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Section 1

Background
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The testing paradigm

Significance testing is about rejecting a null model.

I We have a research hypothesis, which helps define the
alternative hypothesis

I The null model is our best explanation of the data without
that hypothesis

I We see if the null model ‘fits’ the data with a test

I We will ‘test’ all of the assumptions of the null together!

I i.e. we won’t know which assumption failed

I If we reject the null, we hope our alternative hypothesis is the
explanation!

I Confounding by some unaccounted process is the most
common reason for incorrectly accepted alternatives.

I If you can’t account for all reasonable confounders, there is no
point doing the test!
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Decisions and hypothesis testing

One reason for HT is to make decisions. It is biased against the
alternative, so that if the null is rejected we are fairly certain that
is not a mistake.

I Example: A new vaccine.

I Null hypothesis: it doesn’t work.

I Alternative: it does. So use it!

It is important to control the probability that we decide it works!
(But we aren’t taking into account the cost of getting it wrong.)
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Types of error

I Type I: We reject the null hypothesis, but its really true

I Type II: We retain the null, but it isn’t true

These are very different!
In many fields, no null hypothesis can be true.
This leads to the question: do we have power to reject the null?
In this case, standard hypothesis testing can be useless for
demonstrating a specific alternative.
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The Confusion Matrix

What is true?

What we do?
Reject Null Retain null

null False positive True negative
Type I error

alternative True positive False negative
Type II error

Power = true positive rate
false negative rate for a given false positive rate α.
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Example: Spam Filter

Spam filters look at incoming email, and use statistical models to
compute the probability that a real message would have certain
features. If the probability is too low, it goes directly in the bin.

Null hypothesis: Real message.
Alternative: Spam.

Then a Type I error is

1. A spam message that gets through the filter;

2. An email from your friend that gets junked?

Type I = falsely rejecting the null
Answer: 2
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Example: Criminal Trial

Juries weigh the evidence, and decide how likely the evidence
would be if the defendant were innocent.
Null hypothesis: Defendant is innocent.
Alternative: Defendant is guilty.

Then a Type II error is

1. A guilty defendant set free;

2. An innocent defendant convicted.

Type II = falsely rejecting the alternative
Answer: 1
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Example: Clinical Trial

A new cancer medication is tested in comparison to an old one.
We test how likely the apparent improvement in survival would be,
if the new drug were no better than the old one. The medication
will be approved if its proved to be better.

Null hypothesis: The new medication is no better than the old one.
Alternative: The new medication is better.
Then a Type II error is

1. When we approve the new medication even though its no
better than the old one;

2. When we dont approve the new medication, even though it is
better.

Answer: 2
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Hypothesis testing

I Start with a ‘research hypothesis’ - the ‘alternative hypothesis’

I Form a ‘null hypothesis’ that says nothing interesting
happened – it was all chance variation

I Determine the test statistic T , measuring how unusual the
data is under the null hypothesis

I Define a ‘significance level’ α

I Determine the critical value Tcrit(α)

I Compute test statistic T for the observed data

I Compute the p-value: p(T ) probability of a test statistic as
extreme or more than that observed (under the null)

I Retain the null if p > α, or equivalently T < Tcrit . Otherwise
reject it in favour of the alternative.
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Section 2

The Z test
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Subsection 1

The simple Z test
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The simple Z test

For n data points Xi

I If the mean of the data can be treated as Normal,

I And our null hypothesis is X = µ for known µ...

I And we know the standard deviation σ...

I Then we compute the test statistic Z = (X − µ)/σ...

I Under the null, Z ∼ N(0, 1)

So the Z test computes

I p(Z ′ ≥ Z ) (one tailed)

I p(|Z ′| ≥ |Z |) (two tailed)

I where Z ′ is from the null
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Important properties of the Normal distribution

If X is normal then aX + b is normal
If X and Y are normal and independent, then X + Y is normal.
Specifically, Z = X + Y ∼ N(µX + µY , σ

2
X + σ2

Y ).

Meaning that we add the variance, regardless of whether we add X
and Y !
More generally, if X and Y are correlated,

var(X + Y ) = σ2
X + σ2

Y + 2ρσXσY
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Law of large numbers

Let X1, . . . ,Xn be independent samples from a distribution with
mean µ and variance σ2. Then

X :=
1

n
(X1 + . . .+ Xn)

converges to µ as n→∞.

I ‘Estimate’ of µ: X

I Variance of the estimator: var(X ) = σ2/n

I ‘standard error’ SE : SD(X ) = σ/
√
n

So Z := X−µ
σ/
√

n
is ‘standardized’ to have mean 0 and s.d. 1.
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Takeaway message:

I You can assume that the mean of1 a distribution is normal

I ... if n (sample size) is big enough

I IT DOESNT MATTER if the data you sampled were normally
distributed.

I The mean still has to be normally distributed

I How big is ‘big enough’? It depends on the distribution!

1: There are some special distributions that don’t obey the law of large numbers. These have infinite variance.

17 / 126



Z test example

I British birthweights have
Mean 3426g and SD 538g
from a large sample

I Australian birthweights
sampled (1 day)

I Australians have mean 3276

I Null: birthweights have the
same mean

I Alternative: Australian
babies are smaller
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Z test example

I Null hypothesis: The Australian birthweights are samples from
the same distribution as UK birth weights.

I Let X1, · · · ,X44 be the birth weights in the sample

I If the null hypothesis holds,

X = (X1 + · · ·+ X44)/44 ∼ N(3426, 5382/44)

I What is the probability that we would observe X ≤ 3276?

I Standardise: Observed
Z = (X − 3426)/81 ∼ N(0, 1) = −1.81

p(Z ≤ −1.81) = 0.035 can be looked up in a table!
or computed using:

I Matlab: cdf(’normal’,-1.81)

I R: pnorm(-1.81)

I Excel: (I’m not going to encourage this!)

I Wolfram Alpha, your phone, Google, etc!
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Tails of the Normal Distribution
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Two tailed test

I P-value 0.035 in one-tailed test

I P-value 0.070 in two-tailed test

I For symmetric distributions, p-value always doubles
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Does it matter how many tails?

I Not really... Just make sure you’re clear on why.

I Switching from two-tailed to one-tailed can make a
non-significant result significant.

I Hypothesis testing is in the business of being conservative...

I You should therefore have to justify a one-tailed choice.

I Previously, before we looked at the data, did we expect
Australian babies to be smaller? Would we not have been
interested if they were bigger?

I If that was interesting too, we need a two-tailed test.
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Requiem on errors: Power and alternative hypotheses
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1.644854

Power

se = 1.00      z* = 1.64      power = 0.26 
 n =   1    sd = 1.00    diff = 1.00    alpha = 0.050

Power with 1 sd difference in the alternative
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Subsection 2

The Z test for proportions
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Testing the number of successes

I Test: observe X successes from n trials

I H0: X/n = p, we are testing the probability of a success

I Let Ci ∼ Bern(p)

I i.e. Bernoilli with p=success probability,

I X =
∑n

i=1 Ci ∼ Binomial(n, p) is the number of successes

I Can compute p(X ≤ x ; n, p) (too few successes) and
p(X ≥ x ; n, p) (too many successes) explicitly for moderate n

I But do we need to?
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Normal approximation to the Binomial

I If X ∼ Bin(n, p) then X is approximately distributed as
N(µ, σ2) when n is large

I With µ = np and σ2 = np(1− p)

I What is large? Rule of thumb: µ ≥ 3σ

I What is meant by approximately? P(a < X < b) is close to
P(a < µ+ σZ < b) for Z ∼ N(0, 1)
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Binom(n=3,p=0.5)
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Binom(n=10,p=0.5)

29 / 126



Binom(n=25,p=0.5)
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Binom(n=100,p=0.5)
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Binom(n=3,p=0.1)
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Binom(n=10,p=0.1)
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Binom(n=25,p=0.1)
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Binom(n=100,p=0.1)
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Continuity Correction

I Suppose we wanted to know p(10 ≤ X ≤ 15; n = 25, p = 0.5)

I e.g. Probability that we get between 10 and 15 heads from 25
flips of a fair coin

I How do we account for ‘discreteness’ of X when using the
normal approximation?

I Answer: ‘Continuity correct’ to halfway between discrete
values

I P(a ≤ X ≤ b) ≈ P(a− 0.5 ≤ Y ≤ b + 0.5), where
Y ∼ N(µ, σ2)

I Exact calulation: 0.7705

I Normal approximation: 0.7699

I Relative error: = (exact-normal)/exact = 0.0008
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Z test for proportions

I n independent trials with success probability p

I Observe X successes

I H0: Probability of success is p0

I IF H0 is true, X/n ∼ N(p0,
√

p0(1− p0)/n)

I Z test with Z = X/n−p0√
p0(1−p0)/n

I (Should do continuity correction, but this is not important for
large n...)
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Example: ESP

I Charles Tart (1970s): 7500 (500x15) attempts on ’Aquarius
machine’

I Subjects predict which of four lights will come on

I Signal tells them if they were right.

I 7500 attempts. Expect 7500/4=1875 right.

I Actually observed 2006 correct guesses. Could it be purely by
chance?
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Example: ESP

I H0: Probability of success p = 0.25

I H1: Probability of success p > 0.25

I Significance level 0.01, meaning Zcrit = 2.3

I X = 2006/7500 = 0.26747, σ =
√

0.25× 0.75/7500 = 0.005

Z =
0.26747− 0.25

0.005
= 3.49

I Comfortably above critical value. p = 0.0002
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ESP conclusions

Did the subjects do so well purely by chance?

I Almost certainly not. Under the null this would happen in one
experiment out of 5000.

I Should we conclude that some of the subjects had the power
to see into the future and predict which light would come on?

I Can you think of other alternatives?

I In fact, there was a problem with the machine which made
the order of the lights be not independent.

Conclusion: You have to be careful in interpreting the results of
statistical tests. Just because you can show it didn’t happen ‘by
chance’ doesnt mean your favourite alternative holds.
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Subsection 3

The Z test for the difference between means
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Z test for difference between means

I Observations from two different populations.

I Means from both are normally distributed.

I SDs are known: σ1 and σ2

I Unknown means µ1 and µ2

I Observe mean X 1 from n1 pop 1 samples and mean X 2 from
n2 pop 2 samples

I Test H0 : µ1 = µ2

I If H0 is true, X1 − X2 ∼ N(0, σ2)

I with σ =
√
σ2

1/n1 + σ2
2/n2

I Test statistic Z = (X 1 − X 2)/σ
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Example: Do tall men get picked first?
Heights of K Husbands, by age of marriage

Age of marriage
early (< 30) late (≥ 30)

number 160 35
mean height (mm) 1735 1716

I Suppose we know that the standard deviation of height is
70mm

I σ =
√
σ2

1/n1 + σ2
2/n2 = 13.1

Z =
1735− 1716

13.1
= 1.45

I One tailed p-value 0.0735

I Conclusion: Insufficient evidence to reject the null
I Weitzman & Conley: “From Assortative to Ashortative

Coupling: Men’s Height, Height Heterogamy, and
Relationship Dynamics in the United States”: Short men tend
to get married later ... but to stay married longer...
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Subsection 4

Z test for the difference between proportions
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Z test for difference between proportions

I Observations from two different kinds of trials.

I Probabilities of success are p1 and p2

I Test H0 : p1 = p2

I Observe X1 successes from n1 trials from pop 1

I Observe X2 successes from n2 trials from pop 2

I Standardized test statistic:

Z =
p̂1 − p̂2√

p̂(1− p̂)
(

1
n1

+ 1
n2

)
I with p̂1 = X1/n1, p̂2 = X2/n2 and p̂ = (X1 + X2)/(n1 + n2)
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Example: Circumcision and AIDS

Study in Uganda: 70 circumcised men, 54 controls.

circum. non-circum.

n 70 54
infected 11 4

I p̂1 = 11/70 = 0.157

I p̂2 = 4/54 = 0.121

I σ =
√

0.121× 0.157
(

1
70 + 1

54

)
= 0.059

I Z = 0.157−0.121
0.059 = 1.41

I One tailed p-value 0.08

I Conclusion: Insufficient evidence to reject the null
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Section 3

The t test
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Example: Kidney Dialysis

I Phosphate measure in blood of dialysis patients on six
successive visits. Known to vary approximately according to
normal distribution.

I One patient had the following measures in mg/dl:

5.6, 5.1, 4.6, 4.8, 5.7, 6.4

I Suppose 4.0 or below is a dangerous level.

I Test at the 0.01 level whether the level might be that low.

I X = 5.4mg/dl (empirical mean)

I s = 0.67mg/dl (empirical standard deviation)
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Example: Kidney Dialysis

I Problem! We don’t know the SD!

I Estimate from the data:

SD = σ ≈ s =

√
1

n − 1

∑
(Xi − X )2

I Z = X−µ0

σ/
√

n

I T = X−µ0

s/
√

n

I T has a different distribution to Z

I For s = σ they are the same...

I But sample variation in s leads to T having ‘heavier tails’

I n − 1 = number of degrees of freedom
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Does it matter? Monte Carlo experiment
Critical value for Z at 0.01 level is 2.3.

1. Compute 6 independent samples from N(4.0, 0.672)
2. With mean X j and empirical variance sj

3. Compute Tj = (X j − 4.0)/(sj/
√

6)
4. Repeat 10000 times
5. Did T exceed 2.3 about 1% of the time?
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The t test

I Suppose 4.0 or below is a dangerous level.

I Want a 1% chance of failing to recognise that the level is low

I H0: Average phosphate level = 4.0 mg/dl

I H1: Average phosphate level > 4.0 mg/dl

T =
X − µ
s/
√
n

=
5.4− 4.0

0.67/
√

6
= 5.12

I Matlab: tinv(0.99,5)=3.36

I i.e. the critical value is 3.36

I Observed T is bigger - reject H0
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The simple t test (Student’s t test)

For n data points Xi

I If the mean of the data can be treated as Normal ...

I And our null hypothesis is X = µ for known µ...

I When we estimate the standard deviation σ using s...

I We compute the standard error SE = s/
√
n

I We compute the test statistic T = (X − µ)/SE ...

I Under the null, T ∼ t(0, 1, df = n − 1)

So the t test (also) computes p(T ′ ≥ T ) (one tailed)
Or p(|T ′| ≥ |T |) (two tailed)
Important note: more generally, df = n − p with p unknown
parameters
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Z test example

I British birthweights have
Mean 3426g and SD 538g
from a large sample

I Australian birthweights
sampled (1 day)

I Australians have mean 3276

I Null: birthweights have the
same mean

I Alternative: Australian
babies are smaller
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t test example
Now imagine that we were not provided with the standard
deviation of the British sample.

I Null hypothesis: The Australian birthweights are samples from
the same distribution as UK birth weights.

I With one unknown parameter: σ

I If the null hypothesis holds,

X = (X1 + · · ·+ X44)/44 ∼ N(3426, SE 2)

with SE = SD(Xi )/
√

44 = 84.5

I What is the probability that we would observe X ≤ 3276?

I Standardise: Observed
t = (x − 3426)/84.5 ∼ t(df = 44− 1) = −1.64

p(t ≤ −1.64) = 0.054. Bigger than before:

I Tails of t(n) larger than tails of N(0, 1)

I Because of uncertainty in σ̂
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Tails of the student t-distribution

Standard Errors from Zero

−4 −2 0 2 4

−2.571 2.571

95%

−1.960 1.960

Normal
t, df=5

5 degrees of freedom
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Tails of the student t-distribution

Standard Errors from Zero

−4 −2 0 2 4

−2.042 2.042

95%

−1.960 1.960

Normal
t, df=30

30 degrees of freedom
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Students t distribution
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Students t distribution
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Students t distribution
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Students t distribution
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Students t distribution
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Students t distribution
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Quiz time!

Let tα(d) be the α quantile of the Student T distribution with d
d.f. i.e. the probability of t < α.

I t0.95(2) > t0.95(3)?

I true

I tα(100) is a little smaller than Zα?

I false - it can be very different for small α

I 1% of the measurements of average phosphate will be within
2.3 s.d. of 4.0?

I false - that is only true for Z
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Subsection 2

The Matched sample t test
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Example - Schizophrenia

I 15 healthy, 15 Schizophrenia
sufferers

I Measure hippocampus volume

I schizophrenic:
1.27,1.63,1.47,1.39,1.93,1.26,
1.71,1.67,1.28,1.85,1.02,1.34,
2.02,1.59,1.97

I healthy:
1.94,1.44,1.56,1.58,2.06,1.66,
1.75,1.77,1.78,1.92,1.25,1.93,
2.04,1.62,2.08

I Test for equality of means at 0.05
level.

I Dont know SD.

Unaff. Schiz.

Mean 1.76 1.56
SD 0.24 0.30

68 / 126



2-sample t test

I X : Schizophrenic data

I Y : Non-schizophrenic data

I H0 : Samples came from the same distribution.

I If H0 true, then we can estimate σ by pooling X and Y

I Pooled sample variance:

s2
p =

(nx − 1)s2
X + (ny − 1)s2

y

nx + ny − 2

I Here sp = 0.27

I Standard error SE = sp

√
1

nx
+ 1

ny
= 0.099

I T = X−Y
SE = 2.02

I df = nx + ny − 2 = 28

I Critical value at p = 0.05 is T = 2.05. Don’t reject.
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What does this mean?

I The schizophrenic subjects have smaller hippocampal volume
on average.

I BUT there’s a lot of variability overall - samples of 15
individuals can differ by this much purely by chance.

I Can we do anything to reduce this variability within groups, so
we can see the difference between the groups more clearly?
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Subsection 3

Matched sample t test
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Matched case-control study

I Idea: Experiment and control group are in matched pairs,
chosen to be similar in ways likely to affect what we’re
measuring.

I Why?

I A lot of the variability will disappear (we hope) from the
difference, since the matched pairs will vary together.

I Shared variance cancels out!
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Example: Schizophrenia

The 30 subjects in the schizophrenia study were 15 matched pairs
of monozygotic twins.

I Mean difference E (X − Y ) = 0.20 (as before, i.e.
E (X )− E (Y ))

I However, standard deviation sdiff = s(D) = s(X −Y ) = 0.238

I Now a standard t test:

I Test H0: µdiff = 0

I T = E(X−Y )

sdiff /
√

15
= 3.25

I Critical T for df = 14 is 2.15

I Reject H0.
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Section 4

The χ2 test
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Subsection 1

The χ2 test
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Example: suicides by birth month

Salib and Cortina-Borja ex-
amined death certificates of
26,886 suicides in England and
Wales. Tabulated by month of
birth.
Does spring birthday predis-
pose to suicide?

Month Female Male Total

Jan 527 1774 2301
Feb 435 1639 2074
Mar 454 1939 2393
Apr 493 1777 2270
May 535 1969 2504
Jun 515 1739 2254
Jul 490 1872 2362
Aug 489 1833 2322
Sep 476 1624 2100
Oct 474 1661 2135
Nov 442 1568 2010
Dec 471 1690 2161

76 / 126



Example: suicides by birth month

I Null hypothesis: Suicides are equally likely to have been born
any day of the year. The probability of having been born in a
given month is proportional to the number of days in the
month.

I Test the null hypothesis at the 0.01 level.

I One approach: Divide into two groups, and use the Z test

I If we define spring as March–June, there are 122 days

I Under H0 P(spring birthday) = 122/365.25 = 0.34

I Observed number spring = 9421

I Expected number spring = 0.334× 26886 = 8980

I Standard Error =
√

0.334× 0.666× 26886 = 77.3

I Z = 9421−8980
77.3 = 5.71

I Critical value Zcrit = 2.58

I p-value ≈ 10−8
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Example: suicides by birth month

I Problem: We cheated!

I We used the largest choice of months

I Was that our hypothesis before we saw the data?

I No. We might have instead wondered if there were any
months that were unusual

I Can we test all deviations simultaneously?
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The χ2 test

I Test statistic that measures deviations in all k categories
simultaneously.

I χ2 =
∑ (observedi−predicted)2

expected

I Zi = observedi−predicted
standard error

I χ2(k) =
∑

k−1 Z
2
i where Zi are independent

I Mathematical fact: If the number of observations is large then
this chi-squared statistic has a certain distribution, called the
χ2 distribution.

I How large is large? Rule of thumb: At least 5 expected in
each cell of the table.

I This distribution also has a ‘degrees of freedom’ parameter

I General rule: df = Num. data pts - parameters estimated - 1

I So here: df = cells - parameters estimated - 1
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Calculating with χ2

I χ2 with d degrees of freedom has mean d and variance 2d .

I It has a density proportional to

xd/2−1e−x/2

I We will not use this formula, instead using the computer (as
usual!)
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The χ2 Distribution
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The χ2 Distribution
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Simple example: Testing a die

side 1 2 3 4 5 6

freq 16 15 4 6 14 5

I Test the null hypothesis that all sides are equally likely at the
0.01 level

X 2 =
∑ (observed− expected)2

expected
(1)

=
(16− 10)2

10
+ · · ·+ (5− 10)2

10
= 15.4 (2)
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Simple example: Testing a die
I X 2 = 15.4 with 5 degrees of freedom
I Matlab: 1-chi2cdf(15.4,5)=0.00885

I Reject at the 0.01 level
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Example: suicides by birth month

Salib and Cortina-Borja ex-
amined death certificates of
26,886 suicides in England and
Wales. Tabulated by month of
birth.
Does spring birthday predis-
pose to suicide?

Month Female Male Total

Jan 527 1774 2301
Feb 435 1639 2074
Mar 454 1939 2393
Apr 493 1777 2270
May 535 1969 2504
Jun 515 1739 2254
Jul 490 1872 2362
Aug 489 1833 2322
Sep 476 1624 2100
Oct 474 1661 2135
Nov 442 1568 2010
Dec 471 1690 2161
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Suicides by birth month

I H0: Suicides are equally likely to have been born any day of
the year. The probability of having been born in a given
month is proportional to the number of days in the month.

I e.g., P(January)=31/365.25 = 0.0849

I P(February)=28.25/365.25 = 0.0773

X 2 =
∑ (expected− observed)2

expected
(3)

=
(2281− 2301)2

2281
+ · · ·+ (2281− 2161)2

2281
(4)

= 72.4 (5)

I df = 12− 1 = 11

I p-value, from Matlab:
1-chi2cdf(72.4,11)=0.00000000004262901

I i.e. p < 10−10. Reject H0.

I The variation is not due to chance variation.
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Suicides by birth month

I Looking at just the data for females:

X 2 =
(492− 527)2

492
+ · · ·+ (492− 471)2

492
(6)

= 17.4 (7)

I Matlab: chi2inv(.95,11)=19.68

I We do not reject H0 at the 5% level....

I “The difference in frequency of suicides by birth month
among women is NOT statistically significant. It could be
explained by chance variation.”
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Section 5

Non-parametric tests
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Subsection 1

Why we need non-parametric tests
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An experiment

I “If a newborn infant is held under his arms and his bare feet
are permitted to touch a flat surface, he will perform
well-coordinated walking movements similar to those of an
adult... Normally, the walking and pacing reflexes disappear
by about 8 weeks.”

I Observation: If the infant exercises this reflex, it does not
disappear.

I Hypothesis: Maintaining this reflex will help children learn to
walk earlier.
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How do we test this hypothesis?

I Idea: Do weekly exercises with a newborn. See when he/she
starts walking.

I Result: 10 months.

I Problem: Is that long or short?

I New Idea: Do weekly exercises with a newborn. Don’t do
weekly exercises with another newborn. See which one starts
walking first

I Result: mean with exercise 10.1 months

I without exercise 11.7 months

I Problem: Newborns don’t all start walking at the same age,
regardless of exercise.

99 / 126



t test for walking data

Age in months at first walking

Treatment Control
(Exercise) (No Exercise)

9.0 11.5
9.5 12.0

9.75 9.0
10.0 11.5
13.0 13.25
9.5 13.0

Mean 10.1 11.7
SD 1.45 SD 1.52
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t test for walking data

I The Treatment numbers are generally smaller, but not always.
Could the difference be merely due to chance?

I Two sample t test

I H0: µT = µC

I H1: µT < µC (one-tailed test)

I Test at 0.05 signif. level 12-2=10 d.f.

I Critical value 1.81

I Pooled sample variance: sp =
√

(6−1)1.452+(6−1)1.522

6+6−2 = 1.48

I Standard error SE = sp

√
1/6 + 1/6 = 0.85

I T = X−Y
SE = 1.85

I Reject Null

101 / 126



What if the distribution isn’t Normal?

I Under the null...

I A bimodal distribution?

I Mean of 6 samples will not be Normal!
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Simulation study using replicate data
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Simulation study using replicate data
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Nonparametric tests

I Idea: Come up with test statistics whose significance level
doesn’t depend on the distribution that the data came from.

I Advantage: We reject with the right probability if the null
hypothesis is true.

I Drawback: We lose power. That is, we need a larger sample
to reject the null if its false.

I We focus on two tests that the median of two distributions is
equal

I They are varyingly sensitive to other differences in distribution
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Subsection 2

Mann-Whitney U test
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Mann-Whitney U test

Also called the Wilcoxon two sample Rank-sum test

I We have samples X1, · · · ,Xnx and Y1, · · · ,Yny with unknown
distributions.

I H0: medians are the same.

I H1 :mx > my (one-tailed) or mx 6= my (two-tailed)
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Mann-Whitney calculation

I Step 1: Put the data in order: Zi = sort(X ,Y )

I Step 2: Write down the ranks: ri = i

I Step 2.5: Combine ties: ri = mean(rj |Zj = Zi )

I Step 3: Add up the ranks: Rx =
∑N

i=1s.t.i∈X ri ,

RY =
∑N

i=1s.t.i∈Y ri
I Step 4: Compute R = min(RX ,RY )

I Step 5: Compute significance. Under H0, each ranking should
be random from (1,N) with replacement.

I Matlab: p=ranksum(X,Y)

I This computes all permutations for small N, and uses the
normal approximation to the sum for large N
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Computation for walking babies

9.0 9.0 9.5 9.5 9.75 10.0 11.5 11.5 12 13.0 13.0 13.25
1.5 1.5 3.5 3.5 5 6 7.5 7.5 9 10.5 10.5 12

I RX = 30, RY = 48

I R = RX = 30 since X and Y have the same size

I p=ranksum(X,Y,’tail’,’left’) = 0.085 (recent matlab versions
only!)

I p=ranksum(X,Y)/2 = 0.085 (old versions only implement
two-tailed test)

I Retain the null hypothesis
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Subsection 3

Paired value tests
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The sign test

I We have paired samples X1,Y1, · · · ,Xn,Yn

I Work only with Ii = I(Xi − Yi > 0), i.e. 1 if Xi > Yi , 0
otherwise.

I H0: S =
∑

i Ii is a Binomial RV with success probability
p = 0.5

I H1: p > 0.5

I Matlab: binocdf(S , n, 0.5) (left tail)

I Matlab: binocdf(n − S , n, 0.5) (right tail)

I Matlab: 2 min(binocdf(S , n, 0.5),binocdf(n − S , n, 0.5))
(two-tailed)
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Example: Schizophrenia

s. 1.27 1.63 1.47 1.39 1.93 1.26 1.71 1.67 1.28 1.85 1.02 1.34 2.02 1.59 1.97
h. 1.94 1.44 1.56 1.58 2.06 1.66 1.75 1.77 1.78 1.92 1.25 1.93 2.04 1.62 2.08
d. + - + + + + + + + + + + + + +

I Observed X > Y for 14 out of 15 twins

I Compute P(S = 14, 15) = (15C14 +15 C15)
(

1
2

)15
= 0.0005

I Or we can use the Normal approximation, p-value p = 0.0004:

Z =
14− 0.5× 15√
0.5× 0.5× 15

= 3.36
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Wilcoxon one sample sign-rank test

I Idea: It makes sense to consider, not just if X > Y , but
whether this happens for big or small numbers.

I It might be that there are equal numbers of + and −
differences, but the + are bigger

I Step 1: list differences ordered by absolute value

I Step 2: Calculate W = min(
∑

i :X>Y (ri ),
∑

i :X<Y (ri ))

I Step 3: Compare W to the distribution that would be given
under the null, that the ranks are unrelated to the signs

I For small n this means enumerating all options (enumeration
is not fun)
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Wilcoxon one sample sign-rank test

I For n ≈ 10 or more, Z = W−µW
σW

∼ N(0, 1), and a Z test can
be used,

I Where

µW =
1

2
+

n(n + 1)

4

and

σW =

√
n(n + 1)(2n + 1)

24
.

114 / 126



Example: Schizophrenia

s. 1.27 1.63 1.47 1.39 1.93 1.26 1.71 1.67 1.28 1.85 1.02 1.34 2.02 1.59 1.97
h. 1.94 1.44 1.56 1.58 2.06 1.66 1.75 1.77 1.78 1.92 1.25 1.93 2.04 1.62 2.08
d. 0.67 -0.19 0.09 0.19 0.13 0.40 0.04 0.10 0.50 0.07 0.23 0.59 0.02 0.03 0.11
Leading to the sorted differences
0.02 0.03 0.04 0.07 0.09 0.10 0.11 0.13 -0.19 0.19 0.23 0.40 0.50 0.59 0.67

1 2 3 4 5 6 7 8 9.5 9.5 11 12 13 14 15

I Sums: Rx = 110.5, RY = 9.5

I So R = 9.5

I µR = 0.5 + 15× 16/4 = 60.5

I σR =
√

15× 16× (30 + 1)/24 = 17.6

I Z = (R − µR)/σR = −2.897

I So the p-value is 0.0019
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Section 6

The menagerie of tests
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But which test should I use???

I These are just a small subset of the possible tests available
I Many of them have different options:

I How did we make the data look like a Normal?
I Parameters in model - leads to degrees of freedom
I Tails of test
I Pairing data
I etc

I How to decide?
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Model assumptions

The key is to make appropriate assumptions

I Are your data independent and random samples from a
defined population? (All tests considered here)

I Are you primarily testing for a difference in the location in the
two distributions? (Z ,t,non-parametric tests)

I Or the variance of many random variables? (χ2)

I Is the underlying distribution normal? (Z test, t test, χ2 test)

I Or do we want to avoid assumptions about it, and test the
median? (Mann-Whitney, Wilcoxon)

I If so, do we want to test the whole distribution? (Wilcoxon)

I Are there unknown parameters? (t test, χ2 test)

Look up the specific assumptions when you use a test!
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Z Test

H1 tests for a difference in the mean of two distributions.
H0 makes the following assumptions:

I Independent random samples

I Mean is approx. normal

I Continuous variable (recall: continuity correction)

I Known variance
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t Test

H1 tests for a difference in the mean of two distributions.
H0 makes the following assumptions:

I Independent random samples

I Mean is approx. normal

I Continuous variable (recall: continuity correction)

I Unknown variance, estimated using s
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χ2 Test

H1 tests for a difference in the variance of n distributions.
H0 makes the following assumptions:

I Sum of independent random samples

I Whose mean is approx. normal (hence sample size > 5
desirable)

I Continuous variable (recall: continuity correction)

I Unknown variance, target of the test
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Sign Test

H1 tests for a difference in the median of two distributions.
H0 makes the following assumptions:

I Independent random samples
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Mann-Whitney U Test

H1 tests for a difference in the median of two distributions.
H0 makes the following assumptions:

I Independent random samples

I Continuous variable (recall: tied value correction)

This is ‘just’ the unpaired Wilcoxon Test.
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Wilcoxon Test

H1 tests for a difference in either the median of two paired
distributions.
H0 makes the following assumptions:

I Independent random samples

I Continuous variable (recall: tied value correction)

I symmetric distribution of differences
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Other tests you might encounter

We have looked at tests for the location of one or more
distributions. Other important cases are:

I F-test: Compares the variance of two distributions. Used in
Analysis of variance (ANOVA).

I Kolmogorov-Smirnov test: A non-parametric test for whether
two distributions are the same, based on the maximum
deviation from the empirical cumulative density functions.
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Conceptually different tests

I Likelihood ratio test: the most important, because it uses a
specific alternative hypothesis. It considers two models, one of
which can be more complicated than the other (but nested).
It accounts for the difference in complexity. But: you have to
define the two models explicitly.

I Monte carlo tests: If we don’t know the distribution of the
data, but can simulate from it, we can simulate k − 1 test
statistics and report the p-value as the quantile of the true
test.

I Bayesian tests: A very different paradigm, Bayesian tests
usually ask whether a parameter estimate falls outside of some
range, given the data and some prior knowledge of the
parameter.
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