Algebraic Number Theory - Lecture 12
 Lee Butler

To see a World in a Grain of Sand And a Heaven in a Wild Flower, Hold Infinity in the palm of your hand And Eternity in an hour.

- William Blake

1. Some algebra

Let K be a number field and consider the sum

$$
\begin{equation*}
\sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^{s}} \tag{1}
\end{equation*}
$$

where the sum is over all ideals $\mathfrak{a} \subseteq \mathcal{O}_{K}$. Recall that the norm of an ideal is

$$
N(\mathfrak{a})=\left|\mathcal{O}_{K} / \mathfrak{a}\right|
$$

One of the questions you might ask about the series (1) is: does it converge? Well, consider the partial sums

$$
\sum_{N(\mathfrak{a}) \leqslant x} \frac{1}{N(\mathfrak{a})^{s}} .
$$

If these are bounded then the series must converge. Write $s=\sigma+i \tau$, then, since the ideals form a UFD,

$$
\begin{aligned}
\sum_{N(\mathfrak{a}) \leqslant x} \frac{1}{N(\mathfrak{a})^{\sigma}} & \leqslant \sum_{\substack{N\left(\mathfrak{p}_{i}\right) \leqslant x \\
e_{i} \geqslant 0}} \frac{1}{\left(N\left(\mathfrak{p}_{1}\right)^{e_{1}} \cdots\right)^{\sigma}} \\
& =\prod_{N(\mathfrak{p}) \leqslant x}\left(1+\frac{1}{N(\mathfrak{p})^{\sigma}}+\frac{1}{N(\mathfrak{p})^{2 \sigma}}+\ldots\right) \\
& =\prod_{N(\mathfrak{p}) \leqslant x}\left(1-\frac{1}{N(\mathfrak{p})^{\sigma}}\right)^{-1} .
\end{aligned}
$$

Andrew assured us that for each prime ideal \mathfrak{p} there is a unique prime number p such that $N(\mathfrak{p})=p^{f}$ for some $f \in \mathbb{N}$. How many prime ideals can correspond to the same prime number p ? Well $N(\mathfrak{p})=p^{f}$ if and only if

$$
p \mathcal{O}_{K}=\mathfrak{p}^{e^{e} \mathfrak{p}_{2}^{e_{2}} \cdots \mathfrak{p}_{r}^{e_{r}}, ~}
$$

and f is the inertia degree of \mathfrak{p} over p. So from Andrew's lecture on Hilbert ramification and the fundamental identity therein, at most $[K: \mathbb{Q}]$ prime ideals can correspond to the same prime number p. So

$$
\sum_{N(\mathfrak{a}) \leqslant x} \frac{1}{N(\mathfrak{a})^{\sigma}} \leqslant \prod_{p \leqslant x}\left(1-\frac{1}{p^{\sigma}}\right)^{-[K: \mathbb{Q}]} .
$$

The product on the right converges for $\sigma>1$ and so the series (1) converges.

Since we bounded a finite sum by an infinite one above we lost equality. But consider the infinite product

$$
\begin{aligned}
& \prod_{\mathfrak{p}}\left(1+\frac{1}{N(\mathfrak{p})^{s}}+\frac{1}{N(\mathfrak{p})^{2 s}}+\ldots\right) \\
& =1+\frac{1}{N\left(\mathfrak{p}_{1}\right)^{s}}+\frac{1}{N\left(\mathfrak{p}_{2}\right)^{s}}+\ldots+\frac{1}{N\left(\mathfrak{p}_{1}\right)^{2 s}}+\frac{1}{\left(N\left(\mathfrak{p}_{1}\right) N\left(\mathfrak{p}_{2}\right)\right)^{s}}+\ldots+\frac{1}{N\left(\mathfrak{p}_{1}\right)^{3 s}}+\frac{1}{\left(N\left(\mathfrak{p}_{1}\right)^{2} N\left(\mathfrak{p}_{2}\right)\right)^{s}}+\ldots \\
& =1+\frac{1}{N\left(\mathfrak{p}_{1}\right)^{s}}+\frac{1}{N\left(\mathfrak{p}_{2}\right)^{s}}+\ldots+\frac{1}{N\left(\mathfrak{p}_{1}^{2}\right)^{s}}+\frac{1}{N\left(\mathfrak{p}_{1} \mathfrak{p}_{2}\right)^{s}}+\ldots+\frac{1}{N\left(\mathfrak{p}_{1}^{3}\right)^{s}}+\frac{1}{N\left(\mathfrak{p}_{1}^{2} \mathfrak{p}_{2}\right)^{s}}+\ldots
\end{aligned}
$$

Since the ideals in \mathcal{O}_{K} form a UFD each denominator is a unique ideal in \mathcal{O}_{K}, and each ideal in \mathcal{O}_{K} appears as a unique denominator. So

$$
\sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^{s}}=\prod_{\mathfrak{p}}\left(1-\frac{1}{N(\mathfrak{p})^{s}}\right)^{-1}
$$

We call this function on s the Dedekind zeta function of $K, \zeta_{K}(s)$.
Example. The Dedekind zeta function on \mathbb{Q} is

$$
\sum_{n \in \mathbb{N}} \frac{1}{N(n)^{s}}=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\zeta(s)
$$

2. Analytic stuff

The Dedekind zeta function of K contains a vast amount of information about K. Hecke proved in 1917 that

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{w \sqrt{\left|d_{K}\right|}}
$$

where

- r_{1}, r_{2} are respectively the number of real and pairs of complex embeddings $K \hookrightarrow \mathbb{C}$,
- h_{K} is the class number of K,
- d_{K} is the discriminant of K,
- w is the number of roots of unity in K, and
- R_{K} is the regulator of K, which we'll define another time ${ }^{1}$.

We're not going to prove this formula. Instead we'll prove a special case of it, modulo knowing about the regulator and roots of unity. We need some analysis first, though.
Lemma 1. Let $\left(a_{m}\right)_{m \in \mathbb{N}}$ be a sequence in \mathbb{C} and suppose that

$$
A(x)=\sum_{m \leqslant x} a_{m}=\mathcal{O}\left(x^{\delta}\right)
$$

for some $\delta \geqslant 0$. Then

$$
\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}}
$$

converges for $\Re(s)>\delta$ and in this half plane we have

$$
\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}}=s \int_{1}^{\infty} \frac{A(x)}{x^{s+1}} d x
$$

[^0]Proof. Telescoping the sum we get

$$
\begin{aligned}
\sum_{m=1}^{M} \frac{a_{m}}{m^{s}} & =\sum_{m=1}^{M}(A(m)-A(m-1)) m^{-s} \\
& =A(M) M^{-s}+\sum_{m=1}^{M-1} A(m)\left(m^{-s}-(m+1)^{-s}\right)
\end{aligned}
$$

Since

$$
m^{-s}-(m+1)^{-s}=s \int_{m}^{m+1} \frac{1}{x^{s+1}} d x
$$

and $A(x)$ is a step function, we get

$$
\sum_{m=1}^{M} \frac{a_{m}}{m^{s}}=\frac{A(M)}{M^{s}}+s \int_{1}^{M} \frac{A(x)}{x^{s+1}} d x
$$

For $\Re(s)>\delta$, since $A(x)=\mathcal{O}\left(x^{\delta}\right)$ we have

$$
\lim _{M \rightarrow \infty} \frac{A(M)}{M^{s}}=0
$$

whereas the integral will converge. So the partial sums converge for $\Re(s)>\delta$ and

$$
\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}}=s \int_{1}^{\infty} \frac{A(x)}{x^{s+1}} d x
$$

Lemma 2. The number of pairs of integers (a, b) with $a>0$ satisfying

$$
a^{2}+D b^{2} \leqslant x
$$

is

$$
\frac{\pi x}{2 \sqrt{D}}+\mathcal{O}(\sqrt{x})
$$

Proof. Exercise.

We can now prove the following.
Theorem. Let $K=\mathbb{Q}(\sqrt{-D})$ where $D>0$ is square-free and $-D \not \equiv 1(\bmod 4)$. Suppose K has class number 1. Then $(s-1) \zeta_{K}(s)$ extends analytically to $\Re(s)>\frac{1}{2}$ and

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{\pi}{\sqrt{\left|d_{K}\right|}}
$$

Proof. Since $h_{K}=1$, by Andrew's lecture \mathcal{O}_{K} is a PID, so any ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$ is of the form $(a+b \sqrt{-D})$ with, say, $a>0$. From Jobin's first lecture we can see that

$$
N((a+b \sqrt{-D}))=a^{2}+D b^{2}
$$

So

$$
\zeta_{K}(s)=\sum_{\substack{a \in \mathbb{N} \\ b \in \mathbb{Z}}} \frac{1}{\left(a^{2}+D b^{2}\right)^{s}}=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

where a_{n} is the number of solutions to $a^{2}+D b^{2}=n$, with $a \in \mathbb{N}$ and $b \in \mathbb{Z}$. By lemma 1 we have

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=s \int_{1}^{\infty} \frac{A(x)}{x^{s+1}} d x
$$

with $A(x)=\sum_{n \leqslant x} a_{n}$. By lemma 2 we know

$$
A(x)=\frac{\pi x}{2 \sqrt{D}}+\mathcal{O}(\sqrt{x})
$$

So

$$
\begin{aligned}
\zeta_{K}(s) & =s \int_{1}^{\infty}\left(\frac{\pi x}{2 \sqrt{D} x^{s+1}}+\frac{E(x)}{x^{s+1}}\right) d x \\
& =\frac{\pi s}{2 \sqrt{D}(s-1)}+s \int_{1}^{\infty} \frac{E(x)}{x^{s+1}} d x
\end{aligned}
$$

where $E(x)=\mathcal{O}(\sqrt{x})$. This integral converges for $\Re(s)>\frac{1}{2}$, giving us our analytic continuation:

$$
(s-1) \zeta_{K}(s)=\frac{\pi s}{2 \sqrt{D}}+s(s-1) \int_{1}^{\infty} \frac{E(x)}{x^{s+1}} d x
$$

From this we get

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{\pi}{2 \sqrt{D}}
$$

From Sandro's lecture, $d_{K}=-4 D$, so $2 \sqrt{D}=\sqrt{\left|d_{K}\right|}$, as required.
Assuming the class number formula, and since we know that $r_{1}=0, r_{2}=1$, and $h_{K}=1$, we get that $w=2 R_{K}$. Thus to calculate R_{K}, which is a rather unpleasant determinant, we need only check if $i \in K$.

[^0]: ${ }^{1}$ It's $\operatorname{det}\left(\log \left|\sigma_{i}\left(\varepsilon_{j}\right)\right|\right)$ where $\varepsilon_{1}, \ldots, \varepsilon_{r_{1}}$ are fundamental units and $\sigma_{1}, \ldots, \sigma_{r_{1}}$ are the real embeddings.

