
Algebraic Number Theory – Lecture 16

Lee Butler

“It is impossible to travel faster than the speed of light, and certainly not
desirable, as one’s hat keeps blowing off.”

– Woody Allen

1. Numbers, units, and ideals

Algebraic number theory is first and foremost the study of algebraic numbers using algebra,
analysis, and other, funkier stuff.

Definition. An (algebraic) number field K is a field extension K ⊃ Q such that the degree [K : Q]
is finite. Elements of a number field are called algebraic numbers.

A number α ∈ C is algebraic if and only if there is an irreducible, monic polynomial 0 6= f ∈ Q[x]
such that f(α) = 0. This f is unique and called the minimal polynomial of α. If f ∈ Z[x] then α
is called an algebraic integer.

The algebraic integers form a ring O. Given a number field K the algebraic integers in K also
form a ring, the ring of integers of K, OK .

Definition. The units in OK , O×K , are elements u ∈ OK such that uv = 1 for some v ∈ OK .

In Z we can factorise numbers uniquely into primes, in the ring of integers of number fields this
is not the case in general. But it is the case for ideals.

Definition. An ideal a of OK is an abelian subgroup under addition such that aOK ⊂ a. An ideal
p is called:

• prime if whenever ab ⊂ p, either a ⊂ p or b ⊂ p;
• maximal if p 6= OK and p ⊂ p′ ⊂ OK implies p′ = p or p′ = OK .

Maximal ideals are always prime, and in special integral domains called Dedekind domains,
every prime ideal is maximal. OK is always a Dedekind domain so we can factorise ideals in OK
into primes.

Definition. An OK-submodule a ⊂ K is called a fractional ideal if there is c ∈ OK with c 6= 0
and such that ca is an ideal in OK .

Fractional ideals form an abelian multiplicative group, JK say, while the principal ideals form
a normal subgroup, PK , of JK . Their quotient ClK = JK/PK is called the class group. It is
finite and its size h = |ClK | is called the class number. It measures the expansion in passing
from numbers to ideals, while the group of units measures the contraction in this process. This is
captured by the exact sequence

1→ O×K → K× → JK → ClK → 1.
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2. Conjugates, norms, and traces

A number field K can always be generated over Q by a single algebraic number θ. If θ has
minimal polynomial f of degree d, then the d roots of f are called the conjugates of θ. Suppose
the conjugates of θ are θ1, . . . , θd; these numbers lead to the d distinct embeddings of K into C,
σi : K ↪→ C, given by

σi(θ) = θi.

We can then define the norm and trace of an element α ∈ K by

N(α) =
d∏
i=1

σi(α)

and

Tr(α) =
d∑
i=1

σi(α).

They are both rational numbers.

We can also define the norm of an ideal a ⊂ OK by

N(a) = |OK/a| <∞.

3. The big, bad concepts

Definition. Given a number field K, we define the Dedekind zeta function of K by

ζK(s) =
∑

a⊂OK

1
N(a)s

=
∏
p

(
1− 1

N(p)s

)−1

.

The function is defined for Re(s) > 1 and can be analytically continued to all of C except for a
pole at s = 1, and the residue of this pole encodes a vast amount of information about K.

A related notion is that of the Dirichlet L-series.

Definition. A Dirichlet character (mod m) is a homomorphism

χ : (Z/mZ)× → {z ∈ C : |z| = 1}.
It extends to a multiplicative function by

χ(n) =

{
χ(n (mod m)) if hcf(m,n) = 1
0 otherwise.

Out of a Dirichlet character we form a Dirichlet L-series by

L(χ, s) =
∞∑
n=1

χ(n)
ns

.

Both these complex functions are generalisations of the Riemann zeta function (take K = Q and
the “trivial” character χ ≡ 1 (mod 1) respectively), and are both generalised by Hecke L-series.

The Dedekind zeta function encodes a lot of information about the ideals of OK , but we also
want to know about the units. In general they form an infinite group, but we can still get a feel
for their size by Dirichlet’s unit theorem.
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Theorem. Let µ(K) denote the set of roots of unity in K, let r and 2s be the number of real and
pairs of complex embeddings K ↪→ C respectively. Then

O×K ∼= µ(K)⊕ Zr+s−1.

What this means is that there are t = r+s−1 special units ε1, . . . , εt, called fundamental units,
such that any unit ε in OK can be written

ε = ζεν11 · · · ε
νt
t

for integers νi.

Another way of understanding number fields is to study their extensions. A special kind of
extension is a Kummer extension.

Definition. Let K be a number field containing the nth roots of unity and ∆ ⊆ K×. A Kummer
extension of K is one of the form K( n

√
∆).

Kummer extensions are important because they correspond to groups intermediate to the nth
roots in K× and K× itself. Specifically we have the following.

Theorem. There is a bijective correspondence between groups (K×)n ⊆ ∆ ⊆ K× and Kummer
extensions of K.

Kummer extensions are always abelian, i.e. Galois with abelian Galois group. The study of
abelian extensions is the thrust of class field theory which we’ll hopefully learn a lot more about
this year.

Another place Galois extensions come in useful is when studying Hilbert’s ramification theory.
This studies how a prime ideal p ⊂ OK factorises when considered as an ideal in a larger field
L ⊃ K. In general it will factor as

p = Pe1
1 · · ·Per

r

for some prime ideals Pi ⊂ OL and natural numbers ei called the ramification indices. If [L : K] =
n and we define the inertia degree fi = [OL/Pi : OK/p] then we get the fundamental identity

r∑
i=1

eifi = n.

The ideal Pi is called unramified if ei = 1, and p is called unramified if all the Pi are unramified.
Otherwise they’re called ramified. It turns out only finitely many prime ideals in OK ramify in
OL, and they’re the divisors of a special ideal in OK called the discriminant of the extension. Also
surprising is that if the extension is Galois then the ramification indices and inertia degrees are
independent of i, that is e1 = . . . = er and f1 = . . . = fr.

4. And more besides

That’s a very brief sketch of most of the stuff we looked at last year. In the following year we
will delve deeper into class field theory and the theory of valuations, including p-adic numbers,
idèles and adèles, and more evil looking complex functions.


