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Abstract. One of the central challenges in kinetic theory is the derivation

of macroscopic evolution equations—describing, for example, the dynamics of

an electron gas—from the underlying fundamental microscopic laws of clas-
sical or quantum mechanics. An iconic mathematical model in this research

area is the Lorentz gas, which describes an ensemble of non-interacting point

particles in an infinite array of spherical scatterers. In the case of a disor-
dered scatterer configuration, the classical results by Gallavotti, Spohn and

Boldrighini-Bunimovich-Sinai show that the time evolution of a macroscopic

particle cloud is governed, in the limit of small scatterer density (Boltzmann-
Grad limit), by the linear Boltzmann equation. In this lecture I will discuss

the recent discovery that for a periodic configuration of scatterers the linear
Boltzmann equation fails, and the random flight process that emerges in the

Boltzmann-Grad limit is substantially more complicated. The key ingredient

in the description of the limiting stochastic process is the renormalization dy-
namics on the space of lattices, a powerful technique that has recently been

successfully applied also to other open problems in mathematical physics, in-

cluding KAM theory and quantum chaos. This lecture is based on joint work
with Andreas Strömbergsson, Uppsala.

1. Introduction

An important cornerstone in mathematical physics is the problem of deriving
macroscopic evolution equations from first principles, i.e., the microscopic laws of
motion governed by quantum theory, or (to simplify) Newton’s laws of classical me-
chanics. The subject has its origin in Boltzmann’s revolutionary vision formulated
more than a century ago, and it is perhaps surprising that still today there is no
complete understanding of his most fundamental model, a dilute gas of hard spheres:
Lanford’s seminal work [29] establishes the validity of the Boltzmann equation only
for times that are a fraction of the mean collision time. Even simpler models, such
as a gas of non-interacting particles in a fixed array of scatterers studied first by
Lorentz in 1905 [31] (the Lorentz gas), are difficult to analyze and lead to new and
unexpected macroscopic phenomena. This lecture will focus on the Lorentz gas and
report on recent joint work with Andreas Strömbergsson [37], [38], [39], [40] in the
case of a crystal with periodic scatterer configuration. The exciting aspect of our
findings is that the kinetic transport equations that emerge in the limit of small
scatter size (the Boltzmann-Grad limit) are new, and distinctly different from the
answer for disordered scatterers.

In his original work, Boltzmann considered the case of a dilute gas of hard spheres
with elastic collisions; dilute refers to the limit of small particle density, i.e., the ratio
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Figure 1. The Lorentz gas for a random scatterer configuration.

of particle radius and mean separation tends to zero. In the case of a gas of non-
interacting particles in an array of fixed scatterers—the Lorentz gas—the dynamics
can be reduced to a one-particle motion (Fig. 1). We denote by q(t) ∈ Rd the
position and by v(t) ∈ Rd the velocity of our particle. The correct kinetic limit is
then obtained by taking the scatterer radius ρ→ 0. A simple dimensional argument
shows that in this limit the mean free path length should scale like ρ−(d−1), i.e., the
inverse of the total scattering cross section of an individual scatterer. This suggests
to rescale the length units by introducing the macroscopic coordinates

(1)
(
Q(t),V (t)

)
=
(
ρd−1q(ρ−(d−1)t),v(ρ−(d−1)t)

)
.

This rescaling of length and time is commonly referred to as the Boltzmann-Grad
scaling, and the corresponding limit ρ→ 0 as the Boltzmann-Grad limit. The time
evolution of a particle with initial data (Q,V ) is then described by the billiard flow

(2) (Q(t),V (t)) = Φtρ(Q,V ).

Since the speed of our particle is a constant of motion we may assume without
loss of generality that ‖V ‖ = 1. For notational reasons it is convenient to extend
the dynamics to the inside of each scatterer trivially, i.e., set Φtρ = id whenever Q
is inside the scatterer. That is, the relevant phase space is now the unit tangent
bundle of Rd, which will be denoted by T1(Rd).

The time evolution of an initial particle density f ∈ L1(T1(Rd)) is

(3) ft = Ltρf

where Ltρ is the Liouville operator defined by

(4) [Ltρf ](Q,V ) := f
(
Φ−tρ (Q,V )

)
.

Following Boltzmann’s arguments, Lorentz concluded in his 1905 paper that the
macroscopic time evolution of a particle cloud should, in the limit ρ → 0, be
governed by the linear Boltzmann equation (today also referred to as kinetic Lorentz
equation),

(5)

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1
1

[
ft(Q,V 0)− ft(Q,V )

]
σ(V 0,V )dV 0,

where the collision kernel σ(V 0,V ) is the differential cross section of the individual
scatterer. In the case of elastic scattering at hard spheres we have σ(V 0,V ) =
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1
4‖V 0 − V ‖3−d. The linear Boltzmann equation describes a random flight pro-
cess, where a particle moves freely with constant velocity V 0 for time t ≥ ξ with
probability e−νdξ, where νd is the volume of the (d− 1)-dimensional unit ball (the
total scattering cross section), and is then scattered to velocity V with probability
σ(V 0,V ), again flies with constant velocity V for time t ≥ ξ with probability e−νdξ,
and so on. The crucial observation is that each scattering event is independent of
the previous one. Thus the process that generates the paths of our random flight
is Markovian. As we will see, this is different in the case of a periodic scatterer
configuration.

The validity of the linear Boltzmann equation was first established rigorously
for a random, Poisson distributed scatterer configuration by Gallavotti [23]. His
results were generalized by Spohn [47] to more general random scatterer configu-
rations and scattering potentials. In 1983, Boldrighini, Bunimovich and Sinai [6]
proved convergence for almost every scatterer configuration drawn from a Poisson
distribution. As Spohn’s work shows, the details of the randomness of the scatterer
positions is not so essential, and as long as there are no strong correlations, all of
the above results should remain valid.

The linear Boltzmann equation has numerous important applications, e.g., to
neutron transport and radiative transfer, and it is thus natural to ask under which
circumstances it may fail to provide an accurate description.

2. The periodic Lorentz gas

Given a Euclidean lattice L ⊂ Rd of covolume one (e.g., L = Zd) the periodic
Lorentz gas is defined as the dynamics of a cloud of non-interacting point particles
in an array of identical scatterers that are placed at the vertices of the lattice
L (Fig. 2). The periodic Lorentz gas has served as a fundamental model in the
understanding of chaotic diffusion, which emerges in the long-time limit with fixed
scatterer size. In their pioneering work, Bunimovich and Sinai [8] proved a central
limit theorem for the long-time dynamics of a particle cloud in two dimensions.
That is, the long-time evolution converges, in the appropriate scaling limit, to a
solution of the heat equation. More refined statistical properties that show that
the dynamics in fact converges to Brownian motion, have recently been established
in the work of Melbourne and Nichol [41], [42], and the recent paper by Dolgopyat,
Szasz and Varju [18]. All of the above results assume that the Lorentz gas has finite
horizon, i.e., there are no infinitely long free flight paths. Without this assumption,
a central limit theorem still holds, but the diffusion constant is no longer linear
in time t but diverges as t log t. This was observed by Bleher [3] and recently
established rigorously by Szasz and Varju [48]. It is interesting that none of these
results have so far been extended to dimension d ≥ 3. The arguments given by
Chernov [12] and by Balint and Toth [1] require non-trivial hypotheses that are
difficult to establish.

We now return to the question of the existence of kinetic transport equations
in the Boltzmann-Grad limit discussed in the previous section. Recall that we are
interested in the dynamics of a particle cloud

(6) ft(Q,V ) = [Ltρf ](Q,V ) = f
(
Φ−tρ (Q,V )

)
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Figure 2. The Lorentz gas for a periodic scatterer configuration,
with three distinct particle trajectories starting at the point Q0.

in the macroscopic coordinates (1). The estimates by Bourgain, Golse and Wennberg
[7], [24] on the distribution of free path lengths already imply that the linear Boltz-
mann equation does not hold in the periodic set-up; this was pointed out recently
by Golse [26].

The first key result of our joint work with Strömbergsson is the proof of the
existence of a limiting random process for the periodic Lorentz gas [38, Section 1].

Theorem 1. Fix a Euclidean lattice L. For every t > 0 there exists a linear
operator Lt : L1(T1(Rd)) → L1(T1(Rd)), such that for every f ∈ L1(T1(Rd)) and
any set A ⊂ T1(Rd) with boundary of Lebesgue measure zero,

(7) lim
ρ→0

∫
A

[Ltρf ](Q,V ) dQ dV =

∫
A

[Ltf ](Q,V ) dQ dV .

The operator Lt thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit ρ→ 0. As we shall see however, the family {Lt}t≥0 does
not form a semigroup, i.e.,

(8) LsLt 6= Ls+t.

This is perhaps surprising since {Ltρ}t≥0 is indeed a semigroup for every fixed ρ > 0.
What is more, in the case of the random scatterer configuration the corresponding
limiting operators Lt also form a semigroup—after all, ft := Ltf is a solution of the
linear Boltzmann equation. The reason for the failure of the semigroup property in
the periodic setting stems from additional correlations in the lattice, which are lost
in the macroscopic scaling limit. To keep track of this data, we consider extended
phase space coordinates (Q,V , ξ,V +) where (Q,V ) ∈ T1(Rd) is the usual position

and momentum, ξ ∈ R+ the flight time until the next collision, and V + ∈ Sd−1
1

the velocity after the next collision. On the microscopic level, the system is now
over-determined (ξ and V + are functions of Q and V ), but on the macroscopic
scale the extra variables are needed. We prove in [38, Section 6] that the particle
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Figure 3. Two consecutive collisions in the Lorentz gas.

density ft(Q,V , ξ,V +) indeed satisfies a generalized linear Boltzmann equation
(9)[
∂

∂t
+V ·∇Q−

∂

∂ξ

]
ft(Q,V , ξ,V +) =

∫
Sd−1
1

ft(Q,V 0, 0,V )p0(V 0,V , ξ,V +) dV 0.

The left hand side again corresponds to free transport (note that ξ is decreasing lin-
early with t). The right hand side involves a new collision kernel p0(V 0,V , ξ,V +),
given by

(10) p0(V 0,V , ξ,V +) = σ(V ,V +)Φ0

(
ξ, b(V ,V +),−s(V ,V 0)

)
where σ(V ,V +) is the differential cross section and Φ0

(
ξ, b(V ,V +),−s(V ,V 0)

)
the transition probability density to leave a scatterer with exit parameter s(V ,V 0)
and hit the next scatterer at time ξ with impact parameter b(V ,V +); cf. Fig. 3.

In dimension d = 2 we have the following explicit formula for the transition
probability [39]:

(11) Φ0(ξ, w, z) =
6

π2
Υ
(

1 +
ξ−1 −max(|w|, |z|)− 1

|w + z|

)
with

(12) Υ(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if 1 ≤ x,

The same formula has recently been found independently by Caglioti and Golse
[11] and by Bykovskii and Ustinov [9], using different methods based on continued
fractions.

Our formulas for dimension d ≥ 3 are not as explicit and substantially more in-
volved, see [37],[38] for details, and [40] for asymptotic tail estimates. The formulas
imply in particular that the collision kernel p0 (and thus the limiting process) is
independent of the lattice L on which the scatterers are positioned. Hence any mi-
croscopic preference for certain directions completely disappears in the Boltzmann-
Grad limit.
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The operators Lt in Theorem 1 we were originally interested in can be recovered
by integrating over the auxiliary variables ξ and V +,

(13) [Ltg](Q,V ) :=

∫ ∞
0

∫
Sd−1
1

ft(Q,V , ξ,V +) dV + dξ

where ft(Q,V , ξ,V +) is a solution of the generalized linear Boltzmann equation
subject to the initial condition

(14) lim
t→0

ft(Q,V , ξ,V +) = g(Q,V )p(V , ξ,V +)

with

(15) p(V , ξ,V +) :=

∫ ∞
ξ

∫
Sd−1
1

σ(V 0,V )p0(V 0,V , ξ
′,V +) dV 0 dξ

′;

the latter is a stationary solution of the generalized linear Boltzmann equation.

3. Why “a generalization” of the linear Boltzmann equation?

The reason why (9) is indeed a generalization of the linear Boltzmann equation
is the following. As mentioned in the introduction, the linear Boltzmann equation
corresponds to a random flight process where the time ξ until the next collision
has probability density νde

−νdξ, where νd is the volume of the (d− 1)-dimensional
unit ball. Furthermore, the probability to exit with parameter s(V ,V 0) and hit
the next scatterer with impact parameter b(V ,V +) should be uncorrelated and
independent of ξ. We have thus

(16) Φ0

(
ξ, b(V ,V +),−s(V ,V 0)

)
= e−νdξ.

Substituting in the above the transition density for the random (rather than peri-
odic) scatterer configuration, we obtain

(17) p0(V 0,V , ξ,V +) = σ(V ,V +) e−νdξ = p(V , ξ,V +)

and

(18) ft(Q,V , ξ,V +) = gt(Q,V )σ(V ,V +) e−νdξ.

It is now straightforward to see that (9) yields the classical linear Boltzmann equa-
tion for gt(Q,V ).

4. Joint distribution of path segments

The following theorem is the central result in our investigation [38]. It shows that
the limiting random flight process exists, and that the consecutive path segments
S1,S2, . . . are generated by a Markov process with memory two. That is, the
probability for the nth leg of our path only depends on the previous two path
segments.

We will use the notation Ŝ := ‖S‖−1S. We set

(19) Bn :=
{

(S1, . . . ,Sn) ∈ (Rd \ {0})n : Ŝj+1 6= Ŝj (j = 1, . . . , n− 1)
}
.
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Theorem 2. Fix a lattice L and let Λ be a Borel probability measure on T1(Rd)
which is absolutely continuous with respect to Lebesgue measure. Then, for each
n ∈ Z>0, and for any set A ⊂ Rd × Rnd with boundary of Lebesgue measure zero,

(20)

lim
ρ→0

Λ
({

(Q0,V 0) ∈ T1(ρd−1Kρ) : (Q0,S1(Q0,V 0; ρ), . . . ,Sn(Q0,V 0; ρ)) ∈ A
})

=

∫
A
P (n)(S1, . . . ,Sn) Λ′

(
Q0, Ŝ1

)
dQ0 dS1 · · · dSn,

and where Λ′ is the Radon-Nikodym derivative of Λ with respect to Lebesgue mea-
sure. Furthermore, there is a function Ψ : B3 → R≥0 such that

(21) P (n)(S1, . . . ,Sn) = P (2)(S1,S2)

n∏
j=3

Ψ(Sj−2,Sj−1,Sj)

for all n ≥ 3 and all (S1, . . . ,Sn) ∈ Bn.

We in fact also prove a refined version of this theorem, where the initial position
Q0 is not random but fixed (on the microscopic scale); see [38, Theorem 1.1].
Furthermore, the limiting distributions P (n) and Ψ are independent of L and Λ.

We define the probability measure corresponding to (21) by

(22) µ
(n)
Λ (A) :=

∫
A
P (n)(S1, . . . ,Sn) Λ′

(
Q0, Ŝ1

)
dQ0 dS1 · · · dSn.

Note in particular that µ
(n+1)
Λ (A× Rd) = µ

(n)
Λ (A).

5. A limiting random flight process

In Theorem 2 we have identified a Markov process with memory two that de-
scribes the limiting distribution of billiard paths with random initial data (Q0,V 0).
Let us denote by

(23) {Ξ(t) : t ∈ R>0},
the continuous-time stochastic process that is obtained by moving with unit speed
along the random paths S1,S2, . . . of the above Markov process with memory two.
This random flight process is fully specified by the probability

(24) PΛ

(
Ξ(t1) ∈ D1, . . . ,Ξ(tM ) ∈ DM

)
that Ξ(t) visits the sets D1, . . . ,DM ⊂ T1(Rd) at times t = t1, . . . , tM , with M
arbitrarily large. To give a precise definition of (23) set T0 := 0, Tn :=

∑n
j=1 ‖Sj‖,

and define the probability that Ξ(t) is in the set D1 at time t1 after exactly n1 hits,
in the set D2 at time t2 after exactly n2 hits, etc., by

(25)

P(n)
Λ

(
Ξ(t1) ∈ D1, . . . ,Ξ(tM ) ∈ DM , Tn1

≤ t1 < Tn1+1, . . . , TnM
≤ tM < TnM+1

)
:= µ

(n+1)
Λ

({
(S1, . . . ,Sn+1) : Ξnj (tj) ∈ Dj , Tnj ≤ tj < Tnj+1 (j = 1, . . . ,M)

})
with n := (n1, . . . , nM ), n := max(n1, . . . , nM ), and

(26) Ξn(t) :=

( n∑
j=1

Sj + (t− Tn)Ŝn+1, Ŝn+1

)
.
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The formal definition of (23) is thus

(27) PΛ

(
Ξ(t1) ∈ D1, . . . ,Ξ(tM ) ∈ DM

)
:=

∑
n∈ZM

≥0

P(n)
Λ

(
Ξ(t1) ∈ D1, . . . ,Ξ(tM ) ∈ DM

and Tn1
≤ t1 < Tn1+1, . . . , TnM

≤ tM < TnM+1

)
.

The following theorem shows that the Lorentz process (2) converges to the sto-
chastic process (23) as ρ→ 0.

Theorem 3. Fix a lattice L and let Λ be a Borel probability measure on T1(Rd)
which is absolutely continuous with respect to Lebesgue measure. Then, for any
t1, . . . , tM ∈ R≥0, and any subsets D1, . . . ,DM ⊂ T1(Rd) with boundary of Lebesgue
measure zero,

(28) lim
ρ→0

Λ
({

(Q0,V 0) ∈ T1(ρd−1Kρ) :

(Q(t1),V (t1)) ∈ D1, . . . , (Q(tM ),V (tM )) ∈ DM
})

= PΛ

(
Ξ(t1) ∈ D1, . . . ,Ξ(tM ) ∈ DM

)
.

The convergence is uniform for t1, . . . , tM in compact subsets of R≥0.

Theorem 3 follows from Theorem 2; the main ingredient in the proof is an esti-
mate that shows that it is unlikely to have many collisions in any fixed time interval
[38, Section 5].

The generalized linear Boltzmann equation (9) can now be interpreted as the
Fokker-Planck-Kolmogorov equation of the stochastic process (23), and its valid-
ity follows from Theorem 3 by standard arguments from the theory of stochastic
processes [38, Section 6].

6. The distribution of free path lengths

To give a detailed account of the proof of Theorem 2 would go beyond the scope
of this lecture. I however hope to be able to explain the key idea, which is already
clearly visible in the case n = 1, i.e., the distribution of free path lengths.

In order to explain the proof, it will be more convenient to return to the original
microscopic coordinates (q,v), where the free path length diverges at the rate
ρ−(d−1).

Let us denote by Kρ ⊂ Rd the complement of the union of all scatterers. The

free path length for the initial condition (q,v) ∈ T1(Kρ) is defined as

(29) τ1(q,v; ρ) = inf{t > 0 : q + tv /∈ Kρ}.

That is, τ1(q,v; ρ) is the first time at which a particle with initial data (q,v) hits
a scatterer. We also include the (somewhat artificial) case when q ∈ L, i.e., when
the particle starts at the center of a scatterer; in this case we think of Kρ ⊂ Rd as
the domain obtained by removing all scatterers except the one centered at q. The
following is the main result of [37].

Theorem 4. Fix a lattice L of covolume one, let q ∈ Rd, and let λ be a Borel
probability measure on Sd−1

1 absolutely continuous with respect to Lebesgue measure.
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Then there exists a C1 function FL,q on R≥0 such that, for every ξ > 0,

(30) lim
ρ→0

λ({v ∈ Sd−1
1 : ρd−1τ1(q,v; ρ) ≤ ξ}) = FL,q(ξ).

The distribution of the free path lengths in the Lorentz gas was already investi-
gated by Polya, who rephrased the problem in terms of the visibility in a (random
and periodic) forest [43]. The problem of the limiting distribution in dimension
d = 2 was recently solved by Boca and Zaharescu [5] in the case when q is either
random or located at a lattice point; see also their earlier work with Gologan [4],
and the paper by Calglioti and Golse [10]. Previous work in higher dimension d ≥ 3
includes the papers by Bourgain, Golse and Wennberg [7], [24] who provide upper
and lower bounds on the tail of the distribution of free path lengths. More details
on the existing literature can be found in the survey [25].

7. The space of lattices

The new idea in the joint work with Strömbergsson [37] is to translate the prob-
lem of the free path length into a question about the dynamics on the space of
lattices. The advantage of this approach over previous attempts is that the tech-
nique extends naturally to arbitrary dimension, and that the limiting distributions
have a canonical interpretation as the distribution function of random variables on
a beautiful geometric object.

A Euclidean lattice L ⊂ Rd of covolume one can be written as L = ZdM for
some M ∈ SL(d,R), where Zd is the standard cubic lattice. Since SL(d,Z) leaves
Zd invariant, the homogeneous space X1 = SL(d,Z)\SL(d,R) parametrizes the
space of lattices of covolume one. Similarly, let ASL(d,R) = SL(d,R) n Rd be the
semidirect product group with multiplication law

(31) (M, ξ)(M ′, ξ′) = (MM ′, ξM ′ + ξ′).

An action of ASL(d,R) on Rd can be defined as

(32) y 7→ y(M, ξ) := yM + ξ.

Each affine lattice (i.e. translate of a lattice) of covolume one in Rd can then be
expressed as Zdg for some g ∈ ASL(d,R), and the space of affine lattices is then
represented by X = ASL(d,Z)\ASL(d,R) where ASL(d,Z) = SL(d,Z) n Zd. We
denote by µ1 and µ the Haar measure on SL(d,R) and ASL(d,R), respectively,
normalized in such a way that they represent probability measures on X1 and X.

We are interested in the λ-measure of velocities with free path lengths at most
ρ−(d−1)ξ,

(33) λ({v ∈ Sd−1
1 : ρd−1τ1(q,v; ρ) ≤ ξ}).

This is approximately the same as the λ-measure of directions such that a cylinder
q+Z(v, ρ−(d−1)ξ, ρ) of length ρ−(d−1)ξ and radius ρ, pointing in direction v contains
at least one lattice point (cf. Fig. 4):

(34) ≈ λ({v ∈ Sd−1
1 : ZdM ∩ q + Z(v, ρ−(d−1)ξ, ρ) 6= ∅}).

The approximation comes from the fact that our cylinder should have spherical
caps of radius ρ on each end; it is easy to show however that the λ-measure of
v that have a lattice point in these caps is vanishingly small, as ρ → 0 (see [37,
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ρ−(d−1)ξ

2ρ

ρ−(d−1)ξ

2ρ
ρ−(d−1)ξ
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ξ

Figure 4. Renormalization of the periodic Lorentz gas. Step 1:
Replace the question on the number of intersections of a line with
scatterers by a lattice point counting problem in a long stretched
cylinder. Step 2: Rotate cylinder and lattice so the cylinder lies
horizontally. Step 3: Apply a diagonal linear transformation that
maps the cylinder to the ρ-independent reference cylinder Z(ξ).

Section 4.1] for details). The next step is to shift lattice and cylinder by −q, and
then rotate by K(v) ∈ SO(d) such that K(v)v = e1, where e1 = (1, 0, . . . , 0):

(35) = λ({v ∈ Sd−1
1 : (ZdM − q)K(v) ∩ Z(e1, ρ

−(d−1)ξ, ρ) 6= ∅}).

The cylinder now lies in the e1-direction. We apply the linear transformation
D(ρ) = diag(ρd−1, ρ−1, . . . , ρ−1) which transforms the long and thin cylinder into
better proportions:

(36) = λ({v ∈ Sd−1
1 : (ZdM − q)K(v)D(ρ) ∩ Z(ξ) 6= ∅}),

where

(37) Z(ξ) := Z(e1, ξ, 1) =
{

(x1, . . . , xd) ∈ Rd : 0 < x1 < ξ, ‖(x2, . . . , xd)‖ < 1
}
.

Although the above linear transformations seem trivial, we have achieved a different
perspective on the problem: Rather than counting lattice points in a long thin
cylinder (which looks hard) we now count in a well proportioned object. The
price we have paid is that our original lattice L = ZdM has changed to (ZdM −
q)K(v)D(ρ). Hence we are moving through the space of (affine) lattices, as ρ→ 0,
and may now employ ergodic theoretic methods to understand the averages over v
with respect to λ.
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8. Equidistribution in the space of lattices

We begin with the simplest case, q ∈ L, i.e., without loss of generality q = 0.
The right translation

(38) X1 → X1, SL(d,Z)M 7→ SL(d,Z)MΦt

by the element

(39) Φt =

(
e−(d−1)t 0

t0 et1d−1

)
defines a flow on the homogeneous space X1 = SL(d,Z)\ SL(d,R), where tx denotes
the transpose of the row vector x. This flow has many good chaotic features: it is
ergodic, mixing and partially hyperbolic.

The horospherical subgroups generated by

(40) n+(x) =

(
1d−1

t0
x 1

)
, n−(x) =

(
1d−1

tx
0 1

)
,

respectively, generate the stable and unstable horospherical subgroups of the flow.
Using the mixing property, a standard argument (see e.g. [21], [33]) shows that aver-
ages over the unstable horosphere become asymptotically (t→∞) equidistributed
in X1 with respect to µ1.

Theorem 5. Let λ be a Borel probability measure on Rd−1 absolutely continuous
with respect to Lebesgue measure. Let f : X1 → R be bounded continuous, M ∈
SL(d,R). Then

(41) lim
t→∞

∫
Rd−1

f(Mn−(x)Φt)dλ(v) =

∫
X1

f(M ′)dµ1(M ′).

Alternative proofs of this theorem can be obtained by using harmonic analysis
(which is particularly feasible whenM = 1, i.e., the horosphere is closed) or Ratner’s
theory, which we will revisit below.

In view of (36) we are interested in the distribution of the orbit

(42) SL(d,Z)\
{

SL(d,Z)MK(v)Φt : v ∈ Sd−1
1

}
in X1, as t → ∞ (set t = log 1/ρ). By using the fact that this orbit is close to an
unstable horosphere, we can exploit Theorem 5 to deduce equidistribution also in
this case; we refer the reader to [37, Section 5] for details.

Theorem 6. Let λ be a Borel probability measure on Sd−1
1 absolutely continuous

with respect to Lebesgue measure. Let f : X1 → R be bounded continuous, M ∈
SL(d,R). Then

(43) lim
t→∞

∫
Sd−1
1

f(MK(v)Φt)dλ(v) =

∫
X1

f(M ′)dµ(M ′).

This theorem thus states, that in the limit t→∞ we can replace the λ-average
over v by an average of the entire space of lattices. This yields (modulo some
technicalities) the proof of the limit law for the free path length, Theorem 4, in the
case q ∈ L, plus a formula for the limit distribution:

(44) FL,0(ξ) = µ1({M ∈ X1 : ZdM ∩ Z(ξ) 6= ∅}).
That is, the limit distribution of the free path length for a particle emerging from the
center of a scatterer is given by the probability that a random lattice intersects the
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cylinder Z(ξ) in at least one point. Note that the limit distribution F0(ξ) := FL,0(ξ)
is independent of the lattice L and of λ.

Instead of particles emerging from a lattice point we can also consider initial
conditions on the boundary of a scatterer; this leads to different limit distributions
and is one of the crucial steps in the proof of the existence of the limiting random
flight process described in Theorems 2 and 3.

Let us now turn to the case q 6∈ QL. The right translation

(45) X → X, ASL(d,Z)g 7→ ASL(d,Z)gΦt

by the element

(46) Φt =

((
e−(d−1)t 0

t0 et1d−1

)
,0

)
now defines a flow on the homogeneous space X = ASL(d,Z)\ASL(d,R). In anal-
ogy with the above, we set

(47) n−(x) =

((
1d−1

tx
0 1

)
,0

)
.

The crucial difference is now that n−(x) no longer generates the full unstable horo-
sphere for the flow Φt, and hence the mixing argument is no longer sufficient.
Instead, we need to employ Ratner’s classification of measures that are invariant
under unipotent actions, which in the present case is given by the right action of
n−(x). We can in particular exploit a very useful theorem of Shah [46] to show
the following. (See [37, Section 5] for details, and [36] for a general introduction to
applications of Ratner’s theory to problems of this kind.)

Theorem 7. Let λ be a Borel probability measure on Rd−1 absolutely continuous
with respect to Lebesgue measure. Let f : X → R be bounded continuous, α ∈
Rd \Qd, M ∈ SL(d,R). Then

(48) lim
t→∞

∫
Rd−1

f((1,α)(M,0)n−(x)Φt)dλ(x) =

∫
X

f(g)dµ(g).

Using the same approximation argument that led to Theorem 6 we deduce:

Theorem 8. Let λ be a Borel probability measure on Sd−1
1 absolutely continuous

with respect to Lebesgue measure. Let f : X → R be bounded continuous, α ∈
Rd \Qd, M ∈ SL(d,R). Then

(49) lim
t→∞

∫
Sd−1
1

f((1,α)(M,0)(K(v),0)Φt)dλ(v) =

∫
X

f(g)dµ(g).

This proves Theorem 4 in the case q /∈ QL, and yields the formula

(50) FL,q(ξ) = µ({(M,x) ∈ X : (ZdM + x) ∩ Z(ξ) 6= ∅}).

Hence, the limit distribution of the free path length for a particle starting at a generic
position is given by the probability that a random affine lattice intersects the cylinder
Z(ξ) in at least one point. Here, F (ξ) := FL,q(ξ) is evidently independent of L, q
and λ.

I omit the discussion of the remaining q ∈ QL—the arguments are analogous to
the above [37].
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Only in dimension d = 2 have we been able to turn the formulas (44) and (50)
for F0(ξ) and F (ξ) into explicit functions of ξ. The easiest approach is to integrate
our formula for the transition probability (11) (see [39] for details),

(51) F0(ξ) =

∫ ξ

0

∫ 1

−1

Φ0(ξ′, 0, z) dz dξ′,

(52) F (ξ) =

∫ ξ

0

∫ ∞
ξ′

∫ 1

−1

∫ 1

−1

Φ0(ξ′′, w, z) dw dz dξ′′ dξ′.

The resulting explicit expressions coincide with those obtained, using different
methods, by Boca, Gologan and Zaharescu [4], and by Boca and Zaharescu [5],
respectively.

9. Asymptotics

The geometry of the space of lattices is significantly more complicated in di-
mension d ≥ 3, and it seems extremely hard to obtain any explicit formulas. It
is possible, however, to describe the asymptotic tails of our limit distributions, by
observing that when ξ > 0 is very large (or small), then the lattices that contribute
to F0(ξ) and F (ξ) must have at least one very short basis vector. That is, all
integration is restricted to the cusps of the spaces X1 and X, respectively, whose
geometry is simpler. Using tools from the geometry of numbers we can show that
[40]

(53) F0(ξ) = 1 for ξ sufficiently large,

and

(54) F0(ξ) =
νd
ζ(d)

ξ +O(ξ2), ξ → 0,

where νd = π(d−1)/2

Γ((d+1)/2) is the volume of the (d− 1)-dimensional unit ball. Similarly,

(55) F (ξ) = 1− π
d−1
2

2ddΓ(d+3
2 ) ζ(d)

ξ−1 +O
(
ξ−1− 2

d

)
, ξ →∞,

and

(56) F (ξ) = νd ξ +O
(
ξ2
)
, ξ → 0.

We also obtain asymptotic formulas for the collision kernel Φ0(ξ, w, z) in the limits
ξ → 0 and ξ →∞, see [40] for details.

10. Outlook

The techniques outlined above do not necessarily require that the scatterers are
rigid spheres. It is sufficient to assume that the scattering map is dispersive; a
Muffin-Tin Coulomb potential would be a good example [38]. A key hypothesis of
our approach is however is that the interaction region of the scattering process is
finite, so that the test particle moves along straight lines for most of the time. This
assumption is no longer valid in the case of long-range potentials. Provided the
renormalization approach can be modified accordingly, it seems feasible to gener-
alize our studies to crystals with long-range potential, at least for sufficiently fast
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power-like decay. A result by Desvillettes and Pulvirenti [15] achieves this objec-
tive (with some additional technical assumptions) in the case of random scatterer
configurations; cf. also the work by Poupaud and Vasseur [44].

A related problem is to consider different scaling limits for compact potentials,
where the strength of the potential is reduced, and at the same time the scatterer
density rescaled suitably to achieve a non-trivial limit. In this case grazing collisions
become important, and one expects a different kinetic equation for the macroscopic
dynamics; cf. Desvillettes and Ricci [16] for the corresponding result for a random
scatterer configuration—here the limiting kinetic equation is the classical Fokker-
Planck equation.

The renormalization approach we have developed for the Lorentz gas assumes
that the scattering process is the same for each scatterer. It is possible to remove
this assumption, as long as the resulting (global) potential of the crystal is still
periodic, or in the case of quasicrystals. A natural question leading on from this
is whether one can describe the kinetic equations in the case of a (quasi-)crystal
with random defects, i.e., a scatterer is removed from a lattice site with probability
p, with 0 < p < 1. Such a set-up will lead to an interesting variation of the
renormalization method, since the modular invariance of the crystal will be replaced
by a modular invariance in distribution (we assume p is the same for each scatterer).
It is no surprise that the limiting case p → 1 leads back to the linear Boltzmann
equation [45].

A further important case that has been extensively studied for stochastic Lorentz
gases is the dynamics in the presence of electro-magnetic fields [17]. In the case of
constant magnetic or electric fields, the above problem has some connection with
beautiful, basic number-theoretic questions on the distribution of lattice points near
circles or parabolas, respectively.

Finally, an obvious challenge is to adapt our renormalization approach to the
quantum mechanical problem, and derive a corresponding quantum kinetic equa-
tion, in suitable weak-coupling or low-density limits discussed for random scatterer
configurations by Erdös and Yau [20], and Eng and Erdös [19]. It should be stressed
that of course the quantum theory of electrons in fixed periodic potentials is well
understood, and that the lattice symmetry allows for a wealth of techniques in the
spectral analysis (Floquet-Bloch decomposition). In particular the KKR method
is an extremely useful tool, and has been applied to the semiclassical analysis of
the symmetry-reduced periodic Lorentz gas (the Sinai billiard) in connection with
quantum chaos, see Berry [2], and (for the case of small scatterers) Dahlqvist and
Vattay [14].

The central idea of the work presented here is to exploit the dynamics of flows
on the space of lattices. This technique has proved to be extremely powerful also
in other applications in mathematical physics, including KAM theory [27], [28],
arithmetic quantum unique ergodicity [30] and the Berry-Tabor conjecture [22],
[32], [34], [35]. Flows on the space of lattices (and more general homogeneous
spaces) should be viewed as the higher-dimensional generalization of the classical
continued fraction algorithms—I expect more striking applications in the future.
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