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On the Connectivity of 2-D Random Networks with
Anisotropically Radiating Nodes

Justin P. Coon and Carl P. Dettmann

Abstract—We study the effect that anisotropic radiation has
on the probability that a two-dimensional (2-D) random network
is fully connected. To this end, we advance recently established
results related to the connectivity of wireless ad hoc networks
with beamforming – which state that directive transmission can
improve connectivity when the path loss exponent is low, and
impair connectivity when it is high – by providing a thorough
analytical treatment of this topic using a newly established theory
of connectivity reported in [1]. Moreover, we exploit our analysis
to design optimal radiation patterns in the sense that connectivity
is maximized, which can be used as masks to perform antenna
pattern synthesis.

Index Terms—Random networks, anisotropic radiation, direc-
tivity, full connectivity, antenna pattern synthesis.

I. INTRODUCTION

Wireless multihop relay network architectures are currently
finding use in many infrastructural and ad hoc applications.
These include emerging energy and utility management sce-
narios (e.g., “smart grid” and water metering communication
networks), industrial wireless sensor networks, and vehicular
ad hoc networks (VANETs). Even multihop cellular network
architectures have been proposed [2], with some solutions
being adopted for LTE-Advanced [3].

Many multihop networks possess commonality insomuch
as the number and distribution of nodes in the network is
often random. A considerable amount of research on random
networks has been conducted in the past (see, e.g., [4]–
[6]). From a communications perspective, it is of paramount
importance to understand the connectivity properties of such
networks. This understanding can lead to improved protocols
and network deployment methodologies in practice [7].

Most of the work related to network connectivity that can be
found in the literature to date has assumed that each node in the
network radiates information isotropically. Notable exceptions
include [8]–[11]. In particular, simulation studies were carried
out in [8], [9] for two-dimensional (2-D) networks to demon-
strate that randomized and greedy beamforming approaches
improve network connectivity under certain circumstances,
while [10], [11] presented semi-analytical results. All of these
works focused on uniform linear or circular arrays.

In this paper, we provide further results on the connectivity
of dense, 2-D random networks by adopting the network
connectivity model recently detailed in [1], [12]. To this
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end, we study the effect that anisotropic radiation has on
network connectivity by explicitly calculating the connectivity
mass – which measures the likelihood that any given node
will connect to another – for several well-known, practical
radiation pattern approximations. We conclusively show that,
for strict 2-D networks1, randomized beamforming improves
connectivity in networks where the path loss exponent η is
less than two2, whereas isotropic radiation is optimal for other
cases. Moreover, we exploit our analysis to design optimal
radiation patterns in the sense that connectivity is maximized,
which can be used as masks to perform antenna pattern
synthesis [14].

II. ANISOTROPIC CONNECTIVITY

We consider a network of N nodes located randomly in
a two-dimensional space (with volume V ), and assume the
system is homogeneous and isotropic, but where the radiation
pattern from each node is anisotropic. The density of the
network is given by ρ = N/V . In this simplified model,
we ignore boundary effects, instead choosing to focus on
the connectivity performance in the bulk of the network 3.
However, we note that the model adopted here is representative
of certain large networks and those assumed to have periodic
boundary conditions, such as indoor networks with access
points located along the walls/boundaries.

The probability that any two nodes are directly connected
is taken to be the complement of the outage probability with
respect to a rate r. For a single-input single-output (SISO)
transmission in a Rayleigh fading channel, this probability is
given by

H = P (log (1 + SNR ·X) > r) (1)

where X is a standard exponential random variable and SNR
denotes the received signal-to-noise ratio. It follows from the
Friis transmission formula and numerous experimental path
loss studies that

SNR ∝ GT (φT − θT )GR (φR − θR) r
−η (2)

where GT (φT − θT ) is the gain of the transmit antenna
oriented along θT observed in the direction of the receive
antenna φT , GR (φR − θR) is the gain of the receive antenna
oriented along θR observed in the direction of the transmit
antenna φR, r is the distance separating the transmit and

1Similar results can be obtained for embedded networks, but this is beyond
the scope of this paper.

2Low path loss exponents have been reported in numerous propagation
studies, particularly in indoor environments (see, e.g., [13]).

3Boundary effects in random geometric networks were recently treated in
[12].
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receive antennas and η is the path loss exponent. In a simple
line-of-sight (LOS) free space model, we can take η = 2 and
φR = φT + π. In the following, we will adopt this definition
for φR but maintain a general path loss exponent η. Also, we
normalize the radiated (and received) power by enforcing the
restriction∫ 2π

0

GT (φ) dφ =

∫ 2π

0

GR (φ) dφ = 2π. (3)

Now we can further define the pair connectedness function
H as

H (r, φ, θT , θR) = exp

(
− βrη

GT (φ− θT )GR (φ+ π − θR)

)
(4)

where β defines the length scale. For the standard case of
isotropic radiation, GT = GR = 1 for 0 ≤ φ ≤ 2π. In
this case, we can apply the theory detailed in [12] to obtain
an accurate analysis of the probability that the network is
fully connected. We can choose many other radiation gain
patterns to better represent realistic propagation models; how-
ever, before doing so, we give further details of the network
connectivity model in a generalized manner.

From [12], we know that the first order full connection
probability for the network is

Pfc ≈ 1−Ne−ρM (5)

where

M =
1

2π

∫
rH (r, φ, θT , θR) drdφdθR (6)

is called the connectivity mass. The factor of 1/ (2π) is
included in this expression for normalizing the orientation
angle θR. The orientation of the transmitter is arbitrary since
the system is isotropic, so we take it to be θT = 0. Thus, the
connectivity mass can be rewritten as

M =
Γ
(

2
η

)
2πηβ

2
η

∫
(GT (φ)GR (φ+ π − θ))

2
η dθdφ

=
Γ
(

2
η

)
2πηβ

2
η

(∫ 2π

0

GT (φ)
2
η dφ

)(∫ 2π

0

GR (φ)
2
η dφ

)
(7)

where Γ (x) is the gamma function and the second equality
follows from the fact that the gain functions are periodic in
their argument. Now we examine some simple but practical
functions for GT and GR.

A. Isotropic Radiation

As a benchmark, we set GT = GR = 1 for 0 ≤ φ ≤ 2π.
This is representative of a dipole radiation pattern along the
azimuth plane (i.e., in 2-D). In this case, we have

Miso =
2πΓ

(
2
η

)
ηβ

2
η

. (8)

B. Cardioid Pattern

A simple but practical radiation pattern that one might
consider is the cardioid, which is given by

GT (φ) = GR (φ) = 1 + cosφ, 0 ≤ φ ≤ 2π. (9)

This function well-approximates the radiation pattern exhibited
by a patch antenna in a plane [15]. In this case, we can write

Mcar =
Γ
(

2
η

)
2πηβ

2
η

(∫ 2π

0

(1 + cosφ)
2
η dφ

)2

=

(
4

β

) 2
η Γ

(
1
2 + 2

η

)2
Γ
(
1 + 2

η

) . (10)

This function is well behaved for typical values of β and η,
and we note that Miso = Mcar at η = 2.

C. Directed Transmission

For a directed transmission, such as that generated by an
end-fire array, we may approximate the main lobe of the gain
functions by [15, pg. 46]

GT (φ) = GR (φ) =

{
λπ cos (λφ) , − π

2λ ≤ φ ≤ π
2λ

0, otherwise
(11)

where λ ≥ 1 defines the directivity of the beam, with larger
λ indicating a higher degree of directivity. Now we have

Mdir =
Γ
(

2
η

)
2πηβ

2
η

(∫ 2π

0

(λπ cos (λφ))
2
η dφ

)2

=

(
π2λ2−η

β

) 2
η ηΓ

(
1
2 + 1

η

)2
2B
(

1
η ,

1
η

) (12)

where B (x, y) is the beta function. Again, we note that
Mdir = Miso = Mcar at η = 2.

Equation (5) illustrates a simple one-to-one relationship
between the connectivity mass M and the full connection
probability Pfc at high node densities. Thus, it is of interest
to view M as a function of the path loss exponent η for
various radiation patterns. Fig. 1 provides such an illustration
for the three patterns discussed above. We see that directive
transmission yields a higher connectivity mass, and thus an
exponentially greater probability of the network being fully
connected, for environments that exhibit good path loss prop-
erties, corresponding to η < 2. Conversely, isotropic radiation
yields the best connectivity characteristics for η > 2.

These results are generally in line with the numerical results
presented in [11], but where the threshold value of the path loss
exponent is two instead of three. This result simply follows
from the fact that we consider strict 2-D networks here, and
from the normalization defined by (3). One benefit of our
approach compared to that presented in [11] is that our analysis
is based on the fundamental principle of the connectivity mass,
which can be calculated for general antenna gain models and
applied to the complete theory outlined in [12], whereas [11] is
largely restricted to uniform circular arrays. Furthermore, the
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Fig. 1. Illustration of the connectivity masses corresponding to different
radiation patterns, plotted as a function of the path loss exponent η.

results presented in [11] are somewhat numerical, in contrast
to the explicit analytical expressions detailed in this paper. In
fact, the quantitative approach that we have taken not only
yields specific rules rather than general guidelines on network
connectivity performance, but facilitates the optimization of
antenna patterns and physical element/array geometries, as
discussed in the next section.

III. STATIONARY RADIATION PATTERNS

In the discussion above, we considered a few different
radiation patterns. From that discussion, the question of pattern
optimality naturally arises. In particular, since we want to
maximize the connectivity mass M as defined in (7), it follows
that we should let GT = GR = G, and seek the path G (φ)
that maximizes the functional

S [G] =

∫ 2π

0

G (φ)
2
η dφ (13)

subject to the constraint∫ 2π

0

G (φ) dφ = 2π. (14)

A. Single Sector Radiation

In the first instance, we consider a simplified sectorized
radiation model. For this case, let us define G (φ) ≥ 0
on the interval φ ∈ [− π

2λ ,
π
2λ

]
for some λ ≤ 1/2, and

G (φ) = 0 elsewhere. We can find the stationary paths of S [G]
by employing the tools of the calculus of variations. In this
case, we formulate the Lagrangian L (φ,G, ξ) = G

2
η − ξG,

where ξ is the Lagrange multiplier. Solving the Euler-Lagrange
equation ∂L/∂G = 0 and using the constraint (14) yields the
stationary path

G (φ) = 2λ, − π

2λ
≤ φ ≤ π

2λ
. (15)

It remains to determine whether this path is an extremal, i.e.,
whether it yields a minimum or maximum of S. This is easily

determined by calculating the second variation Δ2 [G, h] for
some admissible path h, which yields

Δ2 [G, h] =

∫ π
2λ

− π
2λ

∂2L

∂G2
h (φ)

2
dφ

=
2

η

(
2

η
− 1

)
(2λ)

2
η−2

∫ π
2λ

− π
2λ

h2dφ. (16)

It follows that Δ2 [G, h] > 0 if η < 2 and Δ2 [G, h] < 0 if
η > 2. We already know that all paths G lead to identical
connectivity masses for η = 2 due to the constraint on the
area under G (i.e., the power normalization). Thus, we readily
conclude that the path defined in (15) is a maximum for η > 2
and a minimum for η < 2.

A corollary is that isotropic radiation (λ = 1/2) is optimal
with respect to connectivity when η > 2. Moreover, single-
sector directed transmission provides a lower bound on the
connectivity mass for η < 2. Indeed, one can easily find
radiation patterns that yield better connectivity in this case,
and in fact there is no upper bound; one may obtain arbitrarily
good connectivity by designing the beam width to be as small
as possible. An important conclusion from this brief analysis
is that connectivity in random networks operating in low path
loss environments is dictated by the physical limitations of the
antenna geometries and device properties.

B. Antenna Pattern Synthesis

In practical networks, it may not be desireable (or possible)
to design radiation patterns to be sectorized as discussed in the
previous section. Indeed, when the side lobes are significantly
smaller than the main lobe of an antenna radiation pattern,
medium access control protocols often perform poorly due
to the hidden node phenomenon. Thus, it is of interest to
synthesize an antenna pattern for each node in the network
subject to certain constraints such that the probability of a
network being fully connected is maximized.

We may extend the discussion above to patterns that occupy
the entire polar plane. To this end, let

G (φ) =

⎧⎪⎨
⎪⎩

G1 (φ) , φ ∈ R1

...
Gn (φ) , φ ∈ Rn

(17)

where Ri ⊂ [0, 2π), with Ri ∩ Rj = ∅ for i 
= j and⋃
iRi = [0, 2π). Suppose the average power radiated in R i is

constrained by∫
Ri

Gi (φ) dφ = Pi, i = 1, . . . , n (18)

with
∑

i Pi = 2π. A function G (φ) that adheres to this
definition may form a mask for antenna pattern synthesis in
practice [14].

Now, we wish to find the set of paths {Gi} that maximize
the functional

S [G1, . . . , Gn] =

n∑
i=1

∫
Ri

Gi (φ)
2
η dφ. (19)
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Given the constraints defined in (18), this amounts to maxi-
mizing the set of functionals given by{

S [Gi] =

∫
Ri

Gi (φ)
2
η dφ

}
. (20)

We take the regions {Ri} and the power levels {Pi} to be
constant, but these can be treated as design parameters that
can be used for further optimization as will be shown below.

It follows from the Euler-Lagrange formulae for these
functionals that

Gi (φ) =
(η
2
ξi

) 1
2
η

−1
, φ ∈ Ri (21)

for i = 1, . . . , n where {ξi} are Lagrange multipliers. Using
the constraints (18), we arrive at the following explicit defini-
tion for the stationary paths {Gi}:

Gi (φ) =
Pi

|Ri| , φ ∈ Ri; i = 1, . . . , n. (22)

It follows that

S [G1, . . . , Gn] =

n∑
i=1

P
2
η

i |Ri|1−
2
η = 2π

n∑
i=1

ri

(
pi
ri

) 2
η

(23)
on the stationary paths, where pi = Pi/ (2π) ∈ [0, 1] and
ri = |Ri| / (2π) ∈ [0, 1]. Again, we can calculate the second
variation to see that S is a maximum if η > 2 and a minimum
if η < 2.

This analysis provides rules on antenna pattern synthesis
that can be followed to ensure the connectivity is maximized
for a given η. Of course, the analysis shows that, for the
case where η < 2, there is no theoretical upper bound on
the connectivity mass since one may choose |Ri| as small as
one likes for some i.

For the case where η > 2, we have the bound

S ≤ 2π

(
n∑

i=1

ri
pi
ri

) 2
η

= 2π (24)

which follows from the power mean inequality(
n∑

i=1

wix
a
i

) 1
a

≤
(

n∑
i=1

wix
b
i

) 1
b

(25)

where
∑

i wi = 1 and a < b. Now suppose we specify the set
{Pi}, and then design the set {Ri} to maximize S, or vice
versa. Following this approach, the bound given in (24) can
be attained by letting ri = pi for all i, which is just isotropic
radiation. This result coincides with that given for a single
sector radiation pattern discussed in III-A.

IV. CONCLUSIONS

In this contribution, we studied the effect that antenna
directivity has on the connectivity properties of dense, 2-D
random networks. Our analysis was framed within the network
connectivity model detailed in [12]. We calculated the connec-
tivity mass related to various radiation patterns, and showed
that isotropic radiation is optimal with respect to connectivity

when the path loss exponent is greater than two, but single-
sector directed transmission yields superior performance for
other cases. Moreover, we designed optimal radiation patterns
using our analysis, which can be used as masks to perform
antenna pattern synthesis in practical systems.
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