
Algebraic Number Theory – Lecture 10

Sandro Bettin

“You know that I write slowly. This is chiefly because I am never satisfied until I
have said as much as possible in a few words, and writing briefly takes far more

time than writing at length.”

– Carl Friedrich Gauss

The goal of the lecture is to prove Gauss’s reciprocity law, using methods related to what we
have done in the past. Firstly, let’s introduce the Legendre symbol.

Definition. For every integer a coprime to p, the Legendre symbol
(
a
p

)
is defined by(

a

p

)
=

{
1 if x2 ≡ a (mod p) has a solution
−1 otherwise.

Elementary properties of group theory show us that the Legendre symbol is multiplicative and
that one has (

a

p

)
≡ a

p−1
2 (mod p)

and this gives (
−1
p

)
= (−1)

p−1
2 ,

(
2
p

)
= (−1)

p2−1
8

for any odd prime p. Gauss’s reciprocity law gives us what’s left for a full understanding of the
Legendre symbol.

Theorem (Gauss’s reciprocity law). For two distinct odd prime numbers p and q, the following
identity holds: (

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

To prove this we need to state some other new results from ramification theory.

Proposition 1. Let L/K be a Galois extension, B an ideal of OL with ramification index e and
inertia degree f , and ZB the decomposition field of B over K. Let BZ = B ∩ZB be the prime ideal
of ZB below B. Then

i) BZ is nonsplit in L, i.e. B is the only prime ideal of L above BZ .
ii) B over ZB has ramification index e and inertia degree f .

iii) The ramification index and the inertia degree of BZ over K both equal 1.

Definition. Let K ⊆ L = K(θ) be number fields with θ ∈ OL and let p(x) ∈ OK [x] be the
minimal polynomial of θ. The conductor of the ring OK [θ] is the biggest ideal F of OL which is
contained in OK [θ], i.e.

F = {α ∈ OL | αOL ⊆ OK [θ]}.
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Proposition 2. Let p ⊆ OK be a prime ideal, coprime with the conductor F of OK [θ], and let

p(x) = p1(x)e1 · · · pr(x)er

be the factorization of the polynomial p(x) = p(x) (mod p) into irreducibles pi(x) = pi(x) (mod p)
over the residue class field Ok/p, with all pi ∈ OK [x]. Then

Bi = pOL + pi(θ)OL, i = 1, . . . , r,

are the different prime ideals of OL above p. The inertia degree fi of Bi is the degree of pi(x), and
one has

p = Be11 · · · Berr .

Proof. See Neukirch. �

Corollary 2.1. For squarefree a and (p, 2a) = 1, we have that
(
a
p

)
= 1 if and only if p is totally

split in Q(
√
a).

Proof.
(
a
p

)
= 1 signifies that

x2 − a ≡ (x− α)(x+ α) (mod p)

for some α ∈ Z. Since OQ(
√
a) ⊆ Z[

√
a

2 ], the conductor of Z[
√
a] is a divisor of 2 and so we can

apply the previous proposition. �

Now we need to now something about the factorization of primes in the cyclotomic fields.

Proposition 3. Let ζn be a primitive nth root of unity with n =
∏
p p

νp the prime factorization
of n. Moreover, let fp be the smallest positive integer such that

pfp ≡ 1 (mod n/pνp).

Then one has in Q(ζn) the factorization

p = (p1 · · · pr)φ(pνp ),

where p1, . . . , pr are distinct prime ideals, all of degree fp.

Proof. See Neukirch (it’s a consequence of Proposition 2). �

Proposition 4. Let q and p be odd primes, q∗ = (−1)
q−1
2 q and ζq a primitive qth root of unity.

Then p is totally split in Q(
√
q∗) if and only if p splits in Q(ζq) into an even number of prime

ideals.

Proof. A little computation shows that
q∗ = τ2,

where τ is the Gauss sum

τ =
∑
a∈F∗q

(
a

q

)
ζq
a.

Therefore Q(
√
q∗) ⊆ Q(ζq). Let’s assume p is totally split in Q(

√
q∗), say p = p1p2. Since all the

extensions Q ⊆ Q(
√
q∗) ⊆ Q(ζq) are Galois extension, the number of ideals above p1 is equal to

the number of ideals above p2 and so p splits in Q(ζq) into an even number of prime ideals. By
the previous proposition these ideals must be distinct since for n = q we have νp = 0.

Conversely, assume
pOQ(ζq) = p1 · · · pr,
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with r even. Since G = Gal(Q(ζq)/Q) is cyclic and therefore abelian, we have that all the de-
composition groups Gpi are equal to a (normal) subgroup Gp of G of even index. Therefore there
exists a subgroup H of G of index 2 that contains Gp. But also Gal(Q(ζq)/Q(

√
q∗)) is a subgroup

of index 2 and so, since G is cyclic, H and Gal(Q(ζq)/Q(
√
q∗)) must be equal. Thus

Gal(Q(ζq)/Q(
√
q∗)) > Gp

and so
Zp > Q(

√
q∗).

By Proposition 1, we have that the inertia degree and ramification index of pi ∩ OZp is 1 and so
the same must hold for pi ∩OQ(

√
q∗), since e and f are multiplicative (easy exercise). �

We are now ready for the proof of Gauss’s theorem.

Proof of Gauss’s Reciprocity Law. By Corollary 3 we have that
(
q∗

p

)
= 1 if and only if p is totally

split in Q(
√
q∗) and by the previous proposition this happens if and only if p splits completely in

Q(ζq) into an even number of prime ideals (and by proposition 4 each of them has inertia degree
fp, so r · fp · 1 = q − 1). Finally, this is equivalent to fp| q−1

2 and so to p
q−1
2 ≡ 1 (mod q) and to(

p
q

)
= 1. Thus(

p

q

)
=
(
q∗

p

)
=

(
(−1)

q−1
2 q

p

)
=
(

(−1)
p

) q−1
2
(
q

p

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.
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