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Abstract

A large number of algorithms have been developed to identify population
structure from genetic data. Recent results show that the information used
by both model-based clustering methods and Principal Components Analy-
sis can be summarised by a matrix of pairwise similarity measures between
individuals. Similarity matrices have been constructed in a number of ways,
usually treating markers as independent but differing in the weighting given
to polymorphisms of different frequencies. Additionally, methods are now be-
ing developed that better exploit the power of genome data by taking linkage
into account. We review several such matrices and evaluate their ‘information
content’. A two-stage approach for population identification is to first con-
struct a similarity matrix, and then perform clustering. We review a range
of common clustering algorithms, and evaluate their performance through a
simulation study. The clustering step can be performed either directly, or
after using a dimension reduction technique such as Principal Components
Analysis, which we find substantially improves the performance of most al-
gorithms. Based on these results, we describe the population structure signal
contained in each similarity matrix, finding that accounting for linkage leads
to significant improvements for sequence data. We also perform a compari-
son on real data, where we find that population genetics models outperform
generic clustering approaches, particularly in regards to robustness against
features such as relatedness between individuals.

1 Introduction

An important goal of population genetics is to summarise the relationships be-
tween individuals from patterns in heritable molecular data. The most popu-
lar approaches for within-species analysis are model-based clustering (e.g. us-
ing STRUCTURE (45) or ADMIXTURE (2)) or forming low dimensional visual
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summaries of the variation (e.g. Principal Components Analysis, PCA (39)). Al-
though model-based approaches appear quite dissimilar to PCA, they typically
identify very similar population structure patterns (44), and have recently been
shown to be deeply connected (31). By correctly accounting for the information
provided in the sharing of molecular markers, the likelihood used by most pop-
ular model-based approaches (including STRUCTURE and ADMIXTURE) can
be approximately represented as a similarity matrix between pairs of individuals.
This similarity matrix in turn contains the same information as that used by some
PCA algorithms, for example SMARTPCA (44).

Similarity matrices can therefore be related to many population genetics meth-
ods. These matrices can be used in a two-stage approach to population genetics
(e.g. (41; 37; 17; 4; 25; 49; 31)) by first computing the pairwise similarities, and
then perform clustering or other analyses on this summary of the dataset. This
approach is appealing because it computationally efficient, and can typically be
parallelised straightforwardly by using multiple processors to calculate different
parts of the matrix. It is therefore an appropriate methodological paradigm for
the new genomic era in which over 15 million polymorphic sites can be found
within humans (1) who are relatively homogeneous compared to many species.
Even computationally efficient algorithms such as ADMIXTURE become chal-
lenging to apply to this scale of data, whereas similarity-based approaches require
little more computation than an equivalent PCA analysis.

This review has two main goals. The first is to discuss the choice of similarity
measure, which has received little attention despite the impact it has on popula-
tion identification for all similarity-based approaches. Therefore, we will not just
review the main choices available, but also perform an empirical evaluation of
their clustering performance. We find evidence there is a strong correspondence
between the ability of clustering algorithms to correctly identify populations, and
the signal-to-noise ratio within the matrix itself. Since PCA approaches can be
viewed as operating on a similarity matrix, they will therefore give a significantly
clearer picture of population structure if the similarity matrix is correctly chosen.
Current model-based admixture models, and other approaches that can be viewed
in terms of a similarity matrix, are also described by our approach in terms of the
amount of population signal available in them.

When addressing different measures of similarity, we explore the benefits of
accounting for linkage disequilibrium and the current methods available for this
purpose. We find that such linked methods significantly outperform unlinked
approaches, which implies they will be useful for PCA-like analyses. Furthermore,
we find evidence that the two leading approaches are exploiting a different signal
in the data, leading to the question of how a better, combined measure might be
found.

The second goal focuses on the problem of population identification via clus-
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tering. We review some standard approaches to clustering, and compare these
with the software FineSTRUCTURE (31). This is a similarity approach that is
‘model-based’ in the sense that it is theoretically equivalent to STRUCTURE un-
der certain conditions. We again perform an empirical evaluation of the methods.
We find that some simple approaches can perform very well under simulation
conditions. However, only the model-based approach performed well in real data,
which contained deviations from a discrete population model, e.g. due to between
individual relatedness. Furthermore, the generic approaches that squeezed most
information out of the data are also the most sensitive to tuning parameters that
are difficult to estimate from the data, leading them to completely fail in some
circumstances.

2 Similarity measures between genetic sequences

The aim of a genetic similarity measure is to identify pairs of individuals who are
‘closely related’ by assigning them higher similarity than those who are distantly
related. Similarity is measured between two individuals in the sample, with the
similarity matrix being formed by combining this information for all pairs of
individuals. For many measures, the similarity between pairs of individuals is
not just dependent on their own genetic composition but also of that of the rest
of the sample. Furthermore, similarity matrices need not be symmetric, that is
to say the similarity between individual i and j need not be the same as the
similarity between individual j and individual i. If the matrix is symmetric and
other technical conditions are met then the similarity is also a distance metric (a
property that holds for most but not all of the measures we consider here).

There are many possible interpretations of what it means for individuals to be
closely related, leading to different matrices being constructed. A simple inter-
pretation of relatedness is the average genetic distance (38). Assuming mutations
accumulate in a clock-like manner on a segment of DNA, this distance reflects
the minimum time in the past that DNA was present in a single ancestor. The
time varies along each chromosome where recombination events in previous gen-
erations have spliced together maternal and paternal DNA and in doing so spliced
together different genealogical trees. These times when averaged are captured by
several distance measures. Two common choices are the ‘identity-by-state’ (IBS)
and the very similar ‘Allele Sharing Distance’ (Table 1), both of which essentially
measure the proportion of sites at which two chromosomes are the same. The
measures vary in the way that the two copies of each chromosome possessed by
diploid individuals are averaged. However, as explained by Witherspoon Et al,
(60), this measure is sensitive to the frequencies of the SNPs used, leading to
the confusing result that individuals were often ‘less similar’ (in this sense, when
using small datasets) to individuals in their own population than to individuals
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in other populations.
An alternative interpretation defines relatedness in terms of differentiation

via genetic drift (42; 44). Genetic drift is the change in allele frequency caused
by variation between individuals in their number of offspring. On average, the
absolute frequency of alleles present at intermediate frequency changes by more
than when one allele is rare. As a consequence, differences between individuals at
intermediate frequency SNPs provide the strongest evidence of distinct historical
patterns of genetic drift. The contribution to the similarity measure is therefore
normalised using the allele frequency, which can also be thought of as a correction
to make the measure better reflect true information content. After normalisation,
intermediate frequency and rare SNPs contribute equally to the discrimination
between individuals. As for the allele sharing measure, there are a variety of
implementations of the matrix that differ in minor details (Table 1).

EIGENSTRAT (44) and the ‘unlinked Coancestry matrix’ (31) are both effec-
tively using the genetic drift normalisation. These matrices are important because
they effectively contain the same information about population structure that is
used by STRUCTURE and ADMIXTURE (under certain technical conditions
outlined in the propositions of Lawson et al. (31), which approximately hold for
the simulated dataset considered here). Therefore any statements about the in-
formation content of these matrices reflect the maximum that can be expected
from all model-based algorithms that use the STRUCTURE likelihood.

Given data from sufficient independent genome regions, either of these distance
measures should reflect differences in ancestry amongst individuals. In practise
it matters which measure is used because, at least within humans, there is a low
signal to noise ratio. Most variation is either shared by all populations (because
a mutation arose in the long period of prehistory) or is specific to a handful of
individuals within a single one (because it occurred recently as human population
size expanded). Population structure is present at a range of scales and therefore
there is always an advantage to using the most accurate method. As we describe
below, we find that methods which normalise the variance consistently give better
power to cluster closely related populations than methods that do not.

3 The effect of linkage

Although different copies of the same human chromosome typically differ at only
1 site in 1000, the non-repetitive content of the human genome is extremely large
(> 2.5 billion bases). Modern commercially available platforms can query more
than a million SNPs and full genome sequencing can be used to uncover variation
at more than 15 million sites (1). If all of these markers provided independent in-
formation, then any of the distance measures above would detect extremely subtle
differences in ancestry. However in practise, physically close sites are genetically
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Table 1: Similarity measures that do not account for linkage. See Supplementary
Section S2 for application references, and for additional non-genetic measures.

Name
(3 letter acronym)

Equations
(summed over SNPs l = 1 · · ·L)

References
(and programs)

Identity-by-State
(IBS),
Allele Sharing
Distance,
SNP edit distance

(a) 1 − |Yil − Yjl|
(b) YilYjl + (1 − Yil)(1 − Yjl)
(c) 2(Yil −1/2)(2Yjl −1/2)+1/2
Yil = {0, 1} if haplotype i {does
not have/has} SNP l

PLINK (46)
Widely used in applications, see
e.g. (18) for a recent overview

Notes: In the haploid case does not depend on the distance
metric chosen (i.e. we can replace |Yil − Yjl| by |Yil − Yjl|d for
any d > 0). For diploids, the variants do have slightly different
normalisation. Equation (c) shows the relation to a covariance.

Covariance (COV) (a) (Yil − f̂l)(Yjl − f̂l).
f̂l is the frequency of SNP l

McVean (38) describes this thor-
oughly, although there are also
many other uses

Notes: There is a clear historical interpretation (38). This mea-
sure has been historically popular for PCA (e.g. (39)).

Normalised Covari-
ance (ESU),
Coancestry (CPU)

(a) (Yil−f̂l)(Yjl−f̂l)

f̂l(1−f̂l)

(b) YilYjlP
k 6=i Ykl

+ (1−Yil)(1−Yjl)P
k 6=i(1−Ykl)

EIGENSTRAT (44)
ChromoPainter (31)

Notes: Equation (a) is used by EIGENSTRAT, and is almost
identical (on scaling and rotation) to the ‘unlinked coancestry
matrix’ (b) of ChromoPainter, both of which are approximately
sufficient statistics for the STRUCTURE likelihood (See Proposi-
tions 1-4 of (31)).
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‘linked’ leading to high statistical correlation, substantially reducing the amount
of information available. In total a single haploid genome undergoes about 36
crossovers per generation, leading to a total recombination rate of about 36 Mor-
gans (30). Correlations between markers exist at all genetic scales but those on
the centi-Morgan scale are likely to reflect recent shared ancestry, while those at
0.01cM scale are often shared between all humans.

The number of SNPs within each 0.01cM region is highly variable, mainly
because of the enormous variation in recombination rates that is observed at fine
scales (40). As a result, naive application of the above distance measures to
sequence data will give a disproportional weighting to low recombination regions.
Furthermore, statistical approaches that assume each SNP is independent will
massively overestimate the information contained in the data.

A simple approach to handling data containing linkage disequilibrium (LD) is
to thin it (using e.g. PLINK (46)) so that within each region of a given genetic
length there are a small and approximately similar number of SNPs. Thinning has
has the attractive side-effect that the dataset might be small enough to approach
using computationally intensive methods, usually STRUCTURE (4; 7). There are
many possible ways of thinning data (e.g. (10; 54)), but all are bound to discard
useful information and we therefore make no attempt to review or evaluate these
approaches here. In an attempt to avoid completely discarding SNPs, Patterson et
al. (44) implement an approach in which the SNPs are considered in order along
the chromosome. The allele vector of each SNP is regressed against the M previous
ones, with the residuals from this regression used to represent the additional
information provided by the extra SNP. Note however, that since the choice of M
is arbitrary (and fixed), the effectiveness of the approach is likely to vary between
genetic regions and datasets according to SNP density, ascertainment scheme and
the shape of genealogies in each region. The authors state that the approach
is unlikely to work for full genome sequence data and we find that it does not
substantially improve performance in our simulations (see Supplement Section S3
for details).

Recombination breaks up haplotype tracts progressively in each transmission,
and therefore recent shared ancestry will result in the sharing of longer haplo-
type tracts (58) than older ancestry. Instead of simply attempting to correct the
statistics designed for unlinked markers, a more promising approach seems to be
to detect long tracts of shared ancestry directly. However, there are a number of
complications involved, including the ambiguity about haplotype phase which is
inherent to the data produced by most current genotypic technologies. This is
most simply dealt with by running statistical phasing algorithms (51; 6; 24; 11)
but these introduce a substantial number of phase switch errors into the data and
are computationally intensive to apply for large datasets. Alternatively, the algo-
rithms for detecting shared haplotype tracts can assume either complete phasing
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ambiguity, or estimate the level of phasing switch errors while identifying long
shared tracts. However these will respectively result in a loss of statistical power
or an increase the computational complexity of the algorithm. Most importantly,
it is not obvious exactly which statistics about haplotype sharing capture the in-
formation most relevant to population clustering and this represents an important
area for ongoing research.

A first type of approach attempts to identify tracts of high similarity (i.e.
perfect or near perfect identity by state) between pairs of individuals. There are
a number of approaches for identifying the very long tracts that closely related
individuals share (e.g. PLINK (46), GERMLINE (19), SimWalk (52), and many
others) which grew out of pedigree-based quantification of heredity. FastIBD (5)
is one of the few efficient inference frameworks to search for relatively short (and
hence more ‘ancient’) tracts of interest for population clustering. For each pair of
individuals, this algorithm searches for the k largest tracts that contain sufficient
evidence of strong similarity - i.e. that are more similar than expected according
to gene frequencies at the loci involved. The similarity measure (we call IBD) is
the proportion of the total genetic map that falls within these k tracts. There
are a number of intricacies involved with identifying tracts and their boundaries.
Furthermore, the algorithm has a number of tuning parameters whose value is
likely to affect clustering performance but cannot be estimated from the data in
any obvious way, the most important of which is k.

An alternative approach is to describe each haplotype in the sample as mix-
ture of other haplotypes, and then to use the similarity between the mixture
components to compute a distance. A method for doing this is the FastPHASE
Haplotype Sharing (FHS) distance of Jakobsson et al. (28), which models haplo-
type structure as a mixture of K pools. The similarity at each locus between a
pair of individuals depends on whether they are constructed from the same pool,
which is calculated using a modification of the popular program FastPHASE (51).
This approach potentially captures the information provided by sharing of adja-
cent markers. However, the algorithm has three substantial limitations, which
limit its applicability and performance (which in our simulations is comparable
to the better unlinked models as described below). First, the frequencies of the
haplotypes in the K pools need to be calculated using a reference panel, which
increases computational cost by requiring averaging over the possible choices of
panel. Secondly, this approach will give equal weight to SNPs in high and low
recombination rate regions and hence will give excessive weight to information in
recombination cold spots. Thirdly, by modelling the population as a mix of K
pools, it is likely capturing the most ancient genealogical splits at each locus, while
since most deep ancestry is shared, recent splits are likely to be more informative
about population structure.

The final haplotype approach we consider is chromosome painting (31). Each
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haplotype is painted (i.e. reconstructed) using the haplotypes of each of the
other individuals in the sample as possible donors. The donor in each region is
interpreted as the individual with whom the haplotype shares the most recent
common ancestor for that stretch of DNA. Switches between donors are inter-
preted as ancestral relationships changing due to historical recombination. The
similarity measure (called CPL) is the number of ‘chunks’ used to reconstruct the
‘recipient’ individual from each ‘donor’ individual, and is asymmetric. By finding
the nearest donor individual for each genome region, the algorithm uses infor-
mation from all of the genome, including those in which there are no immediate
neighbours. In regions of the genome where there is no clear nearest neighbour
haplotype, the algorithm averages across the multiple individuals who might be
closest. The matrix of number of chunks is called the linked coancestry matrix
and is produced by the software ChromoPainter (31).

The chromosome painting approach has a number of appealing technical prop-
erties which facilitate application to extremely large datasets. Painting is per-
formed using a version of the Hidden Markov Model of Li and Stephens (35).
This has two parameters, determining switch rates and the weighting of differ-
ences between donor and recipient, both of which can be estimated from the data
using the algorithm itself. The painting needs to only be run once for each in-
dividual while still appropriately reflecting statistical uncertainty about chunk
assignment. Furthermore, assuming that each chunk is independent of the others
(an assumption which can be relaxed in practise using a jackknifing procedure
implemented within the algorithm), the elements of the coancestry matrix can be
modelled statistically using the FineSTRUCTURE clustering algorithm (31) de-
scribed below, which means that the clustering step also has no tuning parameters
for the user to specify. A final attractive property is that if markers are treated
as independent, the algorithm gives the unlinked coancestry matrix, which has
appealing properties as discussed in the previous section.

These linked approaches are readily parallelisable in principle as different in-
dividuals can be independently processed. The only algorithm requiring haplo-
types to be pre-phased is ChromoPainter, which has comparable running time to
currently available phasing algorithms (51; 6; 24; 11). Both FastIBD and Chro-
moPainter require a recombination map as input but can be run using physical
distances if no such map is available. However FastIBD requires a global recom-
bination parameter to be specified, while ChromoPainter does not.

4 Clustering algorithms

The output of all the above methods is a similarity matrix between pairs of indi-
viduals, to which a wide variety of standard clustering algorithms can be applied.
Xu and Wunch (61) list a large number of possibilities and Lee et al. (33) exam-
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Table 2: Similarity measures that utilise linkage.

Name
(3 letter acronym) Key features

References
(and programs)

‘Ancient’ Identity-
by-descent (IBD)

Pairwise comparisons are
independent
SNPs compete to be used
in IBD block
Sum over SNPs
Several tuning parameters

FastIBD (5) in the program BEAGLE.
Approach first appeared on
http://dienekes.blogspot.com/2012/01/

clusters-galore-fastibd-edition.html

Notes: The number of haplotype pairs to be compared at every
iteration and a ‘scale factor’ must be specified, which combine with
an arbitrary penalty for mismatches to create a recombination
scale. A fine-scale genetic map is required. As the algorithm uses
stochastic estimation therefore repeated runs are required.

FastPHASE Haplo-
type Sharing (FHS)

‘clusters’ compete for sim-
ilarity each SNP
Sum over SNPs
Several tuning parameters

Jakobsson et al. (28) form a similarity
using the output of FastPHASE (51)

Notes: Calculates the probability that two haplotypes originate
from the same ‘haplotype cluster’ (the average of a number of hap-
lotypes that look similar across a particular region). The number
of reference clusters must be chosen, and multiple runs are re-
quired to average over choices of these.

ChromoPainter
Linked Coancestry
(CPL)

Individuals compete for
similarity at each SNP
Sum over haplotypes
No undetermined parame-
ters

ChromoPainter (31), based on the
painting algorithm of Li and Stephens
(35).

Notes: Calculates the probability that each other haplotype is
the most recent common ancestor in the sample. All uncertain
parameters can be estimated, and are global in nature so do not
tend to get stuck in local modes, therefore this algorithm only
needs to be run once.

9

http://dienekes.blogspot.com/2012/01/clusters-galore-fastibd-edition.html
http://dienekes.blogspot.com/2012/01/clusters-galore-fastibd-edition.html


ine the performance of some of those considered here. We focus on ‘unsupervised’
methods that do not use any information about the population that individuals
are apriori expected to be in.

We will consider the four direct methods summarised in Table 3. All methods
attempt to identify individuals for which the rows and columns of the similarity
matrix are similar and have some method for estimating the number of popula-
tions K. Our first method is FineSTRUCTURE. Model-based algorithms such as
ADMIXTURE (2) and STRUCTURE (45) are theoretically exploiting the same
information as FineSTRUCTURE applied to the CPU matrix (31), and indeed,
have approximately the same likelihood. In that paper it was verified that their
performance is similar (though slightly worse due to other modelling differences)
for this simulated dataset (ADMIXTURE), and a smaller, unlinked dataset gener-
ated under the same genealogical model (STRUCTURE). The FineSTRUCTURE
model can also be applied to the linked CPL dataset. It assumes that individuals
within a population are exchangeable, i.e. any difference between them is due to
noise (coming from a Multinomial distribution). It is also the only model consid-
ered that accounts for some peculiar features of similarity matrices, such as the
self-similarity (the diagonal of the matrix) being meaningless for clustering.

The second method is MCLUST (14) which fits a very similar model to
fineSTRUCTURE, but instead assumes that differences between individuals in
the same population arise from a Multivariate Normal distribution with unknown
variance. The third method is K-Means, which places individuals in the popu-
lation ‘closest’ to them. The final method is the hierarchical ‘Unweighted Pair
Group Method with Arithmetic Mean’ (UPGMA (53)) which iteratively merges
the closest groups.

In addition to performing clustering on the similarity matrix itself, it is possi-
ble to first use ‘spectral decomposition’ (usually via Principal Components Anal-
ysis) to create a smaller, less noisy matrix. This approach leads to a substantial
increase in performance for all generic approaches, but introduces an extra pa-
rameter, in the form of the number of principal components retained which is in
practise difficult to estimate from the data in a reliable way. The results presented
immediately below are based on using the ‘Tracy-Widom’ (TW) criterion but no
approach has been found that works well in all cases. The potential power of the
spectral approach makes it very important, so we more fully discuss its use and
pitfalls in the light of our results in Section 7.

5 Results: Empirical Evaluation of the methods

5.1 Similarity matrices on simulated data

The simulated data described in detail in Lawson et al. (31) were used to compare
the methods. In brief, one hundred 5Mb regions of full sequence data (2.5 mil-
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Table 3: Clustering algorithms used.

Name
(2 letter acronym) Applicability References

FineSTRUCTURE
(FS)

Direct only,
Coancestry only (i.e.
CPU/CPL)

Lawson et al. (31)

Notes: No tuning parameters. Bayesian method with a multino-
mial likelihood, a biologically driven prior on the similarities and
a conservative prior on the number of clusters. K is estimated
using reversible-jump MCMC (e.g. (16)).

MCLUST (MC) Direct or Spectral,
Any similarity matrix

Fraley and Raftery (14) implemented
the R package (15), though the general
concept is much older

Notes: Multivariate-normal likelihood letting each population
have its own mean and variance. Implicitly uniform prior and uses
the Bayesian Information Criterion (BIC, which is asymptotically
consistent) to infer K. Also called ‘soft K-means’.

K-Means (KM) Direct or Spectral,
Any similarity matrix

Hartigan and Wong (20) introduced
the algorithm, widely discussed in text-
books e.g. (27)

Notes: No explicit likelihood, uses distance-based criterion as-
signing individuals to their nearest population which is located at
the population mean. Uses the Calinski (8) criterion to determine
K, which compares the variance within clusters to that between
clusters. Implemented in the R-package ‘vegan’ using the function
‘cascadeKM’. Also called ‘hard K-means’.

Hierarchical meth-
ods, focusing on
UPGMA (UP)

Direct or Spectral,
Any similarity matrix

AWClust (17)
ipPCA (25)
UPGMA (e.g. (50)), Minimum Vari-
ance criterion (59), Neighbour joining
(e.g. PHYLIP) (13)

(Ward’s (59) crite-
rion, AWClust and
ipPCA have been
tested, see Supple-
mentary Figure S3)

Notes: Covers a wide variety of methods that first form a tree,
and then the tree is ‘cut’ to create a clustering. We use the Calin-
ski (8) criterion to determine K as for K-Means. The UPGMA
and Ward approaches are implemented in the R function ‘hclust’.
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lion SNPs in total) were simulated using SFS CODE (21) based on the estimated
human genome recombination map (26). A population scenario that gives levels
of polymorphism and differentiation broadly similar to that found in Europeans
was simulated, with a bottleneck followed by exponential growth, generating 5
populations following a tree pattern. First populations (A,B,C) split simultane-
ously 3000 years ago. Then population C splits into (C1,C2) 2000 years ago, and
finally population B splits into (B1,B2) 1000 years ago. 20 individuals from each
population were sampled.

Example similarity matrices produced by each category of similarity measure
are shown in Figure 1. These can be inspected visually to get a rough idea of how
each matrix captures the population structure. A ‘good’ matrix will have a strong
‘block’ structure, with each of the 5 populations clearly distinguishable, particu-
larly on the diagonal. The IBS measure is very fuzzy with the COV (covariance)
measure only a little clearer. The ESU method is the best unlinked method, with
the ‘C’ populations clearly distinguishable and the ‘B’ populations beginning to
take shape. The FHS matrix looks similar to the unlinked ESU matrix, whereas
the IBD and CPL methods are significantly better distinguished. Supplementary
Figure S1 shows some additional matrices, including the ‘linked’ EIGENSTRAT
matrix and the ChromoPainter unlinked matrix. These contain the ‘same’ infor-
mation as the ESU matrix shown here, a relationship which is further illustrated
using the correlation between all measures in Supplementary Figure S2. This
means that we only need to further examine the quality of the similarity matrices
shown in Figure 1 as they are representative of the other matrices discussed. We
did check that the clustering performance on the omitted matrices closely matches
that expected by this classification.

5.2 Scoring the similarity matrices

The primary measure of the useful population signal in each similarity matrix
is, for our purposes, how well they facilitate clustering. However, since there
are many ways of clustering and has its own peculiarities, it is of interest to
describe the ratio of signal to noise more directly. We consider the average within-
population similarity when compared to the between-population similarity. This
ratio measures how well separable the populations are and is shown in Figure
2. When there is little data, all clusters are equally indistinguishable and the
within-population similarity is equal to the between population similarity. As
the amount of data increases, the populations separate. The ChromoPainter
linked CPL matrix provides the largest separation, closely followed by the IBD-
based method. EIGENSTRAT is the best unlinked method, just ahead of the
FastPHASE FHS linked method, with the covariance and the IBS matrices both
performing badly. This is consistent with our visual observations of the matrix in
the previous section.
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Figure 1: Visualisation of the similarity matrices as an image for one hundred
5Mb regions of simulated data. On the top row from left to right are: IBS
(Identity-by-state), COV (Raw Covariance) and ESU (EIGENSTRAT ‘unlinked’,
i.e. normalised covariance, no regression correction). The bottom row is: FHS
(FastPHASE Haplotype Sharing), IBD (FastIBD Identity By Descent) and CPL
(ChromoPainter Linked). The raw range is given above each matrix, but all plots
are normalised by removing the diagonal, subtracting the mean and scaling the
standard deviation to 1.

5.3 Clustering Performance

We ran each of our clustering algorithms (FineSTRUCTURE, MCLUST, K-
Means, UPGMA, Spectral MCLUST, Spectral K-Means, Spectral UPGMA) on
a range of the simulated data similarity matrices. States are scored by comput-
ing the average correlation with the true state as described in (31). Since direct
application of MCLUST, K-Means and UPGMA to the similarity matrices was
not very effective, these results are placed in Supplementary Figure S3 along with
some additional hierarchical measures that perform similarly or worse relative to
the clustering algorithms here.

The remaining methods are compared in Figure 3. MCLUST is better than
K-Means and UPGMA in general, providing more stable estimates under most
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Figure 2: Mean between-population distance relative to the mean within-
population distance. First, the average similarity Sa within each population a
is calculated. Then the mean distance to Sa of individuals in other populations
b 6= a is calculated, and averaged over all populations a. This is divided by
the mean distance to Sa for individuals within the population a (again averaged
over all a). The matrices are normalised (zero mean, diagonal removed and sym-
metrised by taking Y Y T ) prior to computation.

circumstances. However, K-Means and UPGMA both work on poor data, for
which MCLUST fails to estimate K and hence obtains a score of 0. Clustering
performance is concordant with our previous observations of the quality of the
similarity matrices. IBS and Covariance are the least useful measures for clus-
tering, whilst EIGENSTRAT’s normalised covariance matrix is the best unlinked
method, somewhat similar to the FastPHASE performance. The linked Chro-
moPainter CPL matrix slightly outperforms the IBD matrix, particularly when
the data is good, but both are significantly closer to the truth than the other
methods. The IBD matrix consistently makes a few mistakes whereas the CPL
matrix allows for perfect clustering using Spectral MCLUST.

We find similar performance between Spectral MCLUST and FineSTRUC-
TURE on the ChromoPainter Linked (CPL) matrix for this dataset. FineSTRUC-
TURE notably never splits individuals incorrectly, while MCLUST is typically
bolder with the same data, for example mostly identifying the split between C1
and C2 with 50 regions which FineSTRUCTURE does not find enough evidence
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Figure 3: Correlation with the truth as a function of the number of 5Mb simu-
lated data regions, for Spectral MCLUST (MC, left), Spectral K-Means(KM, cen-
tre) and Spectral UPGMA (UP, right), compared to fineSTRUCTURE. Shown
are the clustering performance based on different similarity matrices. The un-
linked methods (dashed lines) are IBS (Identity-by-state), COV (Covariance) and
ESU (EIGENSTRAT Unlinked). The linked methods (dotted lines) are FHS
(FastPHASE Haplotype Sharing), IBD (FastIBD Identity By Descent) and CPL
(ChromoPainter Linked). FineSTRUCTURE is applied directly to the coances-
try matrix only (solid lines, FS-CPU for unlinked and FS-CPL for the linked
ChromoPainter Coancestry matrix), and is repeated on each plot for reference.

for. However MCLUST often creates spurious splits and in this example its per-
formance decreases as additional regions are added, while fineSTRUCTURE gets
progressively closer to the truth.

6 Application to HGDP data

Simulated data, however carefully constructed, lacks many of the features of real
data. We therefore try out the different approaches on a subset of the HGDP
(34) data. Our dataset consists of 140 individuals from East Asia and contained
500k SNPs. Although there is no ground truth in this dataset, we can consider
the agreement between algorithms and attempt to interpret potential clustering
problems by examination of the similarity matrices. The matrices are constructed
as for the simulated data, and for illustration the PCA plots for the CPL dataset
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are shown in Supplementary Figure S4.
We attempted to apply the direct MCLUST and K-Means methods to this

data, but these could not identify more than two populations and are not consid-
ered further. As the two leading linked similarity measures, we work primarily
with the ChromoPainter CPL matrix and FastIBD matrices. The ChromoPainter
unlinked (CPU) matrix (which is equivalent to the ESU matrix) is shown in Sup-
plementary Figure S5 for reference. The choice of the number of Eigenvalues
(EVs) to keep for the Spectral method does strongly matter for the the details of
the clustering assignment (Supplementary Figure S6 and Supplementary Section
S3), but not for the features discussed below. On the basis of the simulation
results we use the Tracy-Widom (TW) statistic for choosing the number of EVs.
Although the results based on the other criteria might have been preferable here
(and are shown in Supplementary Figure S6), this is not evident apriori.

FineSTRUCTURE finds 17 populations in the CPL data, which correspond
closely to the labels and can be validated by examination of the Coancestry matrix
(Figure 4). Also shown is the highest posterior FineSTRUCTURE result, and the
states found by MCLUST and K-Means. These clusterings can also be compared
directly as shown in Figure 5, which additionally scores the clusterings. The score
is the variance of the number of chunks copied between individuals in different
populations, relative to that expected under the FineSTRUCTURE model. This
can be viewed as measuring lack of uniformity within each ‘block’ of Figure 4,
and should be close to 1 if the clustering contains no additional substructure.
A technical detail to note is that that scores consistently less than 1 can arise
if the effective number of independent chunks is not be the same for all pairs
of individuals (as ChromoPainter estimates this without considering population
structure).

The Spectral methods both find quite different population assignments to the
FineSTRUCTURE results, with the MCLUST assignments in particular being less
similar than might be expected from the simulation results. Two minor differences
are that the spectral approaches fail to distinguish some visible splits (such as the
Yi/Naxi), and do not see any structure in the Han/Han.NChina/Tujia popula-
tion. Although this population does contain some clear structure, this structure
might be better described by a cline (generated by admixture, visible as varying
coancestry with Dai) than a division into distinct ancestry profiles and therefore
it is difficult to identify precise division points. K-Means makes a mistake placing
the Dai with this Han group, and MCLUST has made a serious mistake by placing
2 Naxi, 2 She and 6 Dai individuals together that have very different coancestry.
The labels of individuals within this population can be visually distinguished in
Figure 4, and the score from Figure 5 identifies it as an incorrect clustering.

Although MCLUST does better using other Eigenvalue retention criteria than
with Tracy Widom, this does not explain the major problems with the approach.
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Figure 4: HGDP clustering results and coancestry matrix for the ChromoPainter
linked (CPL) dataset. The main image shows the Coancestry matrix. The white
dots show the pairs found in the same population in the FineSTRUCTURE
Maximum-Aposteriori state. Green boxes are drawn around pairs found which
coincide in the Spectral MCLUST populations, and brown boxes for Spectral K-
means (both using the Tracy-Widom criterion). The ordering is formed from the
FineSTRUCTURE tree, top, which has been rotated and individuals reordered
within populations to make the MCLUST solution appear as close as possible
to the diagonal. The Coancestry matrix has been capped at 500 to maximise
contrast.
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For all criteria, MCLUST places the two Naxi and She pairs together (and in-
termittently with the Dai). The reason for this is somewhat technical (but im-
portant) feature of the PCA decomposition. Supplementary Figure S4 shows the
first 8 Eigenvectors in standard PCA plots, and Supplementary Figure S6 shows
‘all components at once’ using the correlation between the (top) Eigenvectors for
each pair of individuals. The misplaced Naxi/She individuals are all distinguished
by having a relatively low correlation with the rest of the sample. This is in turn
due to their each sharing an unusually high number of chunks with another - the
two Naxi are related, as are the two She, both having over 1000 chunks in com-
mon (and the next highest is within the Dai, at 600). Individuals with relatives
in the sample have consistently fewer chunks from other populations. However,
segments of DNA not directly shared with the relative are drawn from the same
distribution as other individuals in their population. There is therefore a conflict
between the population level signal and the signal from the relatives, which dis-
torts the PCA decomposition and makes these individuals appear further away
from the rest of their population than they really are.

MCLUST is fitting an incorrect population with high variance to these indi-
viduals, because they don’t look similar to anyone else in the sample but do share
the feature of looking less like the rest of the sample. Note that K-Means does
not make this mistake because it does not model the variance at all. FineSTRUC-
TURE does not do this because it a) fits to the raw data, not the eigenvalues, and
b) has a model for the variance. Related pairs of individuals are assigned to their
own population, and then merged into the correct place in the tree by ‘flattening’
their population count.

The ChromoPainter linked matrix can be compared to the FastIBD similar-
ity matrix, shown in Figure 6. From a visual inspection of the ‘block diagonal’
structure, it appears that FastIBD contains a similar strength signal to CPL,
but interestingly the relationship between populations has a different emphasis.
ChromoPainter found many populations with high rates of chunk sharing, for
example the Dai/Han, Miao/Tu and Tu/Japanese. However, FastIBD finds dif-
ferent relationships, for example Miao/Tujia and She/Han. Although this is not
a significant factor in the identification of populations as the signal is weak, the
strong consistency over all individual pairs between the populations indicates that
the algorithms are emphasising different but real historical ancestry signals.

The clustering results for the IBD matrix are less clear, as shown in Figure
5 (see also Supplementary Figure S7-8). The Spectral method has problems in
that many Eigenvalues appear to contain a small amount of signal, leading the
TW criterion to retain 35 EVs. The performance is better with the PA criterion
(shown in the Figure) which retains only 5 EVs and for which comparisons between
MCLUST on IBD and on the CPL matrix are mixed. They both make different
clusterings of comparable quality (including the She/Naxi mistake), although it is
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interesting that only when using IBD are the Tujia mostly found within a single
population. However, our Spectral methods are not robust enough to the choice
of retained EVs to make any firm comparisons. Since FineSTRUCTURE cannot
be applied to the IBD matrix, visual examination of the matrices remains the
best comparison.
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Figure 5: HGDP East Asian clustering for (top to bottom) FineSTRUCTURE
on CPL data, FineSTRUCTURE on CPU, MCLUST on CPL, K-Means on CPL,
and MCLUST on IBD (using the PA criterion for this data only). The self-
identified population label of individuals are also shown (bottom). Identified
populations are separated by white bars, and populations that are inconsistent
with the FineSTRUCTURE CPL tree (above top) are linked by a red line. Each
label has a unique colour, which are approximately matched. Also shown is a score
measuring the ratio of observed to expected variance within a population (black
curves), which if the population assignment were ideal would be one (dashed
horizontal lines). This is also shown (bottom) when each unique label is assumed
to form a population. Increased values imply substructure within a population.
Compare with the full heatmaps (Figure 4, and Supplementary Figures S5-9), and
see Supplementary Section S1 for a precise definition of the score.20



Figure 6: HGDP similarity matrix for the FastIBD dataset. The image shows
the FastIBD similarity measure applied to the East Asian individuals, with other
details are as Figure 4. Clusterings for the TW criterion are poor (Supplementary
Figure S7) but the using the PA criterion (Supplementary Figure S8) works well.
The similarity matrix has been capped at 10000 to maximise contrast.
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7 Spectral methods

This section is concerned with the technicalities of spectral methods, which are
powerful but do have several problems that are not fully resolved. We give a short
review of Spectral methods, discuss some of the various approaches that have been
used to estimate the number of significant Eigenvalues and describe a difference
between spectral and non-spectral clustering. We conclude with the analysis of our
simulated data. Readers who are focused principally on the biological application
of these methods may wish to skip this section entirely.

The broad set of approaches called ‘Spectral’ methods all have the general
goal of identifying where in the data the ‘important’ variation lies. In population
genetics, all widely applied methods equate important variation with large vari-
ation since under the assumption of constant rates of genetic drift, individuals
should be more similar within a population than between populations. The main
approaches are Principal Components Analysis (PCA) (39; 44), Multidimensional
Scaling (MDS) (62; 46) and Singular Value Decomposition (SVD) (3) all of which
are intimately related. As discussed by McVean (38), performing SVD on the
raw SNP matrix Y ′ is equivalent to performing PCA on the covariance matrix
Y ′(Y ′)T , where Y ′ is the raw SNP matrix Y with the empirical SNP frequency
subtracted. MDS can be applied to a distance matrix, but (classical) MDS is
otherwise equivalent to performing PCA on the covariance matrix. Other forms
of MDS exist (either metric, non-metric based on ranks or graphs, and other
approaches, e.g. (62)) but are not routinely applied to genetics data.

Another spectral approach is to construct a graph from the distance matrix,
and perform PCA on the Graph Laplacian (see e.g. (27; 57)), an approach that
has been applied to genetics (22; 63; 32). The distances are scaled to produce
edge weights – two common choices are exponential scaling and to set all large
lengths to have weight zero. When the complete graph is used and simple weights
chosen, this method mirrors PCA very closely. For other choices of weights,
a range of behaviour is possible as the algorithm can be ‘tuned’ to focus on a
distance of interest. However, there is little theoretical understanding about how
restriction to a graph might be interpreted genetically, and the addition of a free
parameter makes a rigorous simulation study difficult, so we have not included
graph approaches in the empirical evaluation section of this review.

7.1 The number of Eigenvalues to retain

Only approaches equivalent to PCA have reached significant popularity within the
genetics community, so we shall focus on the approach of computing the Eigen-
vectors (EVs) Z and Eigenvalues λ of each similarity matrix X. All methods
considered here must truncate the number of EVs retained. Choosing this trun-
cation is a very difficult problem, to which there is not a definitive answer. In
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principle, if there were no noise in the data (for example, if we could replace
samples from populations with their true population SNP frequencies) the only
non-zero Eigenvalues would correspond to directions separating populations. All
other Eigenvalues are non-zero in practise due to noise created from the random
sampling of SNPs within individuals, and the only ‘correct’ way to choose the
number of components is to model the expected underlying noise distribution.

Patterson et al. (44) model the Eigenvalues using the Tracy-Widom distribu-
tion (55). The Tracy-Widom distribution describes the largest Eigenvalue of the
matrix ZZT , where Z is a random (unstructured) matrix. Therefore, when all
Eigenvalues associated with population structure have been removed, the maxi-
mum Eigenvalue should come from the Tracy-Widom distribution, allowing the
construction of a statistical test for the significance of each Eigenvalue and its
associated Eigenvector. In practise, to handle linked data the ‘effective number
of SNPs’ is estimated from the Eigenvalue distribution, which additionally allows
application to general similarity matrices. Whist this distribution is correct for
some limit of the Normalised Covariance (ESU) data, the choice of p-value is dif-
ficult (33), and when the assumptions are violated there is no guarantee that the
process will choose the correct number of Eigenvalues.

Most implemented methods use a more ad-hoc, data driven selection criterion.
Elementary methods in multivariate analysis such as the Kaiser criterion (29) or
the Scree ‘test’ (9) have been shown repeatedly to not work well (e.g. (48; 12) and
also tested on our data, results not shown). Lee et al. (32) note that Tracy-Widom
theory does not apply to graph Laplacians and instead use a criterion based on
the ‘Eigengap’, i.e. the difference between Eigenvalues, but their method relies on
the use of a graph Laplacian. Such an approach naturally generalises the Scree
test and could potentially be developed, but a ready-to-use version is not available
in the literature. Limpiti et al. (36) introduce a new criterion they call ‘Eigendev’
and claim increased performance relative to Tracy-Widom. Dinno (12) discusses
some more applicable approaches and perform a simulation analysis on one pop-
ular method, the Monte-Carlo version of the ‘Parallel Analysis’ (PA) method of
Horn (23) which compares the variance to that of random data. Another favoured
method is the ‘Minimum Average Partial’ (MAP) method of Velicer (56) which
looks for a drop in the relative amount of systematic variance explained (see e.g.
(43) for a concise discussion of both). We consider the performance of three (TW,
MAP and PA) criterion which are further described in Table 4.

7.2 Relating the Eigenvectors to the raw covariance

The Spectral mapping discards Eigenvectors with small Eigenvalues, which are
assumed to contain only random noise. However, even if all significant Eigen-
values are retained, information is not efficiently used in our spectral approach.
Because only the Eigenvectors are modelled, any information in the Eigenvalues
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Table 4: Spectral decomposition

Name Key features References
Minimum Average
Partial (MAP)

The largest eigenvalue is succes-
sively removed from the matrix,
and the average squared ‘par-
tial’ correlation computed be-
tween the remaining eigenvec-
tors and the original data. The
MAP K occurs at the minimum
correlation.

(56), implemented in the R pack-
age ‘psych’.

Parallel Analysis
(PA)

Many random matrices with the
same dimensions as the sim-
ilarity matrix are generated,
and their Eigenvalues computed.
Eigenvalues that are larger in the
data than the desired quantile
of the random matrices are re-
tained.

(23), implemented in the R pack-
age ‘paran’.

Tracy-Widom
(TW)

The Eigenvalue spectrum is com-
pared to those of a theoretical
random matrix. This is recur-
sively updated as Eigenvalues are
removed. The size of the theo-
retical matrix is calculated using
the ‘effective number of SNPs’,
calculable from the Eigenvalue
spectrum itself.

(44) Implemented in the pro-
gram ‘twstats’ from the EIGEN-
STRAT package.
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is lost. Although Eigenvalues are not associated with individuals and therefore
don’t directly impact clustering, they do describe the relative importance of each
Eigenvector. This can effect clustering, as can be seen from the relationship be-
tween the similarity matrix Z, its Eigenvalues λ and Eigenvector matrix E. Z is
decomposed in our method as ZZT = EDiag(λ)ET , where ZZT is the covariance
of the similarity matrix. The Spectral methods are effectively clustering on the
covariance of the Eigenvalues, EET which differs by the scaling Diag(λ). This
leads to a different emphasis about which features are important in the data. Sup-
plementary Figures S6 and S9 show the difference between these two correlations
for our HGDP example. The Eigenvector representation makes individuals with
relatives look less similar to their underlying population than does the similarity
matrix. This property would be considered undesirable in a population genetics
context. Although most spectral approaches discard the Eigenvalues as ours does,
this is not required and so this problem may be solvable.

7.3 Simulated data: number of Eigenvalues to retain

We perform Eigenvalue decomposition of each similarity matrix Z using the func-
tion ‘eigen’ in R, normalised by subtracting the matrix mean, removing the di-
agonal and symmetrising by taking ZZT . This transformation does not change
the Eigenvectors of a symmetric matrix. We wish to empirically evaluate the
performance of each measure from Table 4 for both the MCLUST and K-Means
algorithms. By considering performance at all possible retained EVs, we can also
find the ‘optimum’ choice which may not be found by any of the criteria. This
provides a more robust view on the quality of the different criteria.

Figure 7 (with more detail in Supplementary Figure S10) explores the corre-
lation with the truth as both the amount of data and the number of Eigenvalues
retained is changed. There is a strong correspondence between the performance of
all three methods and so we show only K-Means for clarity. In general the PA cri-
terion seems to underestimate the number of Eigenvalues, the MAP criterion does
a little better but is less stable, and the Tracy-Widom criterion falls somewhere
in the middle. The results are consistent with those from Figure 3. As there
is little empirical difference in the clustering performances between MAP and
TW, we opted to work with the Tracy-Widom criterion, but note that no method
dominates and that all may give misleading results under the wrong conditions.

The different similarity matrices perform very differently in this scenario. For
reference, finding the splits (A,B,C) scores a correlation of 0.4 (pink) and finding
the plots (A,B,C1,C2) scores 0.7 (blue). IBS (and COV) achieves weak clustering,
and cannot find the C split (blue) using any criterion for the number of Eigenvalues
with all 100 regions. The ESU matrix finds this split with around 50 regions,
the IBD and CPL with only 10. There is a moderate amount of noise in the
clustering performance as the number of EVs changes and this is usually amplified
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Figure 7: Correlation with the truth as a function of both the number of regions,
and the number of Eigenvalues retained for fitting. A subset of K-Means matri-
ces is shown; MCLUST and UPGMA as well as the other matrices are shown in
Supplementary Figure S10. Shown are IBS (Identity-by-state, a), ESU (EIGEN-
STRAT Unlinked, b), IBD (Identity By Descent, c) and CPL (ChromoPainter
Linked, d). The grey line corresponds to the number of Eigenvectors accord-
ing to the MAP criterion, green lines to the PA criterion, and red lines to the
Tracy-Widom criterion.

by applying a criterion. We note that the MCLUST performance is a little more
robust to the number of EVs retained.

8 Discussion

Determining relationships between genetic samples represents a first step in almost
all studies that hinge on patterns of genetic variation. We have reviewed the most
widely used similarity/distance measures that can be constructed using genetic
data, and their use in clustering algorithms identify distinct ancestry profiles.
An alternative to clustering is to examine the Principal Components, which is
typically done two components at a time. In our experience, visualisation via a
heatmap of the ordered matrix of clusters showing the similarity between each
one (Figures 1, 4 and 6) complements this traditional approach and barplots
of STRUCTURE/ADMIXTURE output. The similarity heatmap is often more
informative in practise since it allows variation to be assessed simultaneously at
multiple different levels. Clustering the sample into ‘populations’ with discrete
ancestry profiles also represents a useful starting point in approaches that seek to
infer the historical processes that have led to differentiation between members of
the sample, whether on short or on long timescales.
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The distance measures can be classed into two broad categories. Unlinked
methods ignore the position of markers on the chromosomes, while linked methods
take chromosomal position into account and are most accurate if a detailed genetic
map is available. The two unlinked distance measures considered here have a
clear genetic interpretation, and might have been assumed to provide adequate
descriptions of relatedness. Despite this, we observed significant differences in
the information (in terms of population signal) they contain about population
structure and therefore the clustering quality that they achieved. ‘Raw’ measures
(Identity-by-State, Allele Sharing Distance, and covariance) perform relatively
poorly relative to ‘Normalised’ measures (EIGENSTRAT’s normalised covariance
and ChromoPainter’s unlinked Coancestry matrix).

The theoretical results of Lawson et al. (31) imply that the normalised sim-
ilarity matrix approximately contains the same information as used by the fully
model-based approach of STRUCTURE (45). Additionally, the likelihood of
FineSTRUCTURE is approximately the same as that of STRUCTURE. This
means that unlinked model-based approaches using this likelihood can do little
better than the FineSTRUCTURE results on the unlinked ChromoPainter ma-
trix, which contains less information about population structure (Figure 2) than
both the FastIBD and linked ChromoPainter matrices.

The linked similarity measures require a greater investment of time and bioin-
formatic/computational infrastructure to run but perform significantly better
than their unlinked counterparts on both our simulated and real datasets (and
see also (31)), illustrating the advantages of using a model that accounts for link-
age. In simulated data, they have reduced false-positive clusterings, and find
more of the true clusters with much less data. FastIBD operates on a variety of
the Identity-by-Descent approach, and was close behind ChromoPainter’s Linked
Coancestry matrix in terms of both clustering performance and our signal-to-noise
score.

For real data, use of the linked similarity matrices consistently allows the iden-
tification of finer subdivisions than the unlinked methods. Comparison between
the FastIBD and ChromoPainter HGDP similarity matrices implies that each is
extracting a different signal about the ancestral relationships. This is contained
in the distribution of shared DNA tracts, for which ChromoPainter permits only a
comparison to the closest tract whereas FastIBD allows multiple relationships at
each SNP. Extracting and interpreting the full genealogical signal in an efficient
way continues to represent a central and unsolved problem in statistical genetics.

We examined the performance of four clustering algorithms in detail, MCLUST,
K-means, UPGMA and FineSTRUCTURE. When clustering on simulated data,
we found that direct application of generic methods (MCLUST, K-Means and UP-
GMA) led to inefficient use of the information in the similarity matrix. However,
Spectral methods (Principal Components Analysis) could extract all the informa-
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tion in the data, provided that some criterion could be found that estimated the
number of Eigenvectors that contained information on ancestry. We evaluated
three, the MAP criterion, the PA criterion, and the Tracy-Widom criterion, but
did not find strong empirical evidence for which to prefer. All could be success-
fully be applied under different to a range of similarity matrices, yet all showed
evidence of mistakes. On simulated data, the PA criterion was weakest, discard-
ing too many Eigenvalues, and the MAP estimate seemed less stable than the
Tracy-Widom which we therefore favoured. On the HGDP results, the ordering
was approximately reversed.

MCLUST and K-means perform similarly on the simulated dataset. Both at-
tempt to solve very similar problems, minimising the root-mean square (i.e. Eu-
clidean distance) from their population centres. The differences arise because K-
means uses a ‘hard’ criterion, minimising this quantity directly, whereas MCLUST
using a ‘soft’ criterion based on a multivariate normal. For many similarity mea-
sures the simulated data is drawn approximately from this multivariate normal
(31) so these simple models are all close to ‘correct’. They are likely to differ
more strongly on data drawn from a different distribution, and indeed on the
IBD measure (which has no theoretical result relating to normality) they do make
different mistakes.

The HGDP data contains some departures from the typical modelling as-
sumptions of large populations, no admixture, unrelated individuals, and random
drift of SNPs. On this data we saw significant differences between the clustering
provided by the model-based FineSTRUCTURE approach and the more generic
methods. The presence of weak but unmodelled relationships between individuals
is disastrous to the MCLUST Spectral approach which inappropriately clusters
individuals with relatives in the sample together. K-means failed on the presence
of admixture, providing misleading results by clustering some admixed individuals
with close but clearly distinguishable populations. However, FineSTRUCTURE
handles all of these problems well. It identifies relatives as such and can place them
with the correct population at the hierarchical clustering stage, and places sen-
sible boundaries on admixed populations. Constructing simulated datasets that
contain these problems with a known truth would be valuable for more clearly
exploring the performance of these (and other) algorithms.

There are three clear messages from the comparison study undertaken as part
of this review. Firstly, for dense data, linked methods provide a moderate to
strong information benefit that depends on the scale of the problem at hand.
However, on HGDP density SNP data and population separation level, unlinked
methods provide an adequate description when coupled with a robust inference
algorithm. Secondly, there are multiple viewpoints that can be taken for under-
standing linked data, and each may provide different insights into the genealogical
process. Thirdly, the ChromoPainter/FineSTRUCTURE pipeline is currently the
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best practical approach to population identification because it allows for robust
and powerful model-based population identification.

We believe that there is value to examining performance on standard datasets,
and therefore are making available both our simulated and HGDP datasets in
PLINK, BEAGLE and PHASE formats on the website http://www.paintmychromosomes.
com on the ‘Comparisons’ page. We will also provide similarity matrices for
each method and example comparisons for the language R (47). Although fu-
ture methods should avoid optimising to out-perform the above approaches on
specific datasets, we hope that having these available for comparison will set a
standard for population identification problems in genetics.
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