This paper contains two sections, Section A and Section B. Answer each section in a separate answer book.

Section A contains TEN short questions worth 4 marks each. All TEN answers will be used for assessment.

Section B contains SIX longer questions worth 15 marks each. A candidate’s FOUR best answers will be used for assessment.

Calculators of the approved type are permitted in this examination. Candidates may also bring to the examination one double-sided, A4 sheet of notes.
Section A: Short Questions

A1. Sketch the graph of the function \(\frac{x + 1}{x - 1} \) giving equations of any vertical and horizontal asymptotes and any points where the graph of the function crosses the axes.

Also sketch, in a separate figure, the graph of the function \(\frac{|x + 1|}{x - 1} \).

A2. An infinite sequence \(\{a_n\} \) is defined by the relation \(a_{n+1} = 3a_n - 2a_{n-1} \) for \(n \geq 1 \).

(a) Determine the two possible values of \(r \) for which \(a_n = Ar^n \) is a solution of the relation (\(A \) is an arbitrary constant.)

(b) For which of these initial values does the sequence \(\{a_n\} \) converge/diverge?

(i) \(a_0 = 1, \ a_1 = 1 \); (ii) \(a_0 = 0, \ a_1 = 1 \).

A3. Express the hyperbolic function \(\cosh(x) \) in terms of exponentials and use this definition along with the binomial expansion to confirm that

\[
\cosh^5(x) = \frac{1}{16} (\cosh(5x) + 5 \cosh(3x) + 10 \cosh(x)).
\]

A4. Consider the function \(f(x) = \ln(\ln(x)) \). What is the domain and range of the function \(f(x) \)? Calculate \(f'(x) \) and hence determine the value of

\[
\int_{e}^{e^2} \frac{1}{x \ln(x)} \, dx.
\]

A5. (a) Express the complex number \(i \) in complex exponential form. Hence find \(i^i \) in Cartesian form \(a + ib \).

(b) Using the fact that \(2 = e^{\ln(2)} \), express \(2^i \) in Cartesian form \(a + ib \). Also find \(|2^i| \).

A6. As shown in Question B2, the MacLaurin expansion of \(\sinh^{-1}(x) \) is

\[
\sum_{n=0}^{\infty} (-1)^n \frac{1^2 \cdot 3^2 \cdot 5^2 \cdots (2n - 1)^2}{(2n + 1)!} x^{2n+1}.
\]

Use the ratio test to determine the radius of convergence of this series.
A7. Express \(\frac{1}{n(n+2)} \) in terms of partial fractions. Hence evaluate \(\sum_{n=1}^{\infty} \frac{1}{n(n+2)} \).

A8. Evaluate \(\int \frac{1}{x^2 + 4x + 20} \, dx \).

A9. Find the general solution \(y(x) \) to the separable differential equation,

\[
\frac{dy}{dx} = \frac{x^2 + 1}{xy}.
\]

A10. You are given that the Fourier series for \(f(x) \) on the interval \((-\pi, \pi)\) is

\[
\frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right).
\]

Evaluate \(b_n \) for all \(n \), and \(a_0 \) when \(f(x) = (x/\pi)^4 \).
Section B: Longer Questions

B1. (a) (2 marks)
Determine the following:

(i) \(\lim_{n \to \infty} \left\{ \frac{1}{n\pi + 1/(n\pi)} \right\} \); (ii) \(\lim_{n \to \infty} \left\{ \frac{1}{1 + 1/(n\pi)} \right\} \).

(b) (6 marks)
Deduce the first three terms (to include any that evaluate to zero) in the Taylor series expansion of the following functions about \(n\pi \) where \(n \) is a positive integer:

(i) \(\tan(x) \); (ii) \(\frac{1}{x} \).

(c) (i) (1 mark)
On the same graph sketch curves of \(\tan(x) \) and \(-1/x \) over the interval \(0 \leq x \leq 4\pi \).

(ii) (3 marks)
Hence determine graphically that there is an infinite sequence of positive roots, \(\{x_1, x_2, \ldots\} \), of the equation \(x \tan(x) = -1 \) such that \((n - \frac{1}{2})\pi < x_n < n\pi \).

(iii) (3 marks)
Letting \(\epsilon_n = x_n - n\pi \), show that \(\epsilon_n \approx \frac{1}{n\pi + 1/(n\pi)} \) as \(n \to \infty \).
B2. (a) (4 marks)
Sketch the graph of sinh(x). Explain why sinh x, where \(x \in (-\infty, \infty) \), has an inverse function sinh\(^{-1}\) and sketch its graph also.

(b) (4 marks)
Consider the function \(y(x) = \text{sinh}^{-1}(x) \). Show that

\[
y'(x) = \frac{1}{\sqrt{1 + x^2}}.
\]

Using this find \(y''(x) \) and hence show that

\[
(1 + x^2)y''(x) + xy'(x) = 0. \tag{1}
\]

(c) (3 marks)
Using the Leibniz formula take the \(n \)th derivative of (1) to show that, for \(n \geq 0 \),

\[
(1 + x^2)y^{(n+2)}(x) + (2n + 1)xy^{(n+1)}(x) + n^2y^{(n)}(x) = 0.
\]

(d) (5 marks)
Calculate \(y(0) \), \(y'(0) \) directly and hence use part (c) to show that \(y^{(n)}(0) = 0 \) for \(n \) even.

Also find a formula for \(y^{(n)}(0) \) when \(n \) is odd and hence deduce that the MacLaurin series of the function sinh\(^{-1}\)(x) is

\[
\sum_{n=0}^{\infty}(-1)^n \frac{1\cdot3\cdot5\cdots(2n-1)^2}{(2n+1)!}x^{2n+1}.
\]
B3. (a) (6 marks)
Find the following limits, if they exist:

(i) \(\lim_{x \to 0} \left\{ \frac{\sin 2x}{x} \right\} \); (ii) \(\lim_{x \to 0} \left\{ \frac{\cos 2x}{x} \right\} \); (iii) \(\lim_{x \to 0} \left\{ \frac{\cos(a + x) - \cos(a)}{x} \right\} \).

(a is a fixed constant).

(b) (2 marks)
Calculate the derivative of \([\ln(x)]^n\) for \(n\) a positive integer.

(c) (3 marks)
Show that \(\lim_{x \to 0} \{x[\ln(x)]^n\} = 0.\)

(d) Define \(I_n = \int_0^1 [\ln(x)]^n \, dx \).

(i) (2 marks)
Show that \(I_n = -nI_{n-1}, \quad \text{for } n \geq 1.\)

(ii) (2 marks)
Calculate \(I_0 \) and hence evaluate \(I_n.\)
B4. (a) (i) (2 marks)
For \(z = 1 + i \), find \(|z| \) and \(\arg(z) \) and hence express \(z \) in complex exponential form.

(ii) (4 marks)
Find all complex solutions of \(z^2 = (1 + i) \) and plot them on the Argand diagram.

(iii) (2 marks)
Hence find all complex solutions of the quadratic equation \(z^2 + 2z - i = 0 \).

(b) (2 marks)
If a complex number \(w = a + ib \) where \(a \) and \(b \) are real, define the complex conjugate \(\bar{w} \) and confirm that \(|w|^2 = w\bar{w} \).

(c) In physics, the complex transmission coefficient, \(w \), for wave propagation through a slit diffraction grating satisfies the relation \(|w|^2 + |1 - w|^2 = 1 \).

(i) (3 marks)
Show that \(|w| = \cos \theta \) where \(\theta \) is the argument of \(w \).

(ii) (2 marks)
Hence show that \(w = \frac{1}{2} + \frac{1}{2}e^{2i\theta} \) and interpret this solution geometrically.
B5. (a) (3 marks)
Find the general solution to the differential equation for the function $y(x)$:

$$\frac{dy}{dx} + \frac{2x}{x^2 - 1} y = 1.$$

(b) (3 marks)
Apply the following conditions to your general solution from part (a) and seek unique solutions in each case:

(i) $y(0) = 1$; (ii) $y(1) = 0$.

(c) A planet of radius R has a shaft passing through its centre which connects one side of the planet to the other. The gravitational acceleration on the surface of the planet is denoted by g.

The idea is to jump into the shaft on one side of the planet and emerge some time, T, later on the other side. Your motion is determined by the equation

$$\frac{d^2x}{dt^2} = -\frac{g}{R} x$$

for the unknown $x(t)$ with initial conditions $x(0) = R$ and $\frac{dx(0)}{dt} = 0$.

(i) (6 marks)
Solve the differential equation, apply the initial conditions and hence show that $x(T) = -R$ is satisfied by $T = \pi \sqrt{R/g}$.

(ii) (1 mark)
On Earth, $g \approx 10\text{ms}^{-2}$, $R \approx 6,400,000\text{m}$. Use these values to calculate T to the nearest minute (if you don’t have a calculator, use $\pi \approx 3$ to estimate T).

(iii) (2 marks)
Newton’s law of gravitation states that $g = GM/R^2$ where G is a constant and $M = \frac{4}{3} \pi \rho R^3$ in terms of the density, ρ, of the planet. How does the value of T depend on the radius of the planet?
B6. (a) (3 marks)
Classify each of the following functions as even/odd/neither and periodic/non-periodic:

(i) \(\sin x \);
(ii) \(|\sin x| \);
(iii) \(\sin |x| \).

(b) This question concerns the function \(f(x) = \sin |x| \).

(i) (2 marks)
Sketch the graph of the function in the interval \(-\pi < x < \pi\). Is \(f(x) \) continuous?

(ii) (2 marks)
Calculate \(f'(x) \). Is \(f'(x) \) continuous?

(c) The Fourier series of a function is given in Question A10.

(i) (6 marks)
Calculate the Fourier coefficients \(a_n \) and \(b_n \) for the function \(f(x) = \sin |x| \) and hence show that the Fourier series of this function is

\[
\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}.
\]

(ii) (2 marks)
Use the result of (c)(i) to show that

\[
\frac{\pi - 2}{4} = \frac{1}{3} - \frac{1}{15} + \frac{1}{35} - \frac{1}{63} + \ldots.
\]

End of examination.