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1. Introduction

The central objective in the study of quantum chaos is
to characterize universal properties of quantum systems
that reflect the regular or chaotic features of the underly-
ing classical dynamics. Most developments of the past 25
years have been influenced by the pioneering models on
statistical properties of eigenstates (Berry 1977) and en-
ergy levels (Berry and Tabor 1977; Bohigas, Giannoni and
Schmit 1984). Arithmetic quantum chaos (AQC) refers
to the investigation of quantum system with additional
arithmetic structures that allow a significantly more ex-
tensive analysis than is generally possible. On the other
hand, the special number-theoretic features also render
these systems non-generic, and thus some of the expected
universal phenomena fail to emerge. Important examples
of such systems include the modular surface and linear au-
tomorphisms of tori (‘cat maps’) which will be described
below.

The geodesic motion of a point particle on a compact
Riemannian surface M of constant negative curvature is
the prime example of an Anosov flow, one of the strongest
characterizations of dynamical chaos. The corresponding
quantum eigenstates ϕj and energy levels λj are given by
the solution of the eigenvalue problem for the Laplace-
Beltrami operator ∆ (or Laplacian for short)

(1) (∆ + λ)ϕ = 0, ‖ϕ‖L2(M) = 1,

where the eigenvalues

(2) λ0 = 0 < λ1 ≤ λ2 ≤ · · · → ∞
form a discrete spectrum with an asymptotic density gov-
erned by Weyl’s law

(3) #{j : λj ≤ λ} ∼ Area(Γ\H)
4π

λ, λ→∞.

We rescale the sequence by setting

(4) Xj =
Area(Γ\H)

4π
λj

which yields a sequence of asymptotic density one. One
of the central conjectures in AQC says that, if M is an
arithmetic hyperbolic surface (see Sec. 2 for examples of
this very special class of surfaces of constant negative cur-
vature), the eigenvalues of the Laplacian have the same
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Figure 1. Image of the absolute value
squared of an eigenfunction ϕj(z) for a
non-arithmetic surface of genus two. The
surface is obtained by identifying opposite
sides of the fundamental region [1].

local statistical properties as independent random vari-
ables from a Poisson process, see e.g. the surveys [12, 3].
This means that the probability of finding k eigenvalues
Xj in randomly shifted interval [X,X +L] of fixed length
L is distributed according to the Poisson law Lke−L/k!.
The gaps between eigenvalues have an exponential distri-
bution,

(5)
1
N

#{j ≤ N : Xj+1 −Xj ∈ [a, b]} →
∫ b

a
e−s ds

as N → ∞, and thus eigenvalues are likely to appear in
clusters. This is in contrast to the general expectation that
the energy level statistics of generic chaotic systems fol-
low the distributions of random matrix ensembles; Poisson
statistics are usually associated with quantized integrable
systems. Although we are at present far from a proof of
(5), the deviation from random matrix theory is well un-
derstood, see Sec. 3.

Highly excited quantum eigenstates ϕj (j → ∞), cf.
Fig. 1, of chaotic systems are conjectured to behave lo-
cally like random wave solutions of (1), where boundary
conditions are ignored. This hypothesis was put forward
by Berry in 1977 and tested numerically, e.g., in the case
of certain arithmetic and non-arithmetic surfaces of con-
stant negative curvature [6, 1]. One of the implications is
that eigenstates should have uniform mass on the surface
M, i.e., for any bounded continuous function g : M→ R

(6)
∫
M
|ϕj |2g dA→

∫
M
g dA, j →∞,

1



2 JENS MARKLOF

where dA is the Riemannian area element on M. This
phenomenon, referred to as quantum unique ergodicity (QUE),
is expected to hold for general surfaces of negative cur-
vature, according to a conjecture by Rudnick and Sar-
nak (1994). In the case of arithmetic hyperbolic surfaces,
there has been substantial progress on this conjecture in
the works of Lindenstrauss, Watson and Luo-Sarnak, see
Secs. 5, 6 and 7, as well as the review [13]. For general
manifolds with ergodic geodesic flow, the convergence in
(6) is so far established only for subsequences of eigen-
functions of density one (Schnirelman-Zelditch-Colin de
Verdière Theorem, cf. [14]), and it cannot be ruled out
that exceptional subsequences of eigenfunctions have sin-
gular limit, e.g., localized on closed geodesics. Such ‘scar-
ring’ of eigenfunctions, at least in some weak form, has
been suggested by numerical experiments in Euclidean do-
mains, and the existence of singular quantum limits is a
matter of controversy in the current physics and mathe-
matics literature. A first rigorous proof of the existence
of scarred eigenstates has recently been established in the
case of quantized toral automorphisms. Remarkably, these
quantum cat maps may also exhibit quantum unique er-
godicity. A more detailed account of results for these maps
is given in Sec. 8, see also [9, 5].

There have been a number of other fruitful interactions
between quantum chaos and number theory, in particular
the connections of spectral statistics of integrable quan-
tum systems with the value distribution properties of qua-
dratic forms, and analogies in the statistical behaviour of
energy levels of chaotic systems and the zeros of the Rie-
mann zeta function. We refer the reader to [8] and [2],
respectively, for information on these topics.

2. Hyperbolic surfaces

Let us begin with some basic notions of hyperbolic ge-
ometry. The hyperbolic plane H may be abstractly de-
fined as the simply connected two-dimensional Riemann-
ian manifold with Gaussian curvature −1. A convenient
parametrization of H is provided by the complex upper
half plane, H = {x+ iy : x ∈ R, y > 0}, with Riemannian
line and volume elements

(7) ds2 =
dx2 + dy2

y2
, dA =

dx dy

y2
,

respectively. The group of orientation-preserving isome-
tries of H is given by fractional linear transformations

(8) H → H, z 7→ az + b

cz + d
,

(
a b
c d

)
∈ SL(2,R),

where SL(2,R) is the group of 2×2 matrices with unit de-
terminant. Since the matrices 1 and−1 represent the same
transformation, the group of orientation-preserving isome-
tries can be identified with PSL(2,R) := SL(2,R)/{±1}.
A finite-volume hyperbolic surface may now be represented
as the quotient Γ\H, where Γ ⊂ PSL(2,R) is a Fuchsian
group of the first kind. An arithmetic hyperbolic surface
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Figure 2. Fundamental domain of the
modular group PSL(2,Z) in the complex
upper half plane.

Figure 3. Fundamental domain of the
regular octagon in the Poincarè disc.

(such as the modular surface) is obtained, if Γ has, loosely
speaking, some representation in n × n matrices with in-
teger coefficients, for some suitable n. This is evident in
the case of the modular surface, where the fundamental
group is the modular group Γ = PSL(2,Z) = {( a b

c d ) ∈
PSL(2,R) : a, b, c, d ∈ Z}/{±1}.

A fundamental domain for the action of the modular
group PSL(2,Z) on H is the set

(9) FPSL(2,Z) =
{
z ∈ H : |z| > 1,−1

2
< Re z <

1
2

}
,

see fig. 2. The modular group is generated by the trans-
lation ( 1 1

0 1 ) : z 7→ z + 1 and the inversion ( 0 −1
1 0 ) : z 7→

−1/z. These generators identify sections of the bound-
ary of FPSL(2,Z). By gluing the fundamental domain along
identified edges we obtain a realization of the modular sur-
face, a non-compact surface with one cusp at z →∞, and
two conic singularities at z = i and z = 1

2 + i
√

3
2 .
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An interesting example of a compact arithmetic surface
is the ‘regular octagon’, a hyperbolic surface of genus two.
Its fundamental domain is shown in fig. 3 as a subset of
the Poincarè disc D = {z ∈ C : |z| < 1}, which yields
an alternative parametrization of the hyperbolic plane H.
In these coordinates, the Riemannian line and volume el-
ement read

(10) ds2 =
4(dx2 + dy2)
(1− x2 − y2)2

, dA =
4 dx dy

(1− x2 − y2)2
.

The group of orientation-preserving isometries is now rep-
resented by PSU(1, 1) = SU(1, 1)/{±1}, where

(11) SU(1, 1) =
{(

α β

β α

)
: α, β ∈ C, |α|2 − |β|2 = 1

}
,

acting on D as above via fractional linear transformations.
The fundamental group of the regular octagon surface is
the subgroup of all elements in PSU(1, 1) with coefficients
of the form

(12) α = k + l
√

2, β =
(
m+ n

√
2
)√

1 +
√

2,

where k, l,m, n ∈ Z[i], i.e., Gaussian integers of the form
k1+ik2, k1, k2 ∈ Z. Note that not all choices of k, l,m, n ∈
Z[i] satisfy the condition |α|2−|β|2 = 1. Since all elements
γ 6= 1 of Γ act fix-point free on H, the surface Γ\H is
smooth without conic singularities.

In the following we will restrict our attention to a rep-
resentative case, the modular surface with Γ = PSL(2,Z).

3. Eigenvalue statistics and Selberg trace
formula

The statistical properties of the rescaled eigenvalues Xj

(cf. (4)) of the Laplacian can be characterized by their
distribution in small intervals

(13) N (x, L) := # {j : x ≤ Xj ≤ x+ L} ,

where x is uniformly distributed, say, in the interval [X, 2X],
X large. Numerical experiments by Bogomolny, Georgeot,
Giannoni and Schmit, as well as Bolte, Steil and Steiner
(see refs. in [3]) suggest that the Xj are asymptotically
Poisson distributed:

Conjecture 1. For any bounded function g : Z≥0 → C
we have

(14)
1
X

∫ 2X

X
g
(
N (x, L)

)
dx→

∞∑
k=0

g(k)
Lke−L

k!
,

as T →∞.

One may also consider larger intervals, where L→∞ as
X →∞. In this case the assumption on the independence
of the Xj predicts a central limit theorem. Weyl’s law (3)
implies that the expectation value is asymptotically, for
T →∞,

(15)
1
X

∫ 2X

X
N (x, L) dx ∼ L.

This asymptotics holds for any sequence of L bounded
away from zero (e.g. L constant, or L→∞).

Define the variance by

(16) Σ2(X,L) =
1
X

∫ 2X

X

(
N (x, L)− L

)2
dx.

In view of the above conjecture, one expects Σ2(X,L) ∼ L

in the limit X →∞, L/
√
X → 0 (the variance exhibits a

less universal behaviour in the range L�
√
X,1 cf. [12]),

and a central limit theorem for the fluctuations around
the mean:

Conjecture 2. For any bounded function g : R → C we
have
(17)

1
X

∫ 2X

X
g

(
N (x, L)− L√

Σ2(x, L)

)
dx→ 1√

2π

∫ ∞

−∞
g(t)e−

1
2
t2dt,

as X,L→∞, L� X.

The main tool in the attempts to prove the above con-
jectures has been the Selberg trace formula. It relates
sums over eigenvalues of the Laplacians to sums over lengths
of closed geodesics on the hyperbolic surface. The trace
formula is in its simplest form in the case of compact hy-
perbolic surfaces; we have

(18)
∞∑

j=0

h(ρj) =
Area(M)

4π

∫ ∞

−∞
h(ρ) tanh(πρ) ρ dρ

+
∑

γ∈H∗

∞∑
n=1

`γ g(n`γ)
2 sinh(n`γ/2)

,

whereH∗ is the set of all primitive oriented closed geodesics
γ, and `γ their lengths. The quantity ρj is related to the
eigenvalue λj by the equation λj = ρ2

j + 1
4 . The trace for-

mula (18) holds for a large class of even test functions h.
E.g. it is sufficient to assume that h is infinitely differen-
tiable, and that the Fourier transform of h,

(19) g(t) =
1
2π

∫
R
h(ρ) e−iρtdρ,

has compact support. The trace formula for non-compact
surfaces has additional terms from the parabolic elements
in the corresponding group, and includes also sums over
the resonances of the continuous part of the spectrum.
The non-compact modular surface behaves in many ways
like a compact surface. In particular, Selberg showed that
the number of eigenvalues embedded in the continuous
spectrum satisfies the same Weyl law as in the compact
case [13].

Setting

(20) h(ρ) = χ[X,X+L]

(Area(M)
4π (ρ2 + 1

4)
)
,

where χ[X,X+L] is the characteristic function of the interval
[X,X+L], we may thus viewN (X,L) as the left-hand side

1The notation A � B means there is a constant c > 0 such that
A ≤ cB
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of the trace formula. The above test function h is however
not admissible, and requires appropriate smoothing. Luo
and Sarnak (cf. [13]) developed an argument of this type
to obtain a lower bound on the average number variance,

(21)
1
L

∫ L

0
Σ2(X,L′)dL′ �

√
X

(logX)2

in the regime
√
X/ logX � L�

√
X, which is consistent

with the Poisson conjecture Σ2(X,L) ∼ L. Bogomolny,
Levyraz and Schmit suggested a remarkable limiting for-
mula for the two-point correlation function for the modu-
lar surface (cf. [3, 4]), based on an analysis of the correla-
tions between multiplicities of lengths of closed geodesics.
A rigorous analysis of the fluctuations of multiplicities is
given by Peter, cf. [4]. Rudnick [10] has recently estab-
lished a smoothed version of Conjecture 2 in the regime

(22)
√
X

L
→∞,

√
X

L logX
→ 0,

where the characteristic function in (20) is replaced by a
certain class of smooth test functions.

All of the above approaches use the Selberg trace for-
mula, exploiting the particular properties of the distribu-
tion of lengths of closed geodesics in arithmetic hyperbolic
surfaces. These will be discussed in more detail in the next
section, following the work of Bogomolny, Georgeot, Gi-
annoni and Schmit, Bolte, and Luo and Sarnak, see [3, 12]
for references.

4. Distribution of lengths of closed geodesics

The classical prime geodesic theorem asserts that the
number N(`) of primitive closed geodesics of length less
than ` is asymptotically

(23) N(`) ∼ e`

`
.

One of the significant geometrical characteristics of arith-
metic hyperbolic surfaces is that the number of closed
geodesics with the same length ` grows exponentially with
`. This phenomenon is easiest explained in the case of the
modular surface, where the set of lengths ` appearing in
the lengths spectrum is characterized by the condition

(24) 2 cosh(`/2) = | tr γ|

where γ runs over all elements in SL(2,Z) with | tr γ| > 2.
It is not hard to see that any integer n > 2 appears in the
set {| tr γ| : γ ∈ SL(2,Z)}, and hence the set of distinct
lengths of closed geodesics is

(25) L = {2 arcosh(n/2) : n = 3, 4, 5, . . .}.

The number of distinct lengths less than ` is therefore
asymptotically for large `

(26) N ′(`) = #(L ∩ [0, `]) ∼ e`/2.

Eqs. (26) and (23) say that on average the number of
geodesics with the same lengths is at least � e`/2/`.

The prime geodesic theorem (23) holds equally for all
hyperbolic surfaces with finite area, while (26) is specific
to the modular surface. For general arithmetic surfaces,
we have the upper bound

(27) N ′(`) ≤ ce`/2

for some constant c > 0 that may depend on the surface.
Although one expects N ′(`) to be asymptotic to 1

2N(`) for
generic surfaces (since most geodesics have a time reversal
partner which thus has the same length, and otherwise all
lengths are distinct), there are examples of non-arithmetic
Hecke triangles where numerical and heuristic arguments
suggest N ′(`) ∼ c1ec2`/` for suitable constants c1 > 0 and
0 < c2 < 1/2, cf. [4]. Hence exponential degeneracy in
the length spectrum seems to occur in a weaker form also
for non-arithmetic surfaces.

A further useful property of the length spectrum of
arithmetic surfaces is the bounded clustering property: there
is a constant C (again surface dependent) such that

(28) #(L ∩ [`, `+ 1]) ≤ C

for all `. This fact is evident in the case of the modular
surface; the general case is proved by Luo and Sarnak, cf.
[12].

5. Quantum unique ergodicity

The unit tangent bundle of a hyperbolic surface Γ\H
describes the physical phase space on which the classical
dynamics takes place. A convenient parametrization of the
unit tangent bundle is given by the quotient Γ\PSL(2,R)—
this may be seen be means of the Iwasawa decomposition
for an element g ∈ PSL(2,R),

(29) g =
(

1 x
0 1

) (
y1/2 0
0 y−1/2

) (
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)
,

where x+ iy ∈ H represents the position of the particle in
Γ\H in half-plane coordinates, and θ ∈ [0, 2π) the direc-
tion of its velocity. Multiplying the matrix (29) from the
left by ( a b

c d ) and writing the result again in the Iwasawa
form (29), one obtains the action

(30) (z, φ) 7→
(
az + b

cz + d
, θ − 2 arg(cz + d)

)
,

which represents precisely the geometric action of isome-
tries on the unit tangent bundle.

The geodesic flow Φt on Γ\PSL(2,R) is represented by
the right translation

(31) Φt : Γg 7→ Γg
(

et/2 0
0 e−t/2

)
.

The Haar measure µ on PSL(2,R) is thus trivially invari-
ant under the geodesic flow. It is well known that µ is
not the only invariant measure, i.e., Φt is not uniquely er-
godic, and that there is in fact an abundance of invariant
measures. The simplest examples are those with uniform
mass on one, or a countable collection of, closed geodesics.
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To test the distribution of an eigenfunction ϕj in phase
space, one associates with a function a ∈ C∞(Γ\PSL(2,R))
the quantum observable Op(a), a zeroth order pseudo-
differential operator with principal symbol a. Using semi-
classical techniques based on Friedrichs symmetrization,
on can show that the matrix element

(32) νj(a) = 〈Op(a)ϕj , ϕj〉
is asymptotic (as j → ∞) to a positive functional that
defines a probability measure on Γ\PSL(2,R). Therefore,
if M is compact, any weak limit of νj represents a prob-
ability measure on Γ\PSL(2,R). Egorov’s theorem (cf.
[14]) in turn implies that any such limit must be invariant
under the geodesic flow, and the main challenge in prov-
ing quantum unique ergodicity is to rule out all invariant
measures apart from Haar.

Conjecture 3 (Rudnick and Sarnak (1994) [12, 13]). For
every compact hyperbolic surface Γ\H, the sequence νj

converges weakly to µ.

Lindenstrauss has proved this conjecture for compact
arithmetic hyperbolic surfaces of congruence type (such as
the second example in Sec. 2) for special bases of eigen-
functions, using ergodic-theoretic methods. These will be
discussed in more detail in Sec. 6 below. His results ex-
tend to the non-compact case, i.e., to the modular surface
where Γ = PSL(2,Z). Here he shows that any weak limit
of subsequences of νj is of the form cµ, where c is a con-
stant with values in [0, 1]. One believes that c = 1, but
with present techniques it cannot be ruled out that a pro-
portion of the mass of the eigenfunction escapes into the
non-compact cusp of the surface. For the modular surface,
c = 1 can be proved under the assumption of the general-
ized Riemann hypothesis, see Sec. 7 and [13]. Quantum
unique ergodicity also holds for the continuous part of
the spectrum, which is furnished by the Eisenstein series
E(z, s), where s = 1/2+ir is the spectral parameter. Note
that the measures associated with the matrix elements

(33) νr(a) = 〈Op(a)E( · , 1/2 + ir), E( · , 1/2 + ir)〉
are not probability but only Radon measures, since E(z, s)
is not square-integrable. Luo and Sarnak, and Jakobson
have shown that

(34) lim
r→∞

νr(a)
νr(b)

=
µ(a)
µ(b)

for suitable test functions a, b ∈ C∞(Γ\PSL(2,R)), cf.
[13].

6. Hecke operators, entropy and measure
rigidity

For compact surfaces, the sequence of probability mea-
sures approaching the matrix elements νj is relatively com-
pact. That is, every infinite sequence contains a conver-
gent subsequence. Lindenstrauss’ central idea in the proof
of quantum unique ergodicity is to exploit the presence of
Hecke operators to understand the invariance properties

of possible quantum limits. We will sketch his argument
in the case of the modular surface (ignoring issues related
to the non-compactness of the surface), where it is most
transparent.

For every positive integer n, the Hecke operator Tn act-
ing on continuous functions on Γ\H with Γ = SL(2,Z) is
defined by

(35) Tnf(z) =
1√
n

n∑
a,d=1
ad=n

d−1∑
b=0

f

(
az + b

d

)
.

The set Mn of matrices with integer coefficients and de-
terminant n can be expressed as the disjoint union

(36) Mn =
n⋃

a,d=1
ad=n

d−1⋃
b=0

Γ
(
a b
0 d

)

and hence the sum in (35) can be viewed as a sum over
the cosets in this decomposition. We note the product
formula

(37) TmTn =
∑

d| gcd(m,n)

Tmn/d2 .

The Hecke operators are normal, form a commuting
family, and in addition commute with the Laplacian ∆. In
the following we consider an orthonormal basis of eigen-
functions ϕj of ∆ that are simultaneously eigenfunctions
of all Hecke operators. We will refer to such eigenfunctions
as Hecke eigenfunctions. The above assumption is auto-
matically satisfied, if the spectrum of ∆ is simple (i.e. no
eigenvalues coincide), a property conjectured by Cartier
and supported by numerical computations. Lindenstrauss’
work is based on the following two observations. Firstly,
all quantum limits of Hecke eigenfunctions are geodesic-
flow invariant measures of positive entropy, and secondly,
the only such measure of positive entropy that is recurrent
under Hecke correspondences is Lebesgue measure.

The first property is proved by Bourgain and Linden-
strauss (2003) and refines arguments of Rudnick and Sar-
nak (1994) and Wolpert (2001) on the distribution of Hecke
points (see [13] for references to these papers). For a given
point z ∈ H the set of Hecke points is defined as

(38) Tn(z) := Mnz.

For most primes, the set Tpk(z) comprises (p+1)pk−1 dis-
tinct points on Γ\H. For each z, the Hecke operator Tn

may now be interpreted as the adjacency matrix for a fi-
nite graph embedded in Γ\H, whose vertices are the Hecke
points Tn(z). Hecke eigenfunctions ϕj with

(39) Tnϕj = λj(n)ϕj

give rise to eigenfunctions of the adjacency matrix. Ex-
ploiting this fact, Bourgain and Lindenstrauss show that
for a large set of integers n

(40) |ϕj(z)|2 �
∑

w∈Tn(z)

|ϕj(w)|2,
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i.e. pointwise values of |ϕj |2 cannot be substantially larger
than its sum over Hecke points. This and the observation
that Hecke points for a large set of integers n are suffi-
ciently uniformly distributed on Γ\H as n → ∞, yields
the estimate of positive entropy with a quantitative lower
bound.

Lindenstrauss’ proof of the second property, which shows
that Lebesgue measure is the only quantum limit of Hecke
eigenfunctions, is a result of a currently very active branch
of ergodic theory: measure rigidity. Invariance under the
geodesic flow alone is not sufficient to rule out other pos-
sible limit measures. In fact there are uncountably many
measures with this property. As limits of Hecke eigenfunc-
tions, all quantum limits possess an additional property,
namely recurrence under Hecke correspondences. Since
the explanation of these is rather involved, let us recall an
analogous result in a simpler set-up. The map ×2 : x 7→
2x mod 1 defines a hyperbolic dynamical system on the
unit circle with a wealth of invariant measures, similar to
the case of the geodesic flow on a surface of negative cur-
vature. Furstenberg conjectured that, up to trivial invari-
ant measures that are localized on finitely many rational
points, Lebesgue measure is the only×2-invariant measure
that is also invariant under action of ×3 : x 7→ 3x mod
1. This fundamental problem is still unsolved and one of
the central conjectures in measure rigidity. Rudolph how-
ever showed that Furstenberg’s conjecture is true if one
restricts the statement to ×2-invariant measures of posi-
tive entropy, cf. [11]. In Lindenstrauss’ work, ×2 plays the
role of the geodesic flow, and ×3 the role of the Hecke cor-
respondences. Although it might also here be interesting
to ask whether and analogue of Furstenberg’s conjecture
holds, it is inessential for the proof of QUE due to the pos-
itive entropy of quantum limits discussed in the previous
paragraph.

7. Eigenfunctions and L-functions

An even eigenfunction ϕj(z) for Γ = SL(2,Z) has the
Fourier expansion

(41) ϕj(z) =
∞∑

n=1

aj(n)y1/2Kiρj (2πny) cos(2πnx).

We associate with ϕj(z) the Dirichlet series

(42) L(s, ϕj) =
∞∑

n=1

aj(n)n−s

which converges for Re s large enough. These series have
an analytic continuation to the entire complex plane C
and satisfy a functional equation,

(43) Λ(s, ϕj) = Λ(1− s, ϕj)

where

(44) Λ(s, ϕj) = π−sΓ
( s+iρj

2

)
Γ
( s−iρj

2

)
L(s, ϕj).

If ϕj(z) is in addition an eigenfunction of all Hecke opera-
tors, then the Fourier coefficients in fact coincide (up to a

normalization constant) with the eigenvalues of the Hecke
operators

(45) aj(m) = λj(m)aj(1).

If we normalize aj(1) = 1, the Hecke relations (37) result
in an Euler product formula for the L-function,

(46) L(s, ϕj) =
∏

p prime

(
1− aj(p)p−s + p−1−2s

)−1
.

These L-functions behave in many other ways like the Rie-
mann zeta or classical Dirichlet L-functions. In particu-
lar, they are expected to satisfy a Riemann hypothesis,
i.e. all non-trivial zeros are constrained to the critical line
Im s = 1/2.

Questions on the distribution of Hecke eigenfunctions,
such as quantum unique ergodicity or value distribution
properties, can now be translated to analytic properties of
L-functions. We will discuss two examples.

The asymptotics in (6) can be established by proving
(6) for the choices g = ϕk, k = 1, 2, . . ., i.e.,

(47)
∫
M
|ϕj |2ϕk dA→ 0.

Watson discovered the remarkable relation [13]

(48)
∣∣∣∣ ∫
M
ϕj1ϕj2ϕj3 dA

∣∣∣∣2
=

π4Λ(1
2 , ϕj1 × ϕj2 × ϕj3)

Λ(1, sym2 ϕj1)Λ(1, sym2 ϕj2)Λ(1, sym2 ϕj3)
.

The L-functions Λ(s, g) in Watson’s formula are more ad-
vanced cousins of those introduced earlier, see [13] for de-
tails. The Riemann hypothesis for such L-functions im-
plies then via (48) a precise rate of convergence to QUE
for the modular surface,

(49)
∫
M
|ϕj |2g dA =

∫
M
g dA+O(λ−1/4+ε

j ),

for any ε > 0, where the implied constant depends on ε
and g.

A second example on the connection between statistical
properties of the matrix elements νj(a) = 〈Op(a)ϕj , ϕj〉
(for fixed a and random j) and values L-functions has
appeared in the work of Luo and Sarnak, cf. [13]. Define
the variance

(50) Vλ(a) =
1

N(λ)

∑
λj≤λ

∣∣νj(a)− µ(a)
∣∣2,

with N(λ) = #{j : λj ≤ λ}; cf. (3). Following a conjec-
ture by Feingold-Peres and Eckhardt et al. (see [13] for
references) for ‘generic’ quantum chaotic systems, one ex-
pects a central limit theorem for the statistical fluctuations
of the νj(a), where the normalized variance N(λ)1/2Vλ(a)
is asymptotic to the classical autocorrelation function C(a),
see eq. (54).
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Conjecture 4. For any bounded function g : R → C we
have
(51)

1
N(λ)

∑
λj≤λ

g

(
νj(a)− µ(a)√

Vλ(a)

)
→ 1√

2π

∫ ∞

−∞
g(t)e−

1
2
t2dt,

as λ→∞.

Luo and Sarnak prove that in the case of the modular
surface the variance has the asymptotics

(52) lim
λ→∞

N(λ)1/2Vλ(a) = 〈Ba, a〉,

where B is a non-negative self-adjoint operator which com-
mutes with the Laplacian ∆ and all Hecke operators Tn.
In particular we have

(53) Bϕj =
1
2
L(1

2 , ϕj)C(ϕj) ϕj ,

where

(54) C(a) :=
∫

R

∫
Γ\PSL(2,R)

a
(
Φt(g))a(g)dµ(g) dt

is the classical autocorrelation function for the geodesic
flow with respect to the observable a [13]. Up to the
arithmetic factor 1

2L(1
2 , ϕj), eq. (53) is consistent with

the Feingold-Peres prediction for the variance of generic
chaotic systems. Furthermore, recent estimates of mo-
ments by Rudnick and Soundararajan (2005) indicate that
Conjecture 4 is not valid in the case of the modular sur-
face.

8. Quantum eigenstates of cat maps

Cat maps are probably the simplest area-preserving maps
on a compact surface that are highly chaotic. They are
defined as linear automorphisms on the torus T2 = R2/Z2,

(55) ΦA : T2 → T2,

where a point ξ ∈ R2 (mod Z2) is mapped to Aξ (mod
Z2); A is a fixed matrix in GL(2,Z) with eigenvalues off
the unit circle (this guarantees hyperbolicity). We view
the torus T2 as a symplectic manifold, the ‘phase space’
of the dynamical system. Since T2 is compact, the Hilbert
space of quantum states is an N dimensional vector space
HN , N integer. The semiclassical limit, or limit of small
wavelengths, corresponds here to N →∞.

It is convenient to identify HN with L2(Z/NZ), with
inner product

(56) 〈ψ1, ψ2〉 =
1
N

∑
Q mod N

ψ1(Q)ψ2(Q).

For any smooth function f ∈ C∞(T2), define a quantum
observable

OpN (f) =
∑
n∈Z2

f̂(n)TN (n)

where f̂(n) are the Fourier coefficients of f , and TN (n)
are translation operators

(57) TN (n) = eπin1n2/N tn2
2 tn1

1 ,

(58) [t1ψ](Q) = ψ(Q+ 1), [t2ψ](Q) = e2πiQ/N ψ(Q).

The operators OpN (a) are the analogues of the pseudo-
differential operators discussed in Sec. 5.

A quantization of ΦA is a unitary operator UN (A) on
L2(Z/NZ) satisfying the equation

(59) UN (A)−1 OpN (f)UN (A) = OpN (f ◦ ΦA)

for all f ∈ C∞(T2). There are explicit formulas for UN (A)
when A is in the group

(60) Γ =
{(

a b
c d

)
∈ SL(2,Z) : ab ≡ cd ≡ 0 mod 2

}
;

these may be viewed as analogues of the Shale-Weil or
metaplectic representation for SL(2). E.g., the quantiza-
tion of

(61) A =
(

2 1
3 2

)
yields

(62) UN (A)ψ(Q)

= N− 1
2

∑
Q′ mod N

exp
[
2πi
N

(Q2 −QQ′ +Q′
2)

]
ψ(Q′).

In analogy with (1) we are interested in the statistical
features of the eigenvalues and eigenfunctions of UN (A),
i.e., the solutions to

(63) UN (A)ϕ = λϕ, ‖ϕ‖L2(Z/NZ) = 1.

Unlike typical quantum-chaotic maps, the statistics of the
N eigenvalues

(64) λN1, λN2, . . . , λNN ∈ S1

do not follow the distributions of unitary random matrices
in the limit N → ∞, but are rather singular [7]. In anal-
ogy with the Selberg trace formula for hyperbolic surfaces
(18), there is an exact trace formula relating sums over
eigenvalues of UN (A) with sums over fixed points of the
classical map [7].

As in the case of arithmetic surfaces, the eigenfunctions
of cat maps appear to behave more generically. The ana-
logue of the Schnirelman-Zelditch-Colin de Verdière The-
orem states that, for any orthonormal basis of eigenfunc-
tions {ϕNj}N

j=1 we have, for all f ∈ C∞(T2),

(65) 〈Op(f)ϕNj , ϕNj〉 →
∫

T2

f(ξ)dξ

as N → ∞, for all j in an index set JN of full density,
i.e., #JN ∼ N . Kurlberg and Rudnick [9] have charac-
terized special bases of eigenfunctions {ϕNj}N

j=1 (termed
Hecke eigenbases in analogy with arithmetic surfaces) for
which QUE holds, generalizing earlier work of Degli Es-
posti, Graffi and Isola (1995). That is, (65) holds for all
j = 1, . . . , N . Rudnick and Kurlberg, and more recently
Gurevich and Hadani, have established results on the rate
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of convergence analogous to (49). These results are un-
conditional. Gurevich and Hadani use methods from al-
gebraic geometry based on those developed by Deligne in
his proof of the Weil conjectures (an analogue of the Rie-
mann hypothesis for finite fields).

In the case of quantum cat maps, there are values of
N for which the number of coinciding eigenvalues can be
large, a major difference to what is expected for the mod-
ular surface. Linear combinations of eigenstates with the
same eigenvalue are as well eigenstates, and may lead to
different quantum limits. Indeed Faure, Nonnenmacher
and De Bièvre [5] have shown that there are subsequences
of values of N , so that, for all f ∈ C∞(T2),

(66) 〈Op(f)ϕNj , ϕNj〉 →
1
2

∫
T2

f(ξ)dξ +
1
2
f(0),

i.e., half of the mass of the quantum limit localizes on
the hyperbolic fixed point of the map. This is the first,
and to date only, rigorous result concerning the existence
of scarred eigenfunctions in systems with chaotic classical
limit.
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