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Michael Harvey

“Kummer Kummer Kummer Kummer Kummer-Kummeleon.”

– Boy George

1. Kummer extensions

Class field theory is the outcome of attempts to generalise Gauss’ reciprocity laws. Nowadays, it’s
almost synonymous with the study of abelian extensions of fields.

Definition. An extension L/K is called abelian, cyclic, etc. if it’s a Galois extension and Gal(L/K)
is an abelian, cyclic, etc. group.

Important note: Throughout this talk we’ll assume that the ground field K contains nth roots of
unity, i.e. µn ⊂ K.

Definition. Let ∆ ⊆ K×, then a Kummer extension of K is of the form K( n
√

∆).

Definition. An abelian group of exponent n is an abelian group G such that xn = 1 for every x ∈ G.

Definition. The compositum of two field extensions L/K and M/K is the smallest field extension
N/K that contains L and M . It is denoted LM .

Proposition 1. A Kummer extension K( n
√

∆)/K is Galois, and Gal(K( n
√

∆)/K) is abelian of ex-
ponent n.

Proof. Choose a ∈ ∆. There is an injective homomorphism

Gal(K( n
√

∆)/K) ↪→ µn

σ 7→ σ(α)
α

, αn = a.

The choice of α is not important, suppose α = ζr
nβ with βn = a and 0 6 r 6 n− 1. Then

σ(α) = σ(ζr
nβ)

= σ(ζr
n)σ(β)

= ζr
nσ(β).

It’s a fact of Galois theory that if L and M are Galois extensions of K then Gal(LM/K) ∼= H where

H 6 Gal(L/K)×Gal(M/K)

and
H = Gal(L/K)×Gal(M/K)

if L ∩M = K. So K( n
√

∆) is the compositum
∏

a∈∆K( n
√
a). So

Gal(K( n
√

∆)/K) ↪→
∏
a∈∆

Gal(K( n
√
a)/K)

↪→ µ∆
n .
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Interestingly, the converse is also true.

Proposition 2. Suppose L/K is an abelian extension of exponent n, then L = K( n
√

∆) where ∆ =
(L×)n ∩K×. If, in particular, L/K is a cyclic extension then L = K( n

√
a) for some a ∈ K×.

We’ll need a theorem of Hilbert to prove this.

Definition. Given a field extension L/K, define H−1(Gal(L/K), L×) = {` ∈ L : NL/K(`) = 1}/
IGal(L/K) where IGal(L/K) is the subgroup of {` ∈ L : NL/K(`) = 1} generated by all elements σ(a)/a,
a ∈ L×, σ ∈ Gal(L/K). Note that if Gal(L/K) is cyclic with generator σ then

IGal(L/K) = {σ(a)/a : a ∈ L×}.

Theorem (Hilbert 90). If L/K is a cyclic extension then

H−1(Gal(L/K), L×) = 1,

i.e. if α ∈ L×, NL/K(α) = 1, then α = 1σ(β)/β for some β ∈ L×.
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Proof of Proposition 2. Want to show that L = K( n
√

∆), ∆ = (L×)n ∩K×.

First we’ll show K( n
√

∆) ⊆ L. Pick α ∈ n
√

∆, then αn ∈ (L×)n ∩K×. Say αn = a, so a = βn for
some β ∈ L×. Then α = ζr

nβ, 0 6 r < n, hence α ∈ L.

Now we’ll show that L ⊆ K( n
√

∆). L is the compositum of all finite intermediate field extensions
M/K. Each group Gal(M/K) is abelian and finite, hence is a product of cyclic groups. In fact, then,
L is the compositum of cyclic extensions. Let M/K be a cyclic intermediate field extension. If we
can show that M ⊆ K( n

√
∆) then L ⊆ K( n

√
∆).

Let σ generate Gal(M/K) and let d = [M : K], so d | n, say n = dd′. Consider ξ = ζd′

n . Note that
ξ ∈ K and is a n/d′ = d-th root of unity. We have NM/K(ξ) = ξd = 1, so, by Hilbert 90,

ξ =
σ(α)
α

, α ∈M×.

So K(α) ⊆M . Also,

σ2(α) = σ(ξα)

= σ(ξ)σ(α)
= ξξα

= ξ2α.

Indeed, σi(α) = ξiα, so σi(α) = α if and only if ξi = 1, and since ξ is a dth root of unity this occurs
if and only if d | i. Hence, by standard Galois theory, K(α) = M . If α ∈ n

√
∆, we’re done. But

σ(αn)
αn

=
(
σ(α)
α

)n

= ξn = 1,

since d | n. So σ(αn) = αn, and so inductively σi(αn) = αn for all i, so αn ∈ K×, hence αn ∈
(M×)n ∩K× ⊆ ∆. �

Theorem. The correspondence ∆→ L = K( n
√

∆) is a bijection between groups ∆ such that (K×)n ⊆
∆ ⊆ K× and abelian extensions of exponent n. If ∆ and L correspond to one another then ∆ =
(L×)n ∩K× and there is a canonical isomorphism ∆/(K×)n ∼= Hom(Gal(L/K), µn).
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