Basic Algebra and Trigonometry

1. (a) $(x - 1)(x + 1)$;
 (b) $(a - 2b)^2$;
 (c) vanishes at $t = 1$; hence $(t - 1)$ is a factor. Factorising gives $t^3 - 7t + 6 = (t - 1)(At^2 + Bt + C)$.

2. (a) Factorise as $x(x + 2) = 0$ so $x = 0$ or $x = -2$;
 (b) Use quadratic roots formula: $y = \frac{1}{2}(1 \pm \sqrt{5})$;
 (c) Use formula to get two identical roots: $a = \frac{3}{2}$.

3. Straight from the binomial expansion:
 (a) $(1 + 1/t)^4 = 1 + 4/t + 6/t^2 + 4/t^3 + 1/t^4$;
 (b) $(2 + x)^5 = 2^5 + 5 \cdot 2^4 x + 10 \cdot 2^3 x^2 + 10 \cdot 2^2 x^3 + 5 \cdot 2 x^4 + x^5$.

4. Standard results:
 (a) $1/\sqrt{2}$;
 (b) $\sqrt{3}/2$;
 (c) $\tan(19\pi/4) = \tan(4\pi + 3\pi/4) = \tan(3\pi/4) = \tan(\pi - \pi/4) = -\tan(\pi/4) = -1$;
 (d) $1/\cos(2\pi + \pi) = 1/\cos(\pi) = -1$.

5. (a) This is an easy quartic, because there are no odd powers of x, so it’s just a quadratic equation in x^2. So from the formula, $x^2 = \frac{1}{2}(3\pm \sqrt{3} - 8) = 1$ or 2. Hence $x = \pm 1$ or $\pm \sqrt{2}$.
 (b) Following the method of 1(c), look for simple factors by looking for values of x which make the left hand side 0. Obviously $x = 1$ works, so $(x - 1)$ is a factor, and we have

$$x^3 + 6x^2 - 8x + 1 = (x - 1)(Ax^2 + Bx + C)$$

Equating coefficients, as in 1(c) we find $A = 1$, $B = 7$, $C = -1$. Hence,

$$x^3 + 6x^2 - 8x + 1 = (x - 1)(x^2 + 7x - 1)$$

and the (three) roots are $x = 1$ or $x = \frac{1}{2}(-7 \pm \sqrt{53})$.

6. From the definition of the binomial coefficient

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!}$$

$$= \frac{n!}{(k+1)!(n-k-1)!}((k+1) + (n-k))$$

$$= \frac{n!}{(k+1)!((n+1) - (k+1))!} = \left(\frac{n+1}{k+1}\right)$$

7. (a) It’s helpful to look at the graph.

Two solutions are $\pi/6$ and $\pi - \pi/6 = 5\pi/6$. These are the only solutions between 0 and 2π; the full set of solutions is $\pi/6 + 2n\pi$ and $5\pi/6 + 2n\pi$ for all integer values of n (that is, $n = ..., -2, -1, 0, 1, 2, ...$).

(b) Two methods, the first being the better.

Method 1: Use a trigonometric identity. So

$$0 = \sin(7\theta) - \sin(5\theta) = \sin(6\theta + \theta) - \sin(6\theta - \theta) = \sin 6\theta \cos \theta + \cos 6\theta \sin \theta - \sin 6\theta \cos \theta + \cos 6\theta \sin \theta = 2 \sin \theta \cos 6\theta$$

Hence

- either $\sin \theta = 0$ giving $\theta = n\pi$ for integer n,
- or $\cos(6\theta) = 0$, giving $6\theta = (n + \frac{1}{2})\pi$, hence $\theta = (2n + 1)\pi/12$.

Method 2: Use the fact that if $\sin x = \sin y$, then either $x = y + 2n\pi$ or $x = \pi - y + 2n\pi$ for integer n. This follows from the graph of $\sin x$ as in part (a). So, we have:

- either $7\theta = 5\theta + 2n\pi$, giving $2\theta = 2n\pi$,
- or $7\theta = \pi - 5\theta + 2n\pi$ giving $12\theta = (2n + 1)\pi$.

So the solutions are $n\pi$ and $(2n + 1)\pi/12$ for integer n.

The answers agree with the first method.

(c) Standard identity: $\cos 2\theta = 2\cos^2 \theta - 1$. So the eqn. is $\cos 2\theta + 1 = 1$, so $\cos 2\theta = 0$, $2\theta = (n + \frac{1}{2})\pi$ or $\theta = (2n + 1)\pi/4$ for integer n.

(d) We have

$$2\sin \theta \cos \theta = 1 + 2\cos^2 \theta - 1 = 2\cos^2 \theta$$

That is, $\cos \theta (\cos \theta - \sin \theta) = 0$.

So:
• either \(\cos \theta = 0 \), giving \(\theta = (n + \frac{1}{2})\pi \).
• or \(\sin \theta = \cos \theta \). Solutions of this last equation are the same as solutions of \(\tan \theta = 1 \), which is satisfied by \(\theta = (n + \frac{1}{2})\pi \).

So the full set of solutions are \((n + \frac{1}{2})\pi, (n + \frac{1}{2})\pi \) for \(n \in \mathbb{Z} \).

8. (a) Let D be the foot of the perpendicular from B to side b. Then \(\triangle ABD \) gives \(c^2 = (b - a \cos C)^2 + (a \sin C)^2 \).

The cosine rule follows immediately.

(b) Using the same diagram as in (a), BD = a \sin C from triangle BCD, but also BD = c \sin A from triangle ABD. Hence \(a \sin C = c \sin A \), and dividing through gives \(a/\sin A = c/\sin C \). Since there’s complete symmetry between A,B,C, it follows that \(b/\sin B = \) the others.

9. Let \(a = c \cos \phi \) and \(b = c \sin \phi \). In other words, \(c = \sqrt{a^2 + b^2} \) and \(\phi = \tan^{-1}(b/a) \). Then the equation to solve is

\[
c \sin \theta \sin \phi + c \cos \theta \cos \phi = 1
\]

using double angles, \(\cos(\theta - \phi) = 1/c \) so \(\theta = \phi + \cos^{-1}(1/c) \) or

\[
\theta = \tan^{-1}(b/a) + \cos^{-1}(1/\sqrt{a^2 + b^2})
\]

10. Standard identities used here:

\[
\sin 3\theta = \sin(\theta + 2\theta) = \sin \theta \cos 2\theta + \cos \theta \sin 2\theta = \sin \theta(1 - 2 \sin^2 \theta) + \cos \theta, 2 \sin \theta \cos \theta
\]

Finally use \(\cos^2 \theta = 1 - \sin^2 \theta \) to reduce this to the given formula.

11. Start with the formula

\[
(1 + x)^n = \binom{n}{0} + \binom{n}{1} x + \binom{n}{2} x^2 + \ldots + \binom{n}{n} x^n
\]

and simply substitute \(x = 1 \) to get the result.

12. Here the idea is that we plot \(y = \tan x \) and \(y = \sqrt{a^2 - x^2} \) on the same graph. Wherever the curves intersect, they have the same value of \(y \) and the corresponding \(x \) is a root of the given equation.

The curve \(y = \sqrt{a^2 - x^2} \) for \(x > 0 \) is the positive circular segment of radius \(a \). From the graphs it can be seen that

- there is 1 root if \(a < \pi \);
- 2 roots if \(\pi \leq a < 2\pi \), ...

and generalising this, \(n \) roots if \((n - 1)\pi \leq a < n\pi \).

13. Write \(\pi/12 = \pi/3 - \pi/4 \).

Then \(\sin(\pi/4) = \cos(\pi/4) = 1/\sqrt{2} \), \(\sin(\pi/3) = \sqrt{3}/2 \), \(\cos(\pi/3) = 1/2 \).

Then \(\sin(\pi/12) = \sin(\pi/3 - \pi/4) = \sin(\pi/3)\cos(\pi/4) - \cos(\pi/3)\sin(\pi/4) = (\sqrt{3}/2)(1/\sqrt{2}) - (1/2)(1/\sqrt{2}) = (\sqrt{3} - 1)/2\sqrt{2} \).

Similarly \(\cos(\pi/12) = \cos(\pi/3 - \pi/4) = \cos(\pi/3)\cos(\pi/4) + \sin(\pi/3)\sin(\pi/4) = (1/2)(1/\sqrt{2}) + (\sqrt{3}/2)(1/\sqrt{2}) = (\sqrt{3} + 1)/2\sqrt{2} \).

(Note that there are many other ways of expressing these numbers.)

14. (a) Let \(r, s \) be the two given rational numbers with \(r < s \). Take a prime number \(p \) such that \(\sqrt{p} > 1/(s - r) \). Then \(s > r + 1/\sqrt{p} \) and so \(r + 1/\sqrt{p} \) is an irrational number which lies between \(r \) and \(s \).

(b) Follows from the idea that if you truncate the infinite decimal expansion of an irrational number \(x \), keeping only finitely many decimal places, you get a rational number which is as close to \(x \) as you like: the more decimal places you keep, the closer to \(x \) is the rational number you get.