagation it is common to take 7 = 2 and for more cluttered
environments 7 > 2, typically taking values in the range [2, 6].
5G millimetre wave networks have n ~ 4 for urban areas
whilst for scatter rich environments like New York 7 =~ 5.76
[18].

We now turn to the main connectivity metric the Signal to
interference plus noise ratio (SINR) defined as

_ Plhisl*g(dij)

SINR;; =
J N+’YIJ' (12)
Z; = Plhii*g(dyy)
J kj g kj)s
k#i

where Z; is the interference received at node j, P is the
transmit power (equal for all nodes), A is the noise power
within the system, and |h;;|?® is the channel gain between
nodes % and j and will be modelled as an exponential random



variable with mean one (assuming Rayleigh fading). In (12)
v is used to quantify the amount of interference in the system
and can take values between zero and one. In the case where
~ = 0 there is no interference resulting in all & # ¢ interfering
devices transmitting on a different channel [19]. Conversely
v = 1 refers to the case when all transmissions occur in the
same channel.

In the RWPM (and other mobility models) the SINR be-
tween two nodes depends on the location of the receiver, the
underlying network topology and the spatial distribution of
the network defining the interference field experienced by the
receiver. All these can significantly affect the performance
of the network. Intuitively we can see that dense regions
will have more interference than sparse ones. On the other
hand, nodes in sparsely populated regions of the network
domain have less neighbours to connect to compared to dense
regions. This trade-off is already non-trivial in the case of a
uniform distribution of interfering nodes [10]. In this papers
we will study for the first time this trade-off in the non-uniform
distribution (1) generated by the RWPM.

B. Connection Probability

Let us first consider an interference limited network where
node ¢ sends a signal to node j and we assume that all k # ¢
nodes are interfering with that transmission and ask what is
the probability H;; that node ¢ can successfully transmit data
to node j, i.e. the complement of the outage probability given
some SINR threshold ¢

N+ ’YIj)

o T el
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By conditioning on Z; and using the fact |h;;|* ~ exp(1) and
that |hy;|? are i.i.d random variables, (13) can be rewritten as,

o 2 q(N +~+IZ;) _
Hy = Bz, |1 2 Poldy) |
_ AN +9Z)
=z, exp( Pyg(dij) (14)
_$” qy )
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where Lz, (s) is the Laplace transform of the random variable
Z; evaluated at s = 7 T— conditioned on the locations of
the transmitting and receiving nodes. Following [10] we have
_3T _ ki l2a(dy s
£Ij (3) = EIj {e i } = Elhkﬂz,dkj [e § 2 i P19 (dis)
N-1

1
=Ey, . _
ki ]};[Z 1+ sg(dg;)
(15)

Invoking the probability generating functional of a general
inhomogeneous Poisson point process (PPP) = in R? with

intensity function A(£) given by

5| [L7@| =ew (- [ 0= r@n©)e a0

£eE

we can see that when N > 1 we can approximate the BPP
by a PPP such that A\(§) = N fx (r) therefore arriving at

- 59(dk;)
Lz,(s) ~ exp (—N/fo(rk)M@drk> NGY))

Remark 1: Equation (17) is the main result of this paper as
this can be computed numerically with the assistance of (5)
for any domain V in which nodes move under the RWPM.
Significantly, we note that the connection probability H;; of
a receiver at r; given by (14) depends exponentially on the
node distribution fx which is itself dependent on the mobility
model. We now proceed to consider specific cases.

1) Circular domain: Consider a receiver positioned at the
centre of the circular domain ie. r; = 0. Using polar

. . . . . . N
coordinates and the approximation given in (10) with p =
we calculate

pppsTR? 2 2 —R"
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For free space propagation 1 = 2 we can simplify (18) to
R2
Lz1,(s) = exp{—ppswpln (8 p + 1>
2pms(1 — pp) [ 2 2 R?
+T R*—(s+e+R)ln S+6+1 .
19)
Similarly, for n = 4 we can simplify (18) to
OpSTP R?
Lz,(s) = exp{—\/l;? arctan (\/m>
_ /s T e 4
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2) Comparison with other models: In this subsection we
compare the derived performance metric, the connection prob-
ability between two nodes H;;, with a number of other models
and receiver locations. The comparison is shown in Fig. 3 and
is performed in both a Circular (Disk) domain (left panel)
and a rectangular domain (right panel) using ¢ = P = N =
p = 1 and ¢ = 0. The connection probability is plotted
as function of transmitter-receiver distances d;; for different
receiver positions: centre, edge, and corner of the domain V
for p, = 1 (uniform distribution) and ,, = 0. Also plotted in
Fig. 3 is the case of v = 0 (i.e. no interference) referred to
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Fig. 3. A comparison between the connectivity from the centre to the edge
in all three cases where the volume of the domain is given by 4ab, with

a:b:lO,R:%andp:NV.

in the key as SNR, and also the case where (v,7n) = (0, 0)
which interestingly corresponds to a deterministic unit disk
model where nodes connect (or not) if they are within a unit
distance of each other. We notice that interference significantly
deteriorates the connection probability. Moreover, we notice
that the receiver nodes near the border of the domain are more
likely to be connected than receiver nodes are the domain
centre. Interestingly, random waypoint mobility (i.e. g, < 1)
improves the connection probability near the domain border,
and worsens it near the domain centre. This is not surprising as
the density of interfering nodes near the centre is much higher
than near the domain border (c.f. (8)). This effect seems to be
even more dominant in the rectangular domain. For instance,
H,;(0.5) = 0 for a node near the centre of the rectangular
domain whilst , H;;(0.5) ~ 0.5 for a node located near the
domain corner; a huge difference in performance.

The effect of interference on connectivity is further illus-
trated by Fig. 4 where we observe in a rectangular domain
with NV = 40 that H;; ~ 0.1 for a node located at the centre
where as at the corner H;; ~ 0.8. Clearly this is a direct
consequence of the interference field as shown in Fig. 4b.
The effect a rectangular domain has on the connectivity is
further highlighted by seeing that the side with the shortest
length has a lower distribution of nodes and thus the impact
of interference is less.

Note that similar observations are expected to hold for the
average achievable rate given by E[In(1+SINR;;)] (see [10]).

IV. SPATIAL DENSITY OF SUCCESSFUL TRANSMISSIONS

We now turn to the spatial density of transmissions that can
be successfully received by a receiver located at r; given by

pi(rs) = (N — 1>/VfX("'i)Hijd"’i. 21

Closed form calculation of (21) is possible for the SNR case

0.01 0.02 0.03 0.04 0.05

1 1 1 I 1 1
0.01 0.02 0.03 0.04 0.05 0.06

Fig. 4. a. The spatial node distribution under the RWPM in a rectangular
domain V b. The interference field in the top right quadrant of ) as calculated
through the integral of equation (17). c. The connection probability H;;(1/2)
of a receiver in the top right quadrant of the V as calculated through equation
(14) for N = 40. Parameters used: P = N =q¢=~v=1,a=5,b = 2,
n=4,and e = p, = 0.

where v = 0 and n = 2 giving

ulrs) = (N - 1)%{erf(a—xo) —i—erf(a—l—xo)}

x {erf (b—yo) + erf (b+ o) }
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(22)
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Fig. 5. A comparison between the spatial density p(r;) for a receiver
located different positions within a circular and square domain where we use
numerical integration of equation (21), using (20), where r; € V are the
Cartesian coordinates of the receiver. In the above figures € = 0 in the left

panel and € = 0.01 in the right and we take R = 5, a = b = @ such
that the two domains have the same volume V. We use the model where the
network is operating in a cluttered environment, 7 = 4, and not all nodes are
interfering with each other, v = 1/2.

It should be noted that a closed form expression can be
achieved for the unit disk model where v = 0 and n — oo but
we only give here explicit expressions for the mean degree at
the centre, corner and the midpoint of the edges for the sake
of brevity.
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From the closed form expressions of (22), (23) we can
clearly see that the number of successful transmissions in the
SNR and unit disk model p grows linearly with p = N/V.
We note that an analytical expression for (21) cannot be given
for the SINR case v > 0.

In contrast to the case of v = 0, for interference limited
networks (ie=.e v = 0) for a circular domain, the spatial
density of successful transmissions p plateaus for € = 0 and is
unimodal (i.e. has a single maximum) for € > 0, indicating a

deterioration in performance at large densities. This suggests
that € # 0 may give a more accurate representation of what
happens in real life networks. Intuitively we can see this as
if we start with a single node in our system and continue to
add more then the amount of successful transmissions that
can be achieved will initially increase since at low densities
the effect of the interference field will not be as great.
However, at a particular density we would expect this number
to stop increasing and start decreasing since the strength of
the interference will have increased such that it restricts the
number of successful transmissions.

Interestingly, the behaviour of ;1 near borders as seen in
Fig. 5 is opposite to that seen in Fig. 3. That is, while in
interference limited networks a receiver at the domain border
(e.g. at a corner) is expected to have a higher connection
probability H;;, due to the low density of nearby transmitters
the spatial density of successful transmissions is extremely
low, especially in the dense regime of p > 1.

In terms of applications of these results, under the RWPM
it suggests that areas such as the centre of cities where the
largest number of mobile devices are typically found, a drop
in ad hoc network performance is expected due to interference.
This is further intensified near borders simply due to the low
spatial density of transmitting nodes. Therefore, efficient MAC
protocols would have to be developed in line with the above
results as to optimise channel access and thus connectivity
throughout the network domain V.

The calculations shown in Fig. 3, 4, 5 were done using the
approximate pdf’s as the exact ones would not change the
result qualitatively.

V. DISCUSSION AND CONCLUSIONS

The random waypoint model assumes nodes moving from
waypoint to waypoint in a random fashion. The resulting
spatial distribution of nodes is not uniform but rather is con-
centrated in the domain’s bulk. As such, when wireless nodes
access the common Hertzian medium without any collision
avoidance mechanism (or similar) signals will interfere with
each other at the receiver end causing sever packet losses
which need to be catered for through retransmissions causing
further delay and requiring additional signalling overheads.

In this paper we have explored the Random Waypoint
Mobility Model where we have given an exact expression for
the spatial distribution of nodes in a rectangle and compared
this with earlier approximations. A closed form expression
for the connection probability for a receiver positioned at
the centre of a circular domain was given, and numerical
calculations for receivers positioned at different locations and
in different domains. Due to the high number of nodes in the
bulk for the RWPM, it was shown that a successful connection
was less likely to happen since the interference is greater,
where the converse was true at the edges; an effect that was
magnified in the rectangular region due to its corners. An
exact expression was calculated for the mean degree of a
noisy network in free space and shown to grow linearly with
density. Finally, numerical calculations were used to express



the spatial density of successful transmissions in different parts
of the domain where the performance of a network locally is
characterised by the trade off between the density of nodes
and the resulting interference field (i.e. too few nodes limits
the number of possible connections, too many results in too
much interference).

As the Internet of Things continues to expand with the
increasing availability of smart devices, through our research
we highlight how the addition of these devices to a network
might compromise the performance of individual nodes, and
as a consequence the whole network. In particular a better
understanding of the interference effects near the border is
needed both locally in terms of p and globally via full
connectivity [20] and percolation.

These results highlight one important challenge facing any
future deployment of MANETSs, namely how can the inter-
ference experienced from neighbouring nodes be minimised
with an inhomogeneous distribution. We see that in the RWPM
nodes are focused predominately in the bulk of the domain and
thus more mobile devices are competing for the same amount
of limited resources so efficient protocols would be needed to
ensure fair distribution. Furthermore, it is assumed the most
efficient way to transmit data between nodes in a multi-hop
fashion is via the shortest path. However, with an inhomoge-
neous distribution and interference limited environment, this
may not be the most effective since going through areas of
high density, the levels of interference increase so data may
have to be continually resent thus increasing the transmission
time between sender and receiver. Instead the solution might
involve minimising both the path and the interference.
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