ALGEBRAIC NUMBER THEORY — LECTURE 12

Lee Butler

To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.

— William Blake

1. SOME ALGEBRA

Let K be a number field and consider the sum
1
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where the sum is over all ideals a C Ok. Recall that the norm of an ideal is
N(a) =[Ok /al.
One of the questions you might ask about the series (1) is: does it converge? Well, consider the partial

sums 1
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If these are bounded then the series must converge. Write s = o + i7, then, since the ideals form a

UFD,
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Andrew assured us that for each prime ideal p there is a unique prime number p such that N(p) = pf
for some f € N. How many prime ideals can correspond to the same prime number p? Well N (p) = p/
if and only if

POk = ppy* - py"
and f is the inertia degree of p over p. So from Andrew’s lecture on Hilbert ramification and the
fundamental identity therein, at most [K : Q] prime ideals can correspond to the same prime number

p. So .
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The product on the right converges for o > 1 and so the series (1) converges.
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Since we bounded a finite sum by an infinite one above we lost equality. But consider the infinite
product
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Since the ideals in Ok form a UFD each denominator is a unique ideal in O, and each ideal in
Ok appears as a unique denominator. So
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We call this function on s the Dedekind zeta function of K, (k(s).

Example. The Dedekind zeta function on Q is

2. ANALYTIC STUFF

The Dedekind zeta function of K contains a vast amount of information about K. Hecke proved
in 1917 that o (9 R
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where

r1,T9 are respectively the number of real and pairs of complex embeddings K — C,
hx is the class number of K,

dg is the discriminant of K,

w is the number of roots of unity in K, and

Ry is the regulator of K, which we’ll define another time®.

We’re not going to prove this formula. Instead we’ll prove a special case of it, modulo knowing
about the regulator and roots of unity. We need some analysis first, though.

Lemma 1. Let (am)men be a sequence in C and suppose that

A(z) = Z am = O(x°)
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for some § > 0. Then
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converges for R(s) > & and in this half plane we have
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Ht’s det(log o (g5)|) where €1, ...,er, are fundamental units and o1, ...,0n; are the real embeddings.



Proof. Telescoping the sum we get
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=AM)M~°+ Z_ A(m) (m™* = (m+1)7°).

Since
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and A(z) is a step function, we get
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For R(s) > 4, since A(z) = O(z°) we have
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whereas the integral will converge. So the partial sums converge for £(s) > ¢ and
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Lemma 2. The number of pairs of integers (a,b) with a > 0 satisfying
a>+ DV <z
18 .
oD +O0(Va).
Proof. Exercise. O

We can now prove the following.
Theorem. Let K = Q(v/—D) where D > 0 is square-free and —D # 1 (mod 4). Suppose K has
class number 1. Then (s — 1)(x(s) extends analytically to R(s) > 3 and

lim (s — 1)k (s) = —
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Proof. Since h = 1, by Andrew’s lecture Of is a PID, so any ideal a C Ok is of the form (a+bv/—D)
with, say, a > 0. From Jobin’s first lecture we can see that

N((a 4+ bv/=D)) = a* + DV?.

So
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where a,, is the number of solutions to a? + Db? = n, with a € N and b € Z. By lemma 1 we have
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with A(z) =}, <, an. By lemma 2 we know
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where E(z) = O(y/z). This integral converges for R(s) > 1, giving us our analytic continuation:

(s = 1)Ck(s) = % +s(s—1) /100 fs(fl) dx.

From this we get

lim (s = 1)¢k(s) = =
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From Sandro’s lecture, dx = —4D, so 2v/D = /|dk|, as required. O

Assuming the class number formula, and since we know that r; = 0,70 = 1, and hx = 1, we get
that w = 2Rk. Thus to calculate Rx, which is a rather unpleasant determinant, we need only check
ifi € K.



