
Algebraic Number Theory – Lecture 12

Lee Butler

To see a World in a Grain of Sand
And a Heaven in a Wild Flower,

Hold Infinity in the palm of your hand
And Eternity in an hour.

– William Blake

1. Some algebra

Let K be a number field and consider the sum

(1)
∑

a

1
N(a)s

where the sum is over all ideals a ⊆ OK . Recall that the norm of an ideal is

N(a) = |OK/a|.
One of the questions you might ask about the series (1) is: does it converge? Well, consider the partial
sums ∑

N(a)6x

1
N(a)s

.

If these are bounded then the series must converge. Write s = σ + iτ , then, since the ideals form a
UFD, ∑

N(a)6x

1
N(a)σ

6
∑

N(pi)6x
ei>0

1
(N(p1)e1 · · · )σ

=
∏

N(p)6x

(
1 +

1
N(p)σ

+
1

N(p)2σ
+ . . .

)

=
∏

N(p)6x

(
1− 1

N(p)σ

)−1

.

Andrew assured us that for each prime ideal p there is a unique prime number p such that N(p) = pf

for some f ∈ N. How many prime ideals can correspond to the same prime number p? Well N(p) = pf

if and only if
pOK = pepe22 · · · per

r

and f is the inertia degree of p over p. So from Andrew’s lecture on Hilbert ramification and the
fundamental identity therein, at most [K : Q] prime ideals can correspond to the same prime number
p. So ∑

N(a)6x

1
N(a)σ

6
∏
p6x

(
1− 1

pσ

)−[K:Q]

.

The product on the right converges for σ > 1 and so the series (1) converges.
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Since we bounded a finite sum by an infinite one above we lost equality. But consider the infinite
product∏

p

(
1 +

1
N(p)s

+
1

N(p)2s
+ . . .

)

= 1 +
1

N(p1)s
+

1
N(p2)s

+ . . .+
1

N(p1)2s
+

1
(N(p1)N(p2))s

+ . . .+
1

N(p1)3s
+

1
(N(p1)2N(p2))s

+ . . .

= 1 +
1

N(p1)s
+

1
N(p2)s

+ . . .+
1

N(p2
1)s

+
1

N(p1p2)s
+ . . .+

1
N(p3

1)s
+

1
N(p2

1p2)s
+ . . .

Since the ideals in OK form a UFD each denominator is a unique ideal in OK , and each ideal in
OK appears as a unique denominator. So∑

a

1
N(a)s

=
∏
p

(
1− 1

N(p)s

)−1

.

We call this function on s the Dedekind zeta function of K, ζK(s).

Example. The Dedekind zeta function on Q is∑
n∈N

1
N(n)s

=
∞∑
n=1

1
ns

= ζ(s).

2. Analytic stuff

The Dedekind zeta function of K contains a vast amount of information about K. Hecke proved
in 1917 that

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hKRK

w
√
|dK |

,

where

• r1, r2 are respectively the number of real and pairs of complex embeddings K ↪→ C,
• hK is the class number of K,
• dK is the discriminant of K,
• w is the number of roots of unity in K, and
• RK is the regulator of K, which we’ll define another time1.

We’re not going to prove this formula. Instead we’ll prove a special case of it, modulo knowing
about the regulator and roots of unity. We need some analysis first, though.

Lemma 1. Let (am)m∈N be a sequence in C and suppose that

A(x) =
∑
m6x

am = O(xδ)

for some δ > 0. Then
∞∑
m=1

am
ms

converges for <(s) > δ and in this half plane we have
∞∑
m=1

am
ms

= s

∫ ∞
1

A(x)
xs+1

dx.

1It’s det(log |σi(εj)|) where ε1, . . . , εr1 are fundamental units and σ1, . . . , σr1 are the real embeddings.
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Proof. Telescoping the sum we get
M∑
m=1

am
ms

=
M∑
m=1

(A(m)−A(m− 1))m−s

= A(M)M−s +
M−1∑
m=1

A(m)
(
m−s − (m+ 1)−s

)
.

Since

m−s − (m+ 1)−s = s

∫ m+1

m

1
xs+1

dx

and A(x) is a step function, we get
M∑
m=1

am
ms

=
A(M)
Ms

+ s

∫ M

1

A(x)
xs+1

dx.

For <(s) > δ, since A(x) = O(xδ) we have

lim
M→∞

A(M)
Ms

= 0,

whereas the integral will converge. So the partial sums converge for <(s) > δ and
∞∑
m=1

am
ms

= s

∫ ∞
1

A(x)
xs+1

dx.

�

Lemma 2. The number of pairs of integers (a, b) with a > 0 satisfying

a2 +Db2 6 x

is
πx

2
√
D

+O(
√
x).

Proof. Exercise. �

We can now prove the following.

Theorem. Let K = Q(
√
−D) where D > 0 is square-free and −D 6≡ 1 (mod 4). Suppose K has

class number 1. Then (s− 1)ζK(s) extends analytically to <(s) > 1
2 and

lim
s→1

(s− 1)ζK(s) =
π√
|dK |

.

Proof. Since hK = 1, by Andrew’s lecture OK is a PID, so any ideal a ⊆ OK is of the form (a+b
√
−D)

with, say, a > 0. From Jobin’s first lecture we can see that

N((a+ b
√
−D)) = a2 +Db2.

So

ζK(s) =
∑
a∈N
b∈Z

1
(a2 +Db2)s

=
∞∑
n=1

an
ns

where an is the number of solutions to a2 +Db2 = n, with a ∈ N and b ∈ Z. By lemma 1 we have
∞∑
n=1

an
ns

= s

∫ ∞
1

A(x)
xs+1

dx
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with A(x) =
∑
n6x an. By lemma 2 we know

A(x) =
πx

2
√
D

+O(
√
x).

So

ζK(s) = s

∫ ∞
1

(
πx

2
√
Dxs+1

+
E(x)
xs+1

)
dx

=
πs

2
√
D(s− 1)

+ s

∫ ∞
1

E(x)
xs+1

dx,

where E(x) = O(
√
x). This integral converges for <(s) > 1

2 , giving us our analytic continuation:

(s− 1)ζK(s) =
πs

2
√
D

+ s(s− 1)
∫ ∞

1

E(x)
xs+1

dx.

From this we get
lim
s→1

(s− 1)ζK(s) =
π

2
√
D
.

From Sandro’s lecture, dK = −4D, so 2
√
D =

√
|dK |, as required. �

Assuming the class number formula, and since we know that r1 = 0, r2 = 1, and hK = 1, we get
that w = 2RK . Thus to calculate RK , which is a rather unpleasant determinant, we need only check
if i ∈ K.


