Maths 1A20 Calculus 2014-15
Solution Sheet 5

Differentiation. Taylor Polynomials

1. (a) \(2(1 - x^2)(-2x)\). Holds for all \(x\);
(b) \(2 \sin t \cos t\). Holds for all \(t\);
(c) \(2 \sin^2 t \cos^2 t(2t)\). Holds for all \(t\);
(d) \(2 \theta \tan \theta + \theta^2 \sec^2 \theta\) provided \(\theta \neq (n + \frac{1}{2})\pi\) for some integer \(n\);
(e) \(\frac{1}{2}u^2/\sqrt{u^4 + 1}\) provided \(u > -1\). Note that the given function has domain for \(u \geq -1\) but it is not differentiable at \(u = -1\).

2. (a) \(-1/\sqrt{1 - x^2}\) for \(|x| < 1\). Note that the \(\cos^{-1}\) function is defined for \(|x| \leq 1\) but it is not differentiable at \(\pm 1\), and in fact does not even have one-sided derivatives there;
(b) \([a \cos \theta - b \sin \theta]e^{\alpha t}\). Holds for all \(t\);
(c) \(e^{x^2-\sin^2(2s - \cos s)}\). Holds for all \(s\);
(d) Following the hint in the question leads to \(z^2 = e^{x \ln z}\). Differentiating gives
\[
\frac{d}{dz}(z^2) = \frac{dz}{dz}e^{x \ln z} = e^{x \ln z}(\ln z + z/\ln z) = (1 + \ln z)z^2
\]
Holds for \(z > 0\) (otherwise the logarithm doesn’t exist).
(e) For \(\theta \neq (n + \frac{1}{2})\pi\) we have \(\tan^{-1}(\tan \theta) = \theta + n\pi\) where \(n\) is an integer such that \(\theta + n\pi\) is in \((-\pi/2, \pi/2)\). The derivative is 1 everywhere except \((n + \frac{1}{2})\pi, n\) an integer; these points are outside the domain of the function, since \(\tan \theta\) doesn’t exist at \(\tan(n + \frac{1}{2})\pi\).
(f) Chain rule gives \(-\sin \theta / (1 + \cos^2 \theta)\) Valid for all \(\theta\).

3. Let \(v = \tan^{-1} u\), then \(u = \tan v\) so \(du/dv = \sec^2 v\). Therefore \(dv/du = 1/\sec^2 v\). We must express this in terms of \(u\). Since \(-1 - \tan^2 u = \sec^2 u\), we have
\[
\frac{d}{du} \tan^{-1} u = \frac{1}{\sec^2 v} = \frac{1}{1 - \tan^2 u} = \frac{1}{1 - u^2}
\]
This is the answer.

4. Don’t differentiate 6 times. If \(g(x) = x\) and \(f(x) = \sin x\) then Leibniz gives \(f^{(6)}(x)g(x) + 6g'(x)f^{(5)}(x)\) since \(g^{(n)}(x)\) and higher derivatives are zero. So the answer is
\[x \sin x + 6 \cos x - 2x \sin x\]

5. (i) Don’t differentiate 5 times. Use the Leibniz rule, and the fact that the \(n\)-th derivative of \(e^{ax}\) is \(a^n e^{ax}\). Then we have:
\[
\frac{d^n}{dx^n}(e^{2x}(x^2 + 1)) = 2^n e^{2x}(2x^2 + 1) + 5.2^4 e^{2x}(2x) + 10.2^6 e^{2x}(2) + 0 = (32x^2 + 160x + 192)e^{2x}
\]
(ii) Now the general formula, done the same way
\[
\frac{d^n}{dx^n}(e^{2x}(x^2 + 1)) = 2^n e^{2x}(2x^2 + 1) + n(2^n-1)e^{2x}(2x)
\]
\[
+ \frac{n(n-1)}{2}(2^{n-2}e^{2x})(2) + 0
\]
\[
= 2^n(e^{2x} + nx + 1 + \frac{1}{2}(n-1))e^{2x}
\]

6. (a) Write \(f(x) = \sin x\), then \(f(0) = \sin 0 = 0\), \(f'(0) = \cos (0) = 1\), \(f''(0) = -\sin 0 = 0\), \(f'''(0) = -\cos 0 = -1\). Hence the Taylor Polynomial of order 3 for \(\sin x\) is \(x - \frac{1}{2}x^3\);
(b) Again \(f(x) = \sin x\) and we’ve done up to third derivative in part (a). Continuing then \(f(4)(0) = \sin 0 = 0\), so the 4th order Taylor Polynomial is the same as the 3rd order Taylor Polynomial.

This means that the cubic approximation cannot be improved by adding an \(x^4\) term. (Of course, it can be improved by adding an \(x^5\) term).
(c) Write \(f(x) = x^3\), then \(f(0) = f'(0) = f''(0) = 0\). Hence the 2nd order Taylor polynomial is just 0.

The point here is that for \(x\) near 0, \(x^3\) is much smaller than \(x^2\). So it is impossible to approximate \(x^3\) satisfactorily using lower powers; 0 is a better approximation to \(x^3\) than any other combination of \(x^3, x, x^2\).

7. Here, \(\sin(x^2)\) is bounded between 1 and -1 so \(f(x) = \sin(x^2)/x \to 0\) as \(x \to \infty\). But
\[
f'(x) = -\frac{\sin x^2}{x^2} + 2 \cos x^2
\]
and whilst the first term tends to zero, the second doesn’t. How does this happen ? As the function decays it simultaneously oscillates more and more rapidly so that the derivative is non-vanishing.

For the next part, try \(f(x) = \sin(x^{3/2})/x\). Find \(f'(x)\) decays but \(f''(x) \sim -\frac{9}{2} \sin(x^{3/2})\) as \(x \to \infty\) and doesn’t.

8. (a) The graph looks like \(x^2\) for \(x > 0\) and \(-x^2\) for \(x < 0\), so gradients from the right and left of 0 both approach the same value of zero. In short, the curve looks smooth everywhere. So it looks differentiable. (b) For \(x > 0\) we have \(f(x) = x^2\) so \(f'(x) = 2x\). For \(x < 0\) we have \(f(x) = -x^2\) so \(f'(x) = -2x\).

The two cases of \(x > 0\) and \(x < 0\) can be accounted for in the formula \(f'(x) = 2|x|\) for \(x \neq 0\).
(c) \(\frac{f(h) - f(0)}{h} = \frac{h|h| - 0}{h} = |h|\)

This \(\to 0\) as \(h \to 0\) (i.e. from both sides of zero).

This means \(f\) is differentiable at 0 (and hence everywhere, as we suspected from part (a)), and \(f'(0) = 0\).

So \(f'(x) = 2|x|\) holds for all \(x\), not just for \(x \neq 0\).

9. (a) If \(f(x) = 1/(1 - x)\) then \(f'(x) = 1/(1 - x)^2\) and second is \(f''(x) = 2/(1 - x)^4\). Can infer that the \(n\)th derivative is
\[
f^{(n)} = \frac{n!}{(1 - x)^{n+1}}
\]

©University of Bristol 2014-15. This material is copyright of the University unless explicitly stated otherwise. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only.
(b) If we let $g(x) = x$ then $g'(x) = 1$ and all other
derivs are zero. So Leibniz gives

$$
\frac{d^n}{dx^n} \left(\frac{x}{1-x} \right) = x \frac{n!}{(1-x)^{n+1}} + n \frac{(n-1)!}{(1-x)^n} = \frac{n!}{(1-x)^{n+1}}
$$

(c) Because $\frac{x}{1-x} = \frac{1}{1-x} - 1$, the derivatives of
$x/(1-x)$ are the same as those for $1/(1-x)$.

10. This stems from the fact that, in the notes, we say
that $dy/dx = 1/(dx/dy)$. We also say that the form-
ula does not generalise in such an obvious way to higher
derivatives. This question is designed to show the
relation that holds between second derivatives
d$^2y/dx^2$ and d^2x/dy^2. Here goes:

$$
\frac{d^2x}{dy^2} = \frac{d}{dy} \frac{dx}{dy} = \frac{d}{dy} \left(\frac{1}{p} \right) = \left(\frac{-1}{p^2} \right) \frac{dp}{dy}
$$

$$
= \left(\frac{-1}{p^2} \right) \frac{dx}{dy} \frac{dp}{dx} = \left(\frac{-1}{p^2} \right) \left(\frac{1}{p} \right) \frac{d^2y}{dx^2}
$$

$$
= \frac{-d^2y}{ax^2} / \left(\frac{dy}{dx} \right)^3
$$

after reinstating $p = dy/dx$.

11. 3 is quite close to π, so use the first order Taylor
polynomial about π. The Taylor Polynomial is $\tan(\pi + (x - \pi) \sec^2 \pi$, since the derivative of tan is sec2.
Since cos $\pi = -1$ and sec$^2 \pi = 1$ whilst $\tan \pi = 0$ so we have

$$
tan 3 \approx (3 - \pi) \approx -0.142
$$
to 3 decimal places. (There’s no point in keeping a
large number of decimal places, considering how crude
an approximation we are making here.)

In fact $tan 3 = -0.1425\ldots$, so this crude approxima-
tion is not bad.

12. (a) $\frac{dy}{dx} = \sinh((x - D)/a); \frac{d^2y}{dx^2} = a \cosh((x - D)/a)$.

Now just plug into the given equation and use
$
\cosh t - \sinh t = 1.
$

(b) We are told $D = 0$ so $y = C + a \cosh(x/a)$ for
$-L \leq x \leq L$. If L/a is small then x/a is small for
all x in $[-L, L]$. The 2nd degree Taylor polynomial
of $\cosh(x/a)$ is

$$
1 + \frac{x^2}{2a^2}
$$

If you take 1st degree Taylor polynomial, then cosh is
approximated by 1 which is not enough. If you take
the 4th degree then there is an extra term of $x^4/(4!a^4)$
but this is much smaller than $x^2/(2a^2)$ for x/a small.
In summary then

$$
y \approx C + a + \frac{x^2}{2a}
$$

which is a parabola.

Interesting stuff: The curve formed by a hang-
ing chain is called a “catenary” (it’s actually just the
function “cosh”). You can look up its deriv-
ation and history on wikipedia (it attracted the inter-
est of famous mathematicians such as Galileo, Hooke,
Bernaulli, Huygens, Leibniz)

13. Clearly $f(x) \rightarrow 0$ as $x \rightarrow 0$ since $|f(x)| \leq x$. Since
$f(0) = 0$, it follows that f is continuous at 0.

Even though the function behaves pretty strangely
near $x = 0$, it is still continuous.

g is also continuous for the same reason.

For $x \neq 0$ we have $f'(x) = \sin(1/x) + x(-1/x^2)\cos(1/x)$
which diverges as $x \rightarrow 0$. The wig-
gles in the graph get steeper and steeper as $x \rightarrow 0$.

In fact f is not differentiable at 0 because
$\frac{f(h) - f(0)}{h} = \sin(1/h)$ does not converge as $h \rightarrow 0$.

Similarly $g'(x) = 2x\sin(1/x) - \cos(1/x)$
for $x \neq 0$, which oscillates and does not converge as $x \rightarrow 0$.

But in fact g is differentiable at 0, because

$$
g(h) - g(0) \over h = \sin(1/h) \rightarrow 0, \quad \text{as } h \rightarrow 0
$$

This example shows that even if $g'(x)$ behaves badly
as $x \rightarrow a$, $g'(a)$ may yet exist.

14. Multiply top and bottom by $\sqrt{x} + \sqrt{a}$, giving

$$
\lim_{x \rightarrow a} \left(\frac{\sqrt{x} + \sqrt{a}}{x-a} \right) \left(\frac{f(x) - f(a)}{x-a} \right) = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x-a}.
$$

But $\sqrt{x} + \sqrt{a} \rightarrow 2\sqrt{a}$
as $x \rightarrow a$, and the rest of the stuff inside the limit
$\rightarrow f'(a)$. Hence the limit is $2\sqrt{a}f'(a)$.

15. (a) 2$^9 = 1$ and 0$^1 = 1$, so P_0 is just $(x^2 - 1)^0 = 1$.

Next, $P_1(x) = \frac{1}{2} \frac{d}{dx} (x^2 - 1) = x$.

Then

$$
P_2(x) = \frac{1}{4} \frac{d^2}{dx^2} (x^4 - 2x^2 + 1) = \frac{1}{8} (12x^2 - 4) = \frac{1}{2} (3x^2 - 1)
$$

(b) NOTE: we talk about even numbers n, even powers,
and even functions. These are different (though related)
uses of the word “even” - potentially confusing if you
don’t think carefully.

If n is even, $P_n(x)$ is an even-order derivative of a
combination of even powers of x, giving again only even
powers. So $P_n(x)$ is an even function.

If n is odd, $P_n(x)$ is an odd-order derivative of a
combination of even powers, giving only odd powers of x;
so $P_n(x)$ is odd.

(c) One method is to get an explicit formula for P_1
by expanding $(x^2 - 1)^l$ using the binomial expansion
in (1) and then differentiating. Then plug into the
recursion formula of (15(c) and check that it is satisfied.
The details are very complicated; this is a hard
question.

There are other approaches to deriving the relation
in 11(c), involving differential equations.

(d) Take $l = 2$ giving

$$
3P_3 = 5xP_2 - 2P_1 = \frac{5}{2} x^3 - 2x = \frac{15}{2} x^3 - \frac{9}{2}
$$

Hence $P_3(x) = \frac{1}{2} (5x^3 - 3x)$.

Similarly

$$
4P_4 = 7xP_3 - 3P_2 = \frac{7}{2} (5x^3 - 3x) - \frac{3}{2} (3x^2 - 1)
$$

so $P_4(x) = \frac{1}{8} (35x^4 - 30x^2 + 3)$.