Algebraic Number Theory - Lecture 11
 Jobin Lavasani

"The total number of Dirichlet's publications is not large: jewels are not weighed on a grocery scale."

\author{

- Carl Friedrich Gauss
}

1. Dirichlet characters

A Dirichlet character $(\bmod m)$ for $m \in \mathbb{N}$ is a homomorphism

$$
\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \longrightarrow S=\{z \in \mathbb{C}:|z|=1\}
$$

It is called primitive if it does not arise from the composite

$$
(\mathbb{Z} / m \mathbb{Z})^{\times} \longrightarrow\left(\mathbb{Z} / m^{\prime} \mathbb{Z}\right)^{\times} \xrightarrow{\chi^{\prime}} S
$$

of a Dirichlet character $\chi^{\prime}\left(\bmod m^{\prime}\right)$ for any proper divisor m^{\prime} of m. For Dirichlet characters in general, the greatest common divisor of all these proper divisors m^{\prime} is called the conductor f of χ.

Given χ we define a multiplicative function

$$
\chi(n)= \begin{cases}\chi(n \bmod m) & \text { for } \operatorname{hcf}(n, m)=1 \\ 0 & \text { otherwise }\end{cases}
$$

The trivial character mod m is given by

$$
\chi_{t}(n)= \begin{cases}1 & \text { for } \operatorname{hcf}(m, n)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Definition. For a Dirichlet character χ we form the Dirichlet L-series

$$
L(\chi, s)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

for $s \in \mathbb{C}$ with $\Re(s)>1$.
Proposition. The series $L(\chi, s)$ converges absolutely and uniformly in the domain $\Re(s) \geqslant 1+\delta$ for any $\delta>0$. It therefore represents an analytic function on the half plane $\Re(s)>1$. We have Euler's identity:

$$
L(\chi, s)=\prod_{p} \frac{1}{1-\chi(p) p^{-s}}
$$

The Dirichlet L-series satisfy a functional equation that relates the variable s to a function with the variable $1-s$ contained in it. This property also holds for a larger class of L-series, called Hecke L-series. In order to state the theorem about the functional equation, and in order to understand the proof (which hinges on the integral representation of $L(\chi, s)$) we need to see that $L(\chi, s)$ is in fact the Mellin transform of a theta series.

Definition. We define the exponent $p \in\{0,1\}$ of χ by

$$
\chi(-1)=(-1)^{p}
$$

We also define

$$
\chi((n))=\chi(n)\left(\frac{n}{|n|}\right)^{p}
$$

which defines a multiplicative function on the semigroup of all ideals (n) that are relatively prime to m. This function is called the Größencharakter.

Dirichlet characters $(\bmod m)$ have the following properties:
(1) $\chi(n+m)=\chi(n)$ for any n;
(2) $\chi(x y)=\chi(x) \chi(y)$ for any x and y;
(3) $\chi(1)=1$;
(4) if $a \equiv b(\bmod m)$ then $\chi(a)=\chi(b)$.

2. Completed L-SERIES

Consider the integral

$$
\Gamma(\chi, s)=\Gamma\left(\frac{s+p}{2}\right)=\int_{0}^{\infty} e^{-y} y^{(s+p) / 2} \frac{d y}{y}
$$

Making the substitution $y \mapsto \pi n^{2} y / m$ we get

$$
\left(\frac{m}{\pi}\right)^{\frac{s+p}{2}} \Gamma(\chi, s) \frac{1}{n^{s}}=\int_{0}^{\infty} n^{p} e^{-\pi n^{2} y / m} y^{(s+p) / 2} \frac{d y}{y}
$$

Multiplying this by $\chi(n)$ and summing over all $n \in \mathbb{N}$ we get

$$
\left(\frac{m}{\pi}\right)^{\frac{s+p}{2}} \Gamma(\chi, s) L(\chi, s)=\sum_{n=1}^{\infty} \int_{0}^{\infty} \chi(n) n^{p} e^{-\pi n^{2} y / m} y^{(s+p) / 2} \frac{d y}{y}
$$

However,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{0}^{\infty}\left|\chi(n) n^{p} e^{-\pi n^{2} y / m} y^{(s+p) / 2} \frac{d y}{y}\right| \\
& \quad \leqslant\left(\frac{m}{\pi}\right)^{\frac{\Re(s)+p}{2}} \Gamma\left(\frac{\Re(s)+p}{2}\right) \zeta(\Re(s))<\infty
\end{aligned}
$$

so we may swap the order of summation and integration and get

$$
\begin{equation*}
\left(\frac{m}{\pi}\right)^{\frac{s+p}{2}} \Gamma(\chi, s) L(\chi, s)=\int_{0}^{\infty} \sum_{n=1}^{\infty} \chi(n) n^{p} e^{-\pi n^{2} y / m} y^{(s+p) / 2} \frac{d y}{y} \tag{1}
\end{equation*}
$$

The series under the integral in (1),

$$
g(y)=\sum_{n=1}^{\infty} \chi(n) n^{p} e^{-\pi n^{2} y / m}
$$

arises from the theta series

$$
\theta(\chi, z)=\sum_{n \in \mathbb{Z}} \chi(n) n^{p} e^{\pi i n^{2} z / m}
$$

Because $\chi(n) n^{p}=\chi(-n)(-n)^{p}$,

$$
\theta(\chi, z)=\chi(0)+2 \sum_{n=1}^{\infty} \chi(n) n^{p} e^{\pi i n^{2} z / m}
$$

So

$$
g(y)=\frac{1}{2}(\theta(\chi, i y)-\chi(0))
$$

with $\chi(0)=1$ if χ is the trivial character, and 0 otherwise. In the case $m=1$ we get

$$
\theta(z)=\sum_{n \in \mathbb{Z}} e^{\pi i n^{2} z}
$$

which is Jacobi's theta function.
We see

$$
L_{\infty}(\chi, s)=\left(\frac{m}{\pi}\right)^{s / 2} \Gamma(\chi, s)
$$

as the "Euler factor" at the infinite prime.
Definition. The completed L-series of a character χ is given by

$$
\Lambda(\chi, s)=L_{\infty}(\chi, s) L(\chi, s)
$$

for $\Re(s)>1$.
Proposition. The function $\Lambda(\chi, s)$ has the integral representation

$$
\Lambda(\chi, s)=\frac{c(\chi)}{2} \int_{0}^{\infty}(\theta(\chi, i y)-\chi(0)) y^{(s+p) / 2} \frac{d y}{y}
$$

where

$$
c(\chi)=\left(\frac{\pi}{m}\right)^{p / 2}
$$

For a continuous function $f: \mathbb{R}_{>0}^{\times} \rightarrow \mathbb{C}$ on the (multiplicative) group of positive real numbers, we define the Mellin transform to be the improper integral

$$
L(f, s)=\int_{0}^{\infty}(f(y)-f(\infty)) y^{s} \frac{d y}{y}
$$

provided the limit $f(\infty)=\lim _{y \rightarrow \infty} f(y)$ and the integral exist.
Theorem (Mellin principle). Let $f, g: \mathbb{R}_{>0}^{\times} \rightarrow \mathbb{C}$ be continuous functions such that

$$
f(y)=a_{0}+\mathcal{O}\left(\exp \left(-c y^{\alpha}\right)\right), \quad g(y)=b_{0}+\mathcal{O}\left(\exp \left(-c y^{\alpha}\right)\right)
$$

for $y \rightarrow \infty$ with positive constants c, α. If these functions satisfy the equation

$$
f(1 / y)=C y^{k} g(y)
$$

for $k \in \mathbb{R}, k>0$, and $C \in \mathbb{C}, C \neq 0$, then
(1) the integrals $L(f, s)$ and $L(g, s)$ converge absolutely and uniformly if s varies in an arbitrary compact domain contained in $\{s \in \mathbb{C}: \Re(s)>k\}$. They are therefore holomorphic functions on $\{s \in \mathbb{C}: \Re(s)>k\}$ and they admit holomorphic continuations to $\mathbb{C} \backslash\{0, k\}$.
(2) They have simple poles at $s=0$ and $s=k$ with residues

$$
\begin{aligned}
& \operatorname{Res}_{s=0} L(f, s)=-a_{0}, \quad \operatorname{Res}_{s=k} L(f, s)=C b_{0} \\
& \operatorname{Res}_{s=0} L(g, s)=-b_{0}, \quad \operatorname{Res}_{s=k} L(g, s)=C^{-1} a_{0}
\end{aligned}
$$

(3) They satisfy $L(f, s)=C L(g, k-s)$.

Proposition. Let $a, b, \mu \in \mathbb{R}, \mu>0$. Then the series

$$
\theta_{\mu}(a, b, z)=\sum_{g \in \mu \mathbb{Z}} e^{\pi i(a+g)^{2} z+2 \pi i b g}
$$

converges absolutely and uniformly in the domain $\Im(z) \geqslant \delta$ for every $\delta>0$, and for $z \in \mathbb{H}$ one has the transformation formula

$$
\theta_{\mu}(a, b,-1 / z)=e^{-2 \pi i a b} \frac{\sqrt{z / i}}{\mu} \theta_{1 / \mu}(-b, a, z)
$$

If we differentiate this p times with respect to a, recalling that $p \in\{0,1\}$, we get

$$
\frac{d^{p}}{d a^{p}} \theta_{\mu}(a, b, z)=(2 \pi i)^{p} z^{p} \theta_{\mu}^{p}(a, b, z)
$$

with

$$
\theta_{\mu}^{p}(a, b, z)=\sum_{g \in \mu \mathbb{Z}}(a+g)^{p} e^{\pi i(a+g)^{2} z+2 \pi i b g}
$$

and

$$
\frac{d^{p}}{d a^{p}} e^{-2 \pi i a b} \theta_{1 / \mu}(-b, a, z)=(2 \pi i)^{p} e^{-2 \pi i a b} \theta_{1 / \mu}^{p}(-b, a, z)
$$

Applying the differentiation $d^{p} / d a^{p}$ to the transformation formula in the previous proposition we get the following.

Corollary. For $a, b, \mu \in \mathbb{R}, \mu>0$, one has the transformation formula

$$
\theta_{\mu}^{p}(a, b,-1 / z)=\left(i^{p} e^{2 \pi i a b} \mu\right)^{-1}(z / i)^{p+\frac{1}{2}} \theta_{1 / \mu}^{p}(-b, a, z)
$$

Definition. For $n \in \mathbb{Z}$ the Gauss sum $\tau(\chi, n)$ associated to the Dirichlet character $\chi(\bmod m)$ is defined to be the complex number

$$
\tau(\chi, n)=\sum_{v=0}^{n-1} \chi(v) e^{2 \pi i v n / m}
$$

If $n=1$ we just write $\tau(\chi)$.
Proposition. For a primitive Dirichlet character $\chi(\bmod m)$ one has

$$
\tau(\chi, n)=\bar{\chi}(n) \tau(\chi)
$$

and

$$
|\tau(\chi)|=\sqrt{m}
$$

Proposition. If χ is a primitive Dirichlet character mod m then we have the transformation formula

$$
\theta(\chi,-1 / z)=\frac{\tau(\chi)}{i^{p} \sqrt{m}}(z / i)^{p+\frac{1}{2}} \theta(\bar{\chi}, z)
$$

Theorem. If χ is a nontrivial primitive Dirichlet character, then the completed L-series $\Lambda(\chi, s)$ has an analytic continuation to the whole complex plane \mathbb{C} and satisfies the functional equation

$$
\Lambda(\chi, s)=W(\chi) \Lambda(\bar{\chi}, 1-s)
$$

where

$$
W(\chi)=\frac{\tau(\chi)}{i^{p} \sqrt{m}}
$$

has absolute value 1.

