
Instruction Manual for “ChromoPainter: a

copying model for exploring admixture in

population data”

Garrett Hellenthal

November 28, 2012

Contents

1 Introduction 2

2 Getting Started 2

3 Input Format 3
3.1 haplotype infile (’-g’ switch) . 3
3.2 recom rate infile (’-r’ switch) . 5
3.3 donor list infile (’-f’ switch) . 6

4 Output 7
4.1 .samples.out . 7
4.2 .chunkcounts.out . 8
4.3 .chunklengths.out . 8
4.4 .prop.out . 8
4.5 .regionchunkcounts.out . 9
4.6 .regionsquaredchunkcounts.out . 9
4.7 .EMprobs.out . 9
4.8 .mutationprobs.out . 10
4.9 .copyprobsperlocus.out . 10

5 List of Options 10

6 Examples of Usage 12

7 Suggestions/Warnings for Running ChromoPainter 13

8 Computational Complexity 13

9 Citation 14

1

1 Introduction

ChromoPainter is a program to explore admixture in the Single-Nucleotide-
Polymorphism (SNP) data of haplotypes sampled from multiple populations. In
particular, ChromoPainter takes as input: (1) the SNP data for a set of admixed
“recipient” chromosomes, (2) the SNP data for a set of “donor” chromosomes
thought to represent the sources of admixture in the recipient chromosomes,
and (3) a genetic-map representing the recombination distance between each
pair of contiguous SNPs. (Note that (3) is only necessary if the data is not
specified as “unlinked” using the ’-u’ switch, which we highly recommend to
substantially increase power – see below.) It then uses a Hidden Markov Model
(HMM) analagous to that described in [1] in a manner that intuitively forms
each recipient chromosome as a mosaic of the donor chromosomes (see [2] for
details), capturing which donors are essential to explain the recipient DNA. One
attractive feature of ChromoPainter is that it deals with an arbitrarily large set
of donor chromosomes, so that it requires very little or no a priori information
about the important donors involved in the admixture history of the recipient
population.

When conditioning a set of recipient chromosomes on a set of donor chro-
mosomes, ChromoPainter provides the following as output for each recipient
individual (individuals may be either haploid or diploid):

1. stochastic sample realizations of the HMM denoting which donors the re-
cipient chromosome copies from at each SNP – we refer to this as “painted
chromosomes”

2. the total expected length of genetic material genome-wide copied from
each donor

3. the total expected number of “chunks” genome-wide copied from each
donor, where a “chunk” refers to a set of contiguous SNP(s) copied intact
from the same donor source

The program is flexible in that it allows the user to change emission and tran-
sition probabilities for each donor population. It can also use an Expectation-
Maximization (E-M) algorithm to re-estimate the proportion of genetic material
copied from each donor by using the previous estimates as a new prior under
the model and iterating.

2 Getting Started

After extracting the .tar file, compile in the following manner:

gcc -o ChromoPainter ChromoPainter.c -lm -lz

To compile, note that you must have “zlib” installed (e.g. sudo apt-get install
zlib1g-dev).

2

The basic command line is as follows:

./ChromoPainter -g [haplotype infile] -r [recom rate infile] -f [donor list infile]
-o [output filename]

The user-input file haplotype infile provides the genetic variation informa-
tion at all SNPs in the donor and recipient haplotypes. The user-input file
recom rate infile provides the genetic distance between each pair of contiguous
SNPs in haplotype infile. The user-input file donor list infile provides informa-
tion on the donor populations contained in haplotype infile. The user-input
name output filename denotes the prefix of the output files. See section “Input
Format” below for details on the format of each of the three input files and
section “Output” for details on the files output by the program.

Type “./ChromoPainter -h” or “./ChromoPainter –help” to get a brief descrip-
tion of all command line options.

3 Input Format

There are three types of input file, all required except for in specific situa-
tions as described below: the haplotype infile (always required; specified with
the ’-g’ switch), the recom rate infile (specified with the ’-r’ switch), and the
donor list infile (specified with the ’-f’ switch).

3.1 haplotype infile (’-g’ switch)

The file containing the genetic variation information for the donor and recipient
chromosomes (i.e. haplotype infile) should be in a format very similar to PHASE
format [3, 4]:

• The first line of the file contains the number of donor haplotypes. (NOTE:
if the ’-a’ switch is specified, this first line should be 0.)

• The second line of the file contains the total number of donor and recipient
individuals. If the ’-j’ switch is used, indicating all individuals are hap-
loid, this will be the total number of donor and recipient haplotypes in the
file. If the ’-j’ switch is not specified, indicating individuals are diploid,
this number should be half the total number of donor and recipient haplo-
types in the file. (In this latter caes, note that unless the ’-a’ switch is used,
only recipient individuals are assumed to be diploid. Thus each donor pop-
ulation can have any number of haplotypes representing it – the program
does not ever assume that any given pair of donor haplotypes forms an
individual. For this reason, the number entered here can be a fraction;
for example if there are 7 total donor haplotypes and 3 diploid recipient
individuals, the number entered here should be “6.5”(=[7+3*2]/2).)

• The third line contains the number of SNPs.

3

• The fourth line contains the letter “P” followed by a vector of the basepair
positions of each SNP, in monotonically increasing order. The basepair
positions do not strictly need to be in monotonically increasing order if you
are including genetic information from multiple chromosomes, as specified
in recom rate infile below. However, within each chromosome, basepairs
must be in order.

• The fifth line contains a vector of “S”s, with one “S” per SNP (this line
is ignored in the current implementation, but some value must still be
specified in line 5).

• The remaining lines of the file contain the genetic variation information of
each donor and recipient haplotype, with each row a new haplotype and
each column the allelic type at each biallelic SNP, in the same order as the
“positions” line. The accepted allelic type values are “0”, “1”, “A”, “G”,
“C”, or “T”. There should be NO missing values!! There should be
no spaces between columns for the genotype rows. Donor haplotypes are
listed in the initial rows of haplotypes, followed by recipient haplotypes in
the final rows of the input file. If individuals are diploid, each pair of 2
contiguous rows should be the two haplotypes for a single individual.

For example, consider a file with 4 donor haplotypes and 6 recipient hap-
lotypes (which may be for 3 recipient individuals), with genetic information
collected at 6 SNPs with basepair positions at 100, 200, 300, 400, 500, and 600;
the haplotype infile might look like the following:

4
5
6
P 100 200 300 400 500 600
SSSSSS
010101
011101
111101
001101
011000
001100
001001
001011
001001
001111

The first donor haplotype’s allele types across the 6 SNPs is 010101. The second
donor haplotype’s allele types across the 6 SNPs is 011101.
The first recipient haplotype’s allele types across the 6 SNPs is 011000. The
second recipient haplotype’s allele types across the 6 SNPs is 001100. (If diploid,
these two haplotypes are the genetic information for recipient individual 1.)

4

Etc...

If a donor list infile is specified, donor haplotypes should be ordered as listed
in donor list infile as described below.

3.2 recom rate infile (’-r’ switch)

The file format of recom rate infile is as follows. There should be a header line
followed by one line for each SNP in haplotype infile. Each line should contain
two columns, with the first column denoting the basepair position values given
in haplotype infile, in the same order. The second column should give the genetic
distance per basepair between the SNP at the position in the first column of
the same row and the SNP at the position in the first column of the subsequent
row. The last row should have a “0” in the second column (though this is not
required – this value is simply ignored by the program). Genetic distance should
be given in Morgans, or at least the relevant output files assume this value is in
Morgans.

If you are including genetic information from multiple chromosomes, put a
“-9” (or any value < 0) next to the last basepair position of the preceeding chro-
mosome. For example, to specify one chromosome with SNPs at basepairs 100
and 300 with recombination rate 0.01 Morgan per basepair between them, and
a second chromosome with SNPs at basepairs 250 and 450 with recombination
rate 0.02 Morgan per basepair between them, the recom rate infile should look
as follows:

start.pos recom.rate.perbp
100 0.01
300 -9
250 0.02
450 0

In general, specifying “-9” (or any value < 0) in the second column indicates
that the recombination rate is infinite between the SNP at the position in the
first column of the same row and the SNP at the position in the first column
of the subsequent row. In this case, the position in the subsequent row can be
less than the position specified in the row containing the “-9”. Within a chro-
mosome, however, basepairs must always be given in monotonically increasing
order.

Note that the recom rate infile does not need to be specified if the switch
’-u’ is specified, indicating that SNPs are unlinked. With the exception of being
able to specify “-9” as described above to indicate multiple chromosomes, any
recom rate information from a provided recom rate infile will be ignored if the
’-u’ switch is used.

Note also that, in order to allow numerical stability in C, the minimum
allowed recombination rate is 1×10−15 Morgan per basepair. Any values

5

below this in the second column of recom rate infile will be fixed automatically
to this value.

3.3 donor list infile (’-f ’ switch)

The file donor list infile provides information on the number of haplotypes from
each donor population in haplotype infile. This file is not always required, for
instance if you condition a subset of haplotypes (or individuals) on every other
haplotype (or individual) using the ’-a’ switch, but is useful for tidying the out-
put files. There should be one row in donor list infile for each donor population.
There are 2-4 columns per row. The first column gives the donor population
label, and the second column gives the number of haplotypes from that donor
population. The optional third column (which must be provided only if either
the ’-p’ or ’-m’ switches are used) gives the a priori probability of copying from
each donor population (default is equally likely to copy from each donor chro-
mosome, so that a priori a recipient haplotype is more likely to copy from donor
populations with more chromosomes). The optional fourth column (which must
be provided only if the ’-m’ switch is used) gives the mutation (or emission)
probability from each donor population; i.e. the probability of a mutation given
the recipient is copying from the given donor population at a SNP (default is
that mutation probabilities are the same across all donor populations, with rate
as described in [2]). If the ’-m’ switch is specified but the ’-p’ switch is not,
column 3 must still be entered though it is not used. Note that if the ’-im’
switch is given, denoting that you wish to use E-M to maximize over the muta-
tion probabilities, each donor haplotype will have its own maximum mutation
probability value (i.e. while either all haplotypes or haplotypes with the same
donor pop label will begin with the same mutation probabilities, they may not
have the same probabilities after any number of E-M iterations).

Donor haplotypes in haplotype infile must be ordered according to
the rows in donor list infile. For example, consider the following donor list infile
example consisting of three donor populations with 4, 8, and 6 chromosomes,
respectively:

pop1 4 0.5 0.0002
pop2 8 0.3 0.0004
pop3 6 0.2 0.0001

In this example, haplotype infile must contain 18 rows of donor haplotypes,
ordered such that the first 4 rows are the haplotypes from pop1, the next 8
rows are the haplotypes from pop2, and the next 6 rows are the haplotypes
from pop3. (Any subsequent lines in haplotype infile will contain the recipient
haplotype information.) The output files for .chunkcounts.out, .chunklengths.out,
.prop.out, .regionchunkcounts.out, and .regionsquaredchunkcounts.out described
below will then contain columns representing the amount of genetic material
copied from each of pop1, pop2, and pop3. If the ’-p’ switch is used, then the

6

a priori probability of copying from each pop1 haplotype will be 0.5/4 = 0.125,
the a priori probability of copying from each pop2 haplotype will be 0.3/8 =
0.0375, and the a priori probability of copying from each pop3 haplotype will
be 0.2/6 = 0.0333. If the ’-m’ switch is used, then the probability of mutation
at any SNP given you copy from a pop1 haplotype is 0.0002, the probability of
mutation given you copy from a pop2 haplotype is 0.0004, and the probability
of mutation given you copy from a pop3 haplotype is 0.0001. (Note that you
can use the above donor list infile example without specifying the ’-p’ and/or
’-m’ switches; in this case columns 3 and 4 will be ignored.)

Note that the third column of donor list infile, if specified, must sum to 1.
Furthermore, in order to allow numerical stability in c, no value in the third
column can be below 1× 10−15 times the corresponding number of haplotypes
in the second column. Values below this threshold will be set automatically to
the threshold value.

See “Examples of Usage” below and the provided sample files for examples
of each type of input file.

4 Output

There are several output files for ChromoPainter.

4.1 .samples.out

The first line of the output file with suffix .samples.out contains information on
the input files and commands used to run ChromoPainter.

The subsequent lines contain stochastically-derived samples indicating which
donor haplotypes each recipient haplotypes copies at each SNP under the model.
Recipient haplotypes appear in the order specified in haplotype infile. Each
recipient haplotype has one row denoting the haplotype index label (=1,...,x
for x recipient haplotypes), followed by s rows corresponding to the number of
“painted chromosome” samples requested using the ’-s’ switch (default is s=10).
If there are L total SNPs, each “painted chromosome” row has L+1 columns,
with the first column corresponding to the sample number (=1,...,s) and the
subsequent columns denoting the index of the donor haplotype copied at each
SNP, with SNPs ordered as in haplotype infile. For D donor haplotypes, these
index labels are 1,...,D corresponding to the donor haplotype’s order in hap-
lotype infile going top to bottom (i.e. the first donor haplotype row listed in
haplotype infile has label “1”, the second donor haplotype row listed in haplo-
type infile has label “2”, etc...). If the ’-a’ switch is used, labels correspond to
the corresponding haplotype rows as ordered in haplotype infile.

7

4.2 .chunkcounts.out

The output file with suffix .chunkcounts.out contains a matrix with donor pop-
ulations as columns and recipient individuals as rows (this may be one “pop-
ulation” per donor individual if the ’-a’ switch is specified, with “individuals”
being haploid or diploid). Each matrix entry contains the expected number of
“chunks” (i.e. blocks of contiguous SNPs) that the given recipient individual
copies from each donor population across all SNPs under the model (after i E-M
iterations as specified by the ’-i’ switch). A “chunk” can intuitively be thought
of as analagous to a segment of DNA inherited intact from a single ancestral
donor source, with left and right endpoints marked by recombinations, though
imperfections of the model and other issues caution strongly against strictly
interpretating “chunks” in this manner. If the unlinked switch ’-u’ is speci-
fied (indicating that each SNP is independent from all other SNPs), a “chunk”
corresponds to a single SNP.

4.3 .chunklengths.out

The output file with suffix .chunklengths.out contains a matrix with donor pop-
ulations as columns and recipient individuals as rows (this may be one “pop-
ulation” per donor individual if the ’-a’ switch is specified, with “individuals”
being haploid or diploid). Each matrix entry contains the expected total ge-
netic length of DNA that the given recipient individual copies from each donor
population across all SNPs under the model (after i E-M iterations as specified
by the ’-i’ switch). These entries are given in cM assuming recom rate infile
provides basepair values in Morgans; more generally the sum across columns in
each row of the .chunklengths.out matrix should be a factor of 100 larger than the
total sum of genetic distances across all basepairs provided in recom rate infile
(if recipient individuals are diploid, it will be a factor of 200 greater, as genetic
lengths are summed across the recipient individual’s two haplotypes). This file
is empty if the unlinked switch ’-u’ is specified.

4.4 .prop.out

The output file with suffix .prop.out contains a matrix with donor populations
as columns and recipient individuals as rows (this may be one “population”
per donor individual if the ’-a’ switch is specified, with “individuals” being
haploid or diploid). Each matrix entry contains the expected proportion of
“chunks” (i.e. blocks of contiguous SNPs, or single SNPs if the ’-u’ switch is
specified) that the given recipient individual copies from each donor population
across all SNPs under the model (at the ith E-M iteration as specified by the
’-i’ switch). If the ’-i’ switch is not specified, this will simply return the user-
specified probabilities in donor list infile (or default values corresponding to an
equal proportion of copying from each donor chromosome if the ’-p’ switch is
not specified). Note that the values in this file are the ones used as a priori
copying proportions for the results generated in the output files with suffixes

8

.samples.out, .chunkcounts.out, chunklengths.out, .regionchunkcounts.out, .region-
squaredchunkcounts.out, and .copyprobsperlocus.out. Furthermore, in order
to allow numerical stability in c, no value can be below 1×10−15 times
the corresponding number of haplotypes from that donor population.
Values below this threshold will be set automatically to the threshold
value during each iteration of the E-M algorithm.

4.5 .regionchunkcounts.out

The output file with suffix .regionchunkcounts.out contains values very similar
to those described for the output file with suffix .chunkcounts.out. The only dif-
ference is that, rather than tabulating the expected number of “chunks” copied
from each donor population across all SNPs in haplotype infile, it tabulates val-
ues only across the maximum number of “regions” across all SNPs such that
each region contains k chunks (with k specified by the ’-k’ switch; default is
k=100). The second column gives the number of regions of size k. For use in
finestructure as described in Lawson et al [2].

4.6 .regionsquaredchunkcounts.out

The output file with suffix .regionsquaredchunkcounts.out contains values cor-
responding to .regionchunkcounts.out, but where expected number of “chunks”
copied per donor population have been squared within each k-chunk “region”
(with k specified by the ’-k’ switch; default is k=100) and summed across re-
gions. The second column gives the number of regions of size k. For use in
finestructure as described in Lawson et al [2].

4.7 .EMprobs.out

The output file with suffix .EMprobs.out gives for each individual the expected
log-likelihood value from the model under values of “donor copying proportions”,
“mutation (emission) probability” and “recombination rate scaling constant” Ne

at each E-M iteration. For each individual, there is one line denoting the indi-
vidual label, followed by i lines corresponding to the number of E-M iterations
specified by the ’-i’ switch. Each of these i lines gives the E-M iteration number,
the expected log-likelihood value of the individual’s SNP data under the model
(there is one value for each haplotype if individuals are diploid), and the values
of Ne and (global) mutation rate used to calculate the expected log-likelihood
at the given E-M step. (Note that Ne here should not be interpreted
as “effective population size”. Loosely speaking, it might be related
to “effective population size” divided by the total number of donor
haplotypes. But caution should be exercised with any such interpre-
tation!)

9

4.8 .mutationprobs.out

The output file with suffix .mutationprobs.out contains a matrix with donor pop-
ulations as columns and recipient individuals as rows (this may be one “pop-
ulation” per donor individual if the ’-a’ switch is specified, with “individuals”
being haploid or diploid). Each matrix entry contains the expected number of
SNPs that the given recipient individual copies from each donor population with
error (i.e. emission) across all SNPs under the model (after i E-M iterations as
specified by the ’-i’ switch).

4.9 .copyprobsperlocus.out

The output file with suffix .copyprobsperlocus.out contains for each recipient
haplotype the expected probability you copy from each donor population at each
SNP. The first column gives the basepair position and each subsequent column
gives the probability you copy from each donor population as specified in the
first row header. Recipient haplotypes are stacked on top of one another. For
example, if there are L SNPs, following the initial header line the next L+1 rows
will correspond to recipient haplotype 1 (as ordered by row in haplotype infile).
The first line in these L + 1 rows gives the haplotype id, which will correspond
to the row in haplotype infile containing the given recipient haplotype (with the
first recipient haplotype getting label “1”), and the remaining L rows give the
probabilities per SNP. The next L + 1 rows correspond to recipient haplotype
2. Etc. Note that basepairs are listed in reverse order relative to the
basepairs in haplotype infile and recom rate infile.

5 List of Options

The list of ChromoPainter options that can be specified at the command line are
as follows:

-g <haplotype infile> (REQUIRED; no default)

-r <recom rate infile> (REQUIRED; no default – unless using ’-u’ switch)

-f <donor list infile> (REQUIRED; no default – unless using ’-a’ switch)

-i <int> number of E-M iterations for estimating parameters (default=0;
with the exception of file with suffix prop.out, the main output files all
contain values generated after this number of E-M steps) – you can specify
any subset of ’-in’, ’-ip’, ’-im’, or ’-iM’ below to maximize over (with the
exception that ’-im’ and ’-iM’ cannot both be specified)

-in maximize over recombination scaling constant (Ne) using E-M

-ip maximize over copying proportions using E-M

-im maximize over mutation (emission) probabilities using E-M, such that
each donor haplotype has its own mutation probability

10

-iM maximize over global mutation (emission) probability using E-M, such
that each donor haplotype has the same mutation probability

-s <int> number of samples per recipient haplotype (default=10)

-n <double> recombination scaling constant start-value Ne (i.e. as step 0 of
the E-M; default=400000/J where J is the total number of haplotypes in
<haplotype infile>)

-p specify to use prior copying probabilities supplied in donor list infile (i.e.
as step 0 of the E-M; default is to assume each donor haploytype is copied
a priori with equal probability)

-m <double> specify to use mutation (emission) probabilities supplied in
donor list infile; user must also provide the self-copying mutation rate
following this switch, though this value will be ignored if ’-c’ switch is
NOT used (i.e. as step 0 of the E-M; default is to use the same mutation
probability for each donor population equal to fixed estimate in [1])

-M <double> specify to use a global mutation (emission) probability that
is the same for all donors (i.e. as step 0 of the E-M; default equal to fixed
estimate in [1]) (Note: entering ’-M 0’ leads to the default value
being used; to make a very small mutation rate, enter a very
small number >0.)

-k <double> specify number of expected chunks to define a ’region’ (de-
fault=100 – only necessary for use in finestructure applications)

-c condition on own population’s individuals (default is to condition only on
donor haplotypes)

-j specify that individuals are haploid (default is to assume individals are
diploid, including donor haplotypes if ’-a’ switch is used)

-u specify that SNPs are unlinked

-a < a1 > < a2 > condition individuals a1 through a2 (as ordered by row in
haplotype infile) on every other individual (use ’-a 0 0’ to do all inds) – if
this option is used, the first line in haplotype infile should be “0”

-b print-out zipped file with suffix .copyprobsperlocus.out containing prob
each recipient copies each donor at every SNP (note: though zipped, file
can be quite large with many SNPs and many donor populations)

-y do NOT print individual count numbers next to population labels in out-
put files. This is only relevant if ’-a’ switch is used, and probably only nec-
essary if you have one individual per “population” in your donor list infile.
The default is to label each individual in the output files according to their
population label from donor list infile concatenated with a number (e.g.
“POPX1”, “POPX2”, etc., which would become “POPX”, “POPX” if the
’-y’ switch is used).

11

-o <outfile-prefix> (default = ’haplotype infile’)

–help print help menu (which lists these options)

6 Examples of Usage

Included are samples of a haplotype infile (“example.haps”), recom rate infile
(“example.recomrates”), and donor list infile (“example.donorlist”). To run the
copying model using defaults, which will condition 24 recipient individuals on
264 donor haplotypes from 7 populations (as defined in donor list infile) and
output summaries grouped by population label, type:

./ChromoPainter -g example.haps -r example.recomrates -f example.donorlist

The output files “example.haps.samples.out”, “example.haps.chunkcounts.out”,
“example.haps.chunklengths.out”, “example.haps.prop.out”, “example.haps.regionchunkcounts.out”,
“example.haps.regionsquaredchunkcounts.out”, and “example.haps.EMprobs.out”
will be generated. If you re-run the same command line, the file “exam-
ple.haps.samples.out” will change because the sampling of “painted chromo-
somes” is stochastic, but the values in all other output files should remain the
same.

To estimate copying proportions over 5 E-M iterations, instead type:

./ChromoPainter -g example.haps -r example.recomrates -f example.donorlist -i 5
-ip

The same output files as before will be generated, but now – in addition to the
output in “example.haps.samples.out” – the output files “example.haps.chunkcounts.out”,
“example.haps.chunklengths.out”, “example.haps.prop.out”, “example.haps.regionchunkcounts.out”,
and “example.haps.regionsquaredchunkcounts.out” will contain different values
than before, as they are all now based on using 5 steps of the E-M algorithm to
re-estimate copying proportions under the model. In addition, the output files
“example.haps.EMprobs.out” will be different because it contains the expected
log-likelihood values for the SNP data of each individual’s haplotype under the
model at each step of the E-M.

As another example that uses more options, e.g. to allow individuals to copy
from their own population, estimate recombination scaling constant and copy-
ing proportions over 5 E-M iterations, and generate 3 random “painted chromo-
some” samples for each haplotype under the model after copying proportions
have been estimated, type:

./ChromoPainter -g example.haps -r example.recomrates -f example.donorlist -o
example.output -i 5 -in -ip -c -s 3

12

Here, because the ’-o’ switch is specified, the output names change. In particular
the output files “example.output.samples.out”, “example.output.chunkcounts.out”,
“example.output.chunklengths.out”, “example.output.prop.out”, “example.output.regionchunkcounts.out”,
“example.output.regionsquaredchunkcounts.out”, and “example.output.EMprobs.out”
will be generated. Note that some of the output files contain an additional col-
umn entitled “Self”, which gives values for the amount of genetic material each
individual copies from all haplotypes of its own population (excluding its own
haplotypes).

7 Suggestions/Warnings for Running ChromoPainter

When running ChromoPainter to analyze a given set of recipient haplotypes
conditional on a set of donor haplotypes, we suggest the following protocol:

1. Do NOT use the ’-u’ switch if you can avoid it, as you lose vital linkage
disequilibrium information!!!

2. Initially run the model using some number of E-M iterations (e.g. ’-i 10’)
to estimate parameters such as the recombination scaling constant Ne and
mutation (emission) probabilities. Check the .EMprobs.out output files to
see if all parameter values have converged across E-M iterations in order to
determine how many iterations to use. If the values have not moved
at all from the starting values, the algorithm is likely to be stuck
in a local maxima, and you should try different starting values
(in practice this happens if the starting values are too high or
too low, perhaps by orders of magnitude). If dividing the data
into chromosomes to run in parallel, you may want to average parameter
estimates across the genome (if it is sensible to assume these parameters
are constant, which it often is) and then re-run each region using these
fixed parameter values (i.e. using the ’-n’, ’-m’, ’-p’ and/or ’-M’ switches
and ’-i 0’) to get final estimates.

3. Depending on the study aim, explore a variety of applications, such as
allowing self-copying (i.e. the ’-c’ switch) versus not, and re-estimating
copying proportions using E-M (i.e. the ’-ip’ switch).

8 Computational Complexity

The computational complexity of ChromoPainter is o((i + 1)LDR) for i E-M
iterations, L SNPs, D donor haplotypes, and R recipient haplotypes. When
using the ’-a a1 a2’ switch, the complexity is ≈ o(2iLH(a2 − a1 + 1)) where H
is the total number of haplotypes in the file (if using ’-a 0 0’, the complexity is
≈ o(iLH2)). As an example, when using i=10, D=264, R=48, and L=9118, it

13

took ChromoPainter ≈2-3 hours to run on a 2.8GHz Intel Core 2 Duo with 8Gb
RAM.

9 Citation

When making use of ChromoPainter, please cite the following paper:

Lawson, D., Hellenthal, G., Myers, S., and Falush, D (2012) “Inference of pop-
ulation structure using dense haplotype data” PLoS Genet 8(1):e1002453

Questions? Bugs? Contact Garrett Hellenthal at ghellenthal@gmail.com. Though
I have tried implementing rigorous checks for input-file format errors, if a “Seg-
mentation Fault” occurs when running ChromoPainter, a likely explanation is
that one of the input files is somehow incorrect. Another possible explanation
is that the command line input is incorrect. If you encounter such a problem
(or any other bug!), please email me so I can ammend the program.

References

[1] N. Li and M. Stephens. Modeling linkage disequilibrium and identifying re-
combination hotspots using single-nucleotide polymorphism data. Genetics,
165(4):2213–33, 2003.

[2] D.J. Lawson, G. Hellenthal, S. Myers, and D. Falush. Inference of population
structure using dense haplotype data. PLoS Genet, 8(1):e1002453, 2012.

[3] M. Stephens, N.J. Smith, and P. Donnelly. A new statistical method for hap-
lotype reconstruction from population data. Am J Hum Genet, 68(4):978–89,
2001.

[4] M. Stephens and P. Donnelly. A comparison of bayesian methods for hap-
lotype reconstruction from population genotype data. Am J Hum Genet,
73(5):1162–9, 2003.

14

