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a b s t r a c t

We study the number of isolated nodes in a soft random geometric graph whose vertices
constitute a Poisson process on the torus of length L (the line segment [0, L] with
periodic boundary conditions), and where an edge is present between two nodes with
a probability which depends on the distance between them. Edges between distinct
pairs of nodes are mutually independent. In a suitable scaling regime, we show that the
number of isolated nodes converges in total variation to a Poisson random variable. The
result implies an upper bound on the probability that the random graph is connected.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Random geometric graphs (RGGs) were introduced in Gilbert (1961) as a model for communication networks with
imited connection range and have subsequently been widely used to model networks with a spatial element; see,
.g., Penrose (2003) and references therein. In Gilbert’s model, nodes or vertices are randomly distributed within some
pace, typically Rd or a bounded subset of it, and an edge is placed between nodes if their mutual distance is smaller
than a specified threshold. We shall refer to this model as the hard RGG, as the connection probability has a hard cutoff
as a function of the distance between nodes. A generalisation is to allow the edge between a pair of nodes separated
by distance r to be present with some probability H(r), independent of all other edges. This model has been termed the
Soft RGG (Penrose, 2016), the random connection model (RCM) (Meester and Roy, 1996), or a Waxman graph (Waxman,
1988). In this work we refer to them as Soft RGGs and term H(·) the connection function. The hard RGG is a special case,
obtained by setting H(r) = 1 for r ≤ rc and H(r) = 0 otherwise; rc > 0 is a parameter of the model.

The one-dimensional version of this model is motivated by vehicular ad-hoc networks (VANETs), which are expected
to be essential for autonomous vehicles; these will be fitted with on-board radios to transmit information such as location,
velocity, and hazard warnings between vehicles. The road is represented by a line, the nodes represent vehicles and an
edge between two nodes indicates that the two vehicles can communicate directly. One key question is connectivity:
When is every vehicle in the network able to communicate with every other, either via a single- or multi-hop path? A
necessary condition for full connectivity is the absence of isolated nodes, namely nodes that are not connected to any
other in the graph. In the 2-D and 3-D versions of the soft RGG model, it has been shown in a suitable asymptotic regime
that the soft RGG is connected if and only if there are no isolated nodes (Mao and Anderson, 2012; Penrose, 2016). It was
further shown in Mao and Anderson (2012) that the number of isolated nodes in a 2-D soft RGG can be well approximated
by a Poisson distribution. The result was extended in Penrose (2016) to dimension three and greater; also see Ganesh and
Xue (2007) for an analogous result for small-world networks. There has been little work to date on the 1-D model, which
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differs in important respects from those in two or more dimensions. In particular, the dominant reason for disconnection
in 1-D hard RGGs is the presence of uncrossed gaps rather than of isolated nodes. Soft RGGs in 1-D were studied in Wilsher
et al. (2020), where it was shown that isolated nodes dominate uncrossed gaps as a cause of disconnection. The threshold
for the emergence of isolated nodes was established in Wilsher et al. (2020), and a Poisson limit was conjectured for the
number of isolated nodes at the threshold (Conjecture 4.1). We prove this conjecture here.

We now describe the model studied in this paper and our assumptions. We consider a sequence of networks indexed
y a parameter L ∈ R+, which tends to infinity along the sequence. The nodes or vertices of the network constitute a
oisson point process (PPP) of unit intensity on [0, L], which we denote PL. If two nodes are located a distance r apart, the

edge between them is present with probability HL(r) = H(r/RL), independent of all other edges; here, H : R+
→ [0, 1] is

a given connection function, and RL > 0 is a scaling parameter to be specified.
In order to avoid inessential technicalities associated with the boundaries, we shall study the model with periodic

boundary conditions. In other words, we turn [0, L] into a circle or torus by identifying 0 with L. We denote the circular
distance on [0, L] by ρL, i.e., ρL(x, y) = min{|x − y|, L − |x − y|}. Finally, we define the connection probabilities to be
L(x, y) = HL(ρL(x, y)). We denote by GhL (PL) the graph with vertex set P , and independent edges generated with
onnection probabilities hL. This is the graph model we study. We believe that the same results hold if [0, L] is treated as a
ine segment rather than a circle, and that this can be established by analysing boundary effects separately, as in Dettmann
nd Georgiou (2016).
We make the following assumptions about the connection function.

ssumptions. Let ∥H∥1 and ∥H∥2 denote the L1 and L2 norms of H : R+ → [0, 1], i.e.,

∥H∥1 =

∫
∞

0
H(x)dx, ∥H∥

2
2 =

∫
∞

0
H(x)2dx.

We assume that ∥H∥1 < ∞ and ∥H∥
2
2 < ∥H∥1.

The first assumption says that H is integrable, and is required for the mean number of neighbours of a node to remain
bounded as L tends to infinity. We expect this to hold in real-world networks. Next, observe from the definition that
∥H∥

2
2 ≤ ∥H∥1, since H(x) ∈ [0, 1] for all x as it is a probability. Hence, the second assumption, which asserts that this

inequality is strict, is a mild one. It is satisfied whenever the set, {x ∈ R+ : 0 < H(x) < 1}, where the connection probability
is strictly between 0 and 1, has positive Lebesgue measure. Nevertheless, the assumption excludes the connection function
of a hard RGG, which is {0, 1}-valued.

We now state our main result, which resolves a conjecture in Wilsher et al. (2020).

Theorem 1. Fix τ ∈ R+ and take RL = ln(τL)/2∥H∥1. Let Niso denote the number of isolated nodes in the soft RGG GhL (PL).
Its dependence on L and τ has been suppressed for notational convenience. As L tends to infinity, the random variable Niso
converges in total variation distance to a Poisson random variable with mean 1/τ . In particular, P(Niso = 0) tends to e−1/τ .

As noted above, the assumption of the theorem excludes the hard RGG model. This appears to be an artifact of the proof
technique, where the assumption is needed (only) for the proof of Lemma 6, which bounds the correlation of isolation
between nearby nodes. The result in the theorem is already known for the hard RGG model (Penrose, 2003), in which
the connection region is of the form [−r, r]; it is not known if the connection region is of the general form [a, b] or if it
is a disconnected set, such as a union of countably many intervals. An approach to extending the analysis to these cases
might involved bounding the overlap between the connection regions of nodes at different locations.

Before turning to the proof of the theorem, we compare our model and results in greater detail with those in Penrose
(2016), as our approach is very similar. Note that our model has 3 parameters: the length L of the domain, the intensity
of the Poisson process (taken to be 1) and the scale RL of the connection function. These have dimensions of length or its
inverse, so that there are only two dimensionless parameters in the model (which is invariant to changes in the units in
which length is measured). The scaling regime in Penrose (2016) is superficially different as it keeps the domain length
fixed, while scaling the connection range and the intensity of the Poisson process. In fact, these scalings are equivalent
as they use the same two dimensionless parameters.

The analysis in Penrose (2016) is restricted to dimensions d ≥ 2, and makes strong assumptions about the connection
function such as that the connection probability either decays as a stretched exponential or has compact support.
These restrictions are needed in order to show that connectivity of the random graph is equivalent to the absence of
isolated vertices, with high probability. As connectivity is the primary object of interest, that paper does not seek Poisson
approximations for the number of isolated nodes under weaker assumptions. Here, we are able to establish a Poisson
approximation under much weaker assumptions. The analysis should generalise easily to dimensions d ≥ 2, and is indeed
adapted from that context in Penrose (2016), but we have not attempted to provide a detailed generalisation within this
short note.

As the soft RGG is disconnected if there are any isolated nodes, an immediate corollary of the theorem is that the
probability that GhL (PL) is connected is asymptotically bounded above by e−1/τ , in the scaling regime considered in the
theorem. This upper bound would be tight if isolated nodes were the dominant cause of disconnection in this random
graph model, as conjectured in Wilsher et al. (2020) under the mild additional condition that the connection function has
2
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unbounded support. Resolving this conjecture remains an open problem, as does extending the analysis of this paper to
point process models other than the Poisson process. Unfortunately, our analysis in this paper only pertains to isolated
nodes, and does not shed light on other possible ways in which the graph can be disconnected.

2. Proofs

Denote the total variation distance between probability distributions µ and ν on R by dTV (µ, ν). With a slight abuse
of notation, we shall write dTV (X, Y ) for random variables X and Y to denote the total variation distance between their
probability distributions. The following bound on the total variation distance between random variables X and Y defined
on the same probability space is well-known and elementary:

dTV (X, Y ) ≤ P(X ̸= Y ). (1)

The proof of Theorem 1 proceeds through a sequence of lemmas. Our first result approximates the number of isolated
nodes in our model with one in which the connection function is truncated. This step is not needed if the connection
function has bounded support.

Lemma 1. Fix α > 0, and define the truncated connection function h̃L(x, y) = hL(x, y)1{ρL(x, y) ≤ R1+1/α
L }. Denote by Niso

nd Ñiso the number of isolated nodes in GhL (PL) and Gh̃L (PL) respectively. Then,

lim
L→∞

dTV (Niso, Ñiso) = 0.

Proof. We can couple GhL (PL) and Gh̃L (PL) by first generating GhL (PL), and then removing any edges of length at least
1+1/α
L . Observe that Ñiso ≥ Niso, since removing edges cannot reduce the number of isolated nodes. Therefore, it follows
rom Markov’s inequality that

P(|Niso − Ñiso| ≥ 1) ≤ E[|Niso − Ñiso|] = E[Ñiso] − E[Niso]. (2)

Using the expression for the expected number of isolated nodes in a soft RGG derived in Wilsher et al. (2020, eqn. (9)),
we get

E[Niso] = L exp
(

−2RL

∫ L/2RL

0
H(r)dr

)
= L exp

(
−

ln(τL)
∥H∥1

∫ L/2RL

0
H(r)dr

)
.

ow, L/2RL tends to infinity as L tends to infinity, and so
∫ L/2RL
0 H(r)dr tends to ∥H∥1 =

∫
∞

0 H(r)dr . Hence, it follows from
he above that

E[Niso]
L→∞
−−−→

1
τ

. (3)

Similarly, since RL =
ln(τL)
2∥H∥1

tends to infinity with L, we have

E[Ñiso] = L exp
(

−2
∫ L/2

0
h̃L(0, r)dr

)
= L exp

(
−2

∫ R1+1/α
L

0
H
( r
RL

)
dr

)

= L exp

(
−

ln(τL)
∥H∥1

∫ R1/αL

0
H(r)dr

)
L→∞
−−−→

1
τ

.

(4)

It follows from (3) and (4) that E[Ñiso] −E[Niso] tends to zero as L tends to infinity. The claim of the lemma follows from
(1) and (2). □

Henceforth, we shall work with Gh̃L (PL), the soft RGG with truncated connection function. We shall use the Chen–Stein
method for Poisson approximation described in Barbour et al. (1992); as it requires a discrete index set, we fix m ∈ N
and discretise the torus [0, L] into mL segments of width 1/m. (Assume for convenience that L is an integer. Otherwise,
we need one segment of a different width, which does not fundamentally alter the analysis.) Denote the ith segment by
Ai, where i takes values in the index set Γ = {1, 2, . . . ,mL}. Denote by PL and I the vertex set and the set of isolated
nodes of the random graph Gh̃L (PL), and by PL(Ai) and I(Ai) the subsets of these nodes lying within Ai. Define

Ji := 1 {|PL(Ai)| = 1} ,

Ii := 1 {|PL(Ai)| = 1 and |I(Ai)| = 1} ,

Wm,L :=

∑
i∈Γ

Ii,
(5)

for i ∈ Γ . Denote the centre of the segment Ai by xi. (Although Ai, Ii, Ji, and xi all implicitly depend on m, this dependence
is suppressed for notational convenience.) Our next result states that the number of isolated nodes is well-approximated
by W when m is large.
m,L

3
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Lemma 2. Let Ii denote the indicator that the ith segment of [0, L] contains exactly one node, and that node is isolated in
Gh̃L (PL). Let Wm,L denote the sum of these indicators, as defined in (5). Let Ñiso denote the total number of isolated nodes in
Gh̃L (PL). Then, for any fixed L > 0,

dTV (Ñiso,Wm,L) → 0 as m → ∞.

Proof. Notice that the random variable Wm,L is exactly the same as the number of isolated nodes unless there is a segment
containing two or more nodes. Now, the number of nodes in a segment of length 1/m has a Poisson distribution with
mean 1/m. Hence, it follows from (1) and the union bound that

dTV (Ñiso,Wm,L) ≤ P(∃i ∈ Γ : |PL(Ai)| ≥ 2)

≤

∑
i∈Γ

(
1 − e−1/m

−
1
m

e−1/m
)

= mL
(
1 − e−1/m

−
1
m

e−1/m
)
,

which tends to zero as m tends to infinity, as claimed. □

In light of the above lemma, it suffices to establish a Poisson approximation for the random variables Wm,L. To this
end, we define the ‘‘neighbourhood" of an index i ∈ Γ by

Bi =

{
j ∈ Γ : ρL(xi, xj) ≤ 3R1+1/α

L for some xi ∈ Ii, xj ∈ Ij
}

. (6)

We also define the quantities

pi := E[Ii], pij := E[IiIj],

b1 :=

∑
i∈Γ

∑
j∈Bi

pipj, b2 :=

∑
i∈Γ

∑
j∈Bi\{i}

pij, b3 :=

∑
i∈Γ

E
[
|E
[
Ii|(Ij : j ∈ Γ \Bi)

]
− pi|

]
. (7)

We shall use of the following result on Chen–Stein approximation.

Lemma 3 ((Barbour et al., 1992, Theorem 1.A)). Let Po(λ) denote a Poisson random variable with mean λ. Let Wm,L be defined
as in (5) and b1, b2 and b3 as in (7). Then,

dTV
(
Wm,L, Po

(
E[Wm,L]

))
≤ min

(
1,

1
E[Wm,L]

)
(b1 + b2 + b3).

Thus, in order to establish a Poisson approximation for Wm,L, we need to bound the terms b1, b2, b3.

Lemma 4. Let Bi be defined as in (6) and b1, b2, b3 as in (7). Then, b3 = 0 for all m sufficiently large.

Proof. The connection function h̃L is defined by truncating hL at R1+1/α
L . Hence, the event for which Ii is the indicator

depends only on nodes within distance R1+1/α
L of the segment Ai. By the same reasoning, the isolation or otherwise

of nodes at distance greater than 2R1+1/α
L from this segment is independent of the Poisson point process in the set

{x : miny∈Ai ρ
L(x, y) ≤ R1+1/α

L }. Hence, Ii is jointly independent of Ij for all j such that minx∈Ai,y∈Aj ρ
L(x, y) > 2R1+1/α

L . In
particular, if m is large enough that 1

m < R1+1/α
L , then Ii is independent of the collection of random variables, {Ij, j ∈ Γ \Bi}.

ence, b3 = 0 for all m sufficiently large. □

emma 5. Let Bi be defined as in (6) and b1, b2, b3 as in (7). Then, b1 tends to zero as we let m tend to infinity, followed by
.

roof. Observe from the definition of Ii that

pi = P(Ji = 1)P(Ii = 1|Ji = 1)

=
1
m

e−1/mP(v ∈ PL(Ai) is isolated in Gh̃L (PL)|Ji = 1),
(8)

where v ∈ PL(Ai) exists and is unique since Ji = 1. Say v is located at (i/m)+x, where 0 ≤ x < 1/m. Now, the set of nodes
to which v is connected form an inhomogeneous Poisson process on [0, L] \ Ai, of intensity h̃L(i/m + x, y); v is isolated
only if this set is empty. Thus, by translation invariance of the connection function, the probability that v is isolated is
given by

P(v is isolated) = e−κx , where
4
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κx =

∫
[0,L]\[0,1/m]

h̃L(x, y)dy
m→∞
−−−→

∫ L

0
h̃L(x, y)dy,

ince h̃L is bounded above by 1. We have not made the dependence of κx on m and L explicit in the notation. Suppose L
s large enough that L/2RL ≥ R1+1/α

L . Then, using the translation invariance of h̃L once more, we have

lim
m→∞

κx =

∫ L

0
h̃L(0, y)dy = 2

∫ R1+1/α
L

0
H
( y
RL

)
dy = 2RL

∫ R1/αL

0
H(y)dy,

hich does not depend on x. Substituting in (8), we get that

lim
m→∞

mpi = lim
m→∞

e−1/me−κx = e−2RL
∫ R1/αL
0 H(y)dy.

ubstituting in the definition of b1, and noting that pi does not depend on i, we see that

lim
m→∞

b1 = lim
m→∞

|Γ ||Bi|p2i = lim
m→∞

6m2LR1+1/α
L p2i

= 6L
( ln(τL)
2∥H∥1

)1+1/α
exp

(
−

2 ln(τL)
∥H∥1

∫ R1/αL

0
H(y)dy

)
.

Now,
∫ R1/αL
0 H(y)dy tends to ∥H∥1 as L, and hence RL, tends to infinity. So, it follows that

lim
L→∞

lim
m→∞

b1 = lim
L→∞

6L
(τL)2

( ln(τL)
2∥H∥1

)1+1/α
= 0.

This completes the proof of the lemma. □

Lemma 6. Let Bi be defined as in (6) and b2 as in (7). Then, b2 tends to zero as we let m tend to infinity, followed by L.

Proof. Consider two nodes located at x, y ∈ [0, L]. The set of all other nodes to which at least one of them has an edge
onstitutes an inhomogeneous PPP on [0, L], with intensity φ(·, {x, y}) given by

φ(z, {x, y}) = 1 − (1 − h̃L(z, x))(1 − h̃L(z, y)). (9)

Fix i, j ∈ Γ , i ̸= j, and condition on the event that Ji = 1 and Jj = 1, i.e., that there is a unique point of the PPP, PL, on
each of the segments Ai and Aj. Denote their positions by x and y. The set of nodes to which these might be connected,
esides each other, constitutes a PPP on [0, L] \ (Ai ∪ Aj) with intensity φ defined above. Hence, the probability that both

these nodes are isolated is given by

(1 − h̃L(x, y)) exp
(
−

∫
[0,L]\(Ai∪Aj)

φ(z, {x, y})dz
)
.

Now, by well-known properties of Poisson point processes, the unique points of the homogeneous PPP on the segments
Ai and Aj are independently and uniformly distributed within them. Hence,

pij = P(Ji = 1, Jj = 1)P(Ii = 1, Ij = 1|Ji = 1, Jj = 1)

=
1
m2 e

−2/m
∫
x∈Ai

∫
y∈Aj

m2(1 − h̃L(x, y)) exp
(
−

∫
[0,L]\(Ai∪Aj)

φh̃L (z, {x, y})dz
)
dxdy

≤

∫
x∈Ai

∫
y∈Aj

exp
(
−

∫
[0,L]\(Ai∪Aj)

φh̃L (z, {x, y})dz
)
dxdy.

Substituting in the definition of b2, we obtain that

b2 ≤

∫
x∈[0,L]

∫
y:ρL(x,y)≤3R1+1/α

L

exp
(
−

∫
[0,L]\(Ai(x)∪Aj(y))

φh̃L (z, {x, y})dz
)
dxdy,

where we write Ai(x) and Aj(y) to denote the segments in which x and y lie; allowing them to lie in the same segment
yields an upper bound, as does dropping the (1 − h̃L(x, y)) term. Now,∫

φh̃L (z, {x, y})dz
m→∞
−−−→

∫
φh̃L (z, {x, y})dz,
[0,L]\(Ai(x)∪Aj(y)) [0,L]

5
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since φh̃L is bounded above by 1. Hence, we conclude using the translation invariance of h̃L that

lim sup
m→∞

b2 ≤

∫
x∈[0,L]

∫
y:ρL(x,y)≤3R1+1/α

L

exp
(
−

∫
[0,L]

φh̃L (z, {x, y})dz
)
dxdy

= 2L
∫ 3R1+1/α

L

y=0
exp

(
−

∫ L

0
φh̃L (z, {0, y})dz

)
dy.

(10)

ubstituting for φh̃L from (9), we have∫ L

0
φh̃L (z, {0, y})dz =

∫ L

0

(
h̃L(0, z) + h̃L(y, z) − h̃L(0, z)h̃L(y, z)

)
dz. (11)

ow, by the Schwarz inequality,(∫ L

0
h̃L(0, z)h̃L(y, z)dz

)2
≤

(∫ L

0
(h̃L(0, z)2)dz

)(∫ L

0
(h̃L(y, z)2)dz

)
. (12)

s h̃L(y, ·) is just a circular shift of h̃L(0, ·), we also have∫ L

0
h̃L(y, z)dz =

∫ L

0
h̃L(0, z)dz,

∫ L

0
(h̃L(y, z)2)dz =

∫ L

0
(h̃L(0, z)2)dz. (13)

ubstituting (12) and (13) into (11), we get∫ L

0
φh̃L (z, {0, y})dz ≥ 2

∫ L

0
h̃L(0, z)dz −

∫ L

0
(h̃L(0, z))2dz, (14)

ow,

1
RL

∫ L

0
h̃L(0, z)dz =

2
RL

∫ R1+1/α
L

0
H
( z
RL

)
dz

= 2
∫ Rα

L

0
H(x)dx

L→∞
−−−→ 2∥H∥1,

(15)

ince RL tends to infinity as L does. A similar calculation yields

1
RL

∫ L

0
(h̃L(0, z))2dz

L→∞
−−−→ 2RL∥H∥

2
2. (16)

ubstituting (15) and (16) in (14), we get

lim inf
L→∞

1
RL

∫ L

0
φh̃L (z, {0, y}dz) ≥ 4∥H∥1 − 2∥H∥

2
2.

Recall that, by assumption, there exists δ > 0 such that ∥H∥
2
2 ≤ ∥H∥1 − δ. Hence, it follows that

lim inf
L→∞

1
RL

∫ L

0
φh̃L (z, {0, y}dz) ≥ 2∥H∥1 + 2δ.

Since RL = ln(τL)/2∥H∥1, we now obtain from (10) that

lim sup
L→∞

lim sup
m→∞

b2 ≤ lim sup
L→∞

6LR1+1/α
L e− ln(τL)−2δRL

= lim sup
L→∞

6
τ
R1+1/α
L e−2δRL = 0,

since RL tends to infinity with L. □

Proof of Theorem 1. Observe from Lemmas 3, 4, 5 and 6 that

lim
L→∞

lim
m→∞

dTV (Wm,L, Po(E[Wm,L])) = 0.

It follows from Lemmas 1 and 2, and the triangle inequality, that

lim
L→∞

lim
m→∞

dTV (Niso, Po(E[Wm,L])) = 0.

It is straightforward to check that E[Wm,L] = mLpi tends to 1/τ . Finally, a straightforward calculation shows that, if
a sequence λ converges to λ, then Po(λ ) converges to Po(λ) in total variation distance. Hence, invoking the triangle
n n

6
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inequality once more, we obtain that

dTV (Niso, Po(1/τ )) → 0 as m, L → ∞.

his completes the proof of the theorem. □
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