THE HILBERT SYMBOL

This lecture is based on the book A course in Arithmetic by Serre, all the omitted proofs can be found there.

In the whole lecture, let $k=\mathbb{Q}_{v}$ for some $v \in V=\{\infty\} \cup\{p$ prime $\}$, where $\mathbb{Q}_{\infty}=\mathbb{R}$.
Definition. For any $a, b \in k^{*}$, the Hilbert symbol of a and brelative to \mathbb{Q}_{v} is defined as

$$
(a, b)_{v}:= \begin{cases}+1 & \text { if } z^{2}-a x-b y^{2}=0 \text { has a nontrivial solution in } k^{3}, \\ -1 & \text { otherwise }\end{cases}
$$

Remark. If a and b are multiplied by squares, $(a, b)_{v}$ doesn't change, thus (,) $)_{v}$ defines a map

$$
k^{*} / k^{* 2} \times k^{*} / k^{* 2} \longrightarrow\{ \pm 1\}
$$

Proposition 1. Let $a, b \in k^{*}$ and $k_{b}=k(\sqrt{b})$. We have $(a, b)_{v}=1$ if and only if $a \in N\left(k_{b}^{*}\right)$, the group of norms of elements of k_{b}^{*}.

Proof. Easy.
Proposition 2. Let $a, a^{\prime}, b, c \in k$. We have:
i) $(a, b)_{v}=(b, a)_{v}$ and $\left(a, c^{2}\right)_{v}=1$,
ii) $(a,-a)_{v}=(a, 1-a)_{v}=1$,
iii) $(a, b)_{v}=1 \Rightarrow(a, b)_{v}=\left(a a^{\prime}, b\right)_{v}$,
iv) $(a, b)_{v}=(a,-a b)_{v}=(a,(1-a) b)_{v}$,

Proof. i) and $i i$) are trivial and $i v$) is implied by $i i$) and $i i i)$. To prove $i i i$), apply Proposition 1.

Lemma 1. All quadratic forms in at least 3 variables over a finite fields have a nontrivial zero.

Proof. See Serre's book.
Lemma 2. Let x be a zero of the reduction modulo p of a polynomial $f \in \mathbb{Z}_{p}\left[X_{1}, \ldots, X_{m}\right]$. Then, if x is simple (i.e. $\partial f / \partial X_{i}(x) \neq 0$ for some i), it lifts to a zero of f with coefficients in Z_{p}.

Proof. See Serre's book. Anyway, it's nothing deep, it's just a simple application of Taylor's formula.

Lemma 3. Let $v \in \mathbb{Z}_{p}^{*}$ a p-adic unit. If the equation $z^{2}-p x^{2}-w y^{2}=0$ has a nontrivial solution in \mathbb{Q}_{p}, it has a solution (z, x, y) with $z, y \in \mathbb{Z}_{p}^{*}$ and $x \in \mathbb{Z}_{p}$.

Proof. See Serre's book.

Theorem 1. If $k=\mathbb{R}$, we have

$$
(a, b)_{\infty}= \begin{cases}+1 & \text { if } a \text { or } b>0 \\ -1 & \text { otherwise }\end{cases}
$$

If $k=\mathbb{Q}_{p}$ and if we write $a=p^{\alpha} u, b=p^{\beta} w$, with $u, w \in \mathbb{Z}_{p}^{*}$, we have

$$
\begin{array}{ll}
(a, b)_{p}=(-1)^{\alpha \beta \frac{(p-1)}{2}}\left(\frac{\bar{u}}{p}\right)^{\alpha}\left(\frac{\bar{w}}{p}\right)^{\beta} & \text { if } p>2, \\
(a, b)_{2}=(-1)^{\frac{\overline{\bar{w}}-1}{2} \frac{\bar{w}-1}{2}+\alpha \frac{\bar{w}^{2}-1}{8}+\beta \frac{\bar{u}^{2}-1}{8}}\left(\frac{\bar{u}}{p}\right)^{\alpha}\left(\frac{\bar{w}}{p}\right)^{\beta} &
\end{array}
$$

Proof. If $\mathrm{k}=\mathbb{R}$ the assertion is trivial. Let $k=\mathbb{Q}_{p}$ with $p>2$. We can split the problem in three cases:
(1) $\alpha \equiv \beta \equiv 0(\bmod 2)$. We must check that $(u, w)_{p}=1$. By lemma 1 , the equation

$$
z^{2}-u x^{2}-w y^{2}=0
$$

has a nontrivial zero mod p. By lemma 2 , this lifts to \mathbb{Z}_{p} and so $(u, v)_{p}=1$.
(2) $\alpha \equiv 1, \beta \equiv 0(\bmod 2)$. We must check that $(p u, w)_{p}=\left(\frac{\bar{w}}{p}\right)$ and this, by 1$)$ and iii) of Proposition 2, is equivalent to $(p, w)_{p}=\left(\frac{\bar{w}}{p}\right)$. If w is a square, both sides are clearly equal to 1 , otherwise $\left(\frac{\bar{w}}{p}\right)=-1$ and so is $(p, w)_{p}$ by Lemma 3 .
(3) $\alpha \equiv \beta \equiv 1(\bmod 2)$. We must check that

$$
(p u, p w)_{p}=(-1)^{(p-1) / 2}\left(\frac{\bar{u}}{p}\right)\left(\frac{\bar{w}}{p}\right) .
$$

By $i v$) of Proposition 2, we have

$$
(p u, p w)_{p}=\left(p u,-p^{2} u w\right)_{p}=(p u,-u w)_{p}
$$

and, by 2), this is

$$
\left(\frac{\overline{u w}}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{\bar{u}}{p}\right)\left(\frac{\bar{w}}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{\bar{u}}{p}\right)\left(\frac{\bar{w}}{p}\right)
$$

For the case $p=2$, see Serre's book.
Theorem 2. The Hilbert symbol is a bilinear form on the \mathbf{F}_{2}-vector space $k^{*} / k^{* 2}$. That is,

$$
\left(a a^{\prime}, b\right)_{v}=(a, b)_{v}\left(a^{\prime}, b\right)_{v}
$$

for all $a, a^{\prime}, b \in k^{*}$. Moreover the Hilbert symbol is nondegenerate, i.e. if $b \in k^{*}$ is such that $(a, b)_{v}=1$ for all $a \in k^{*}$, then $b \in k^{* 2}$.
Proof. The bilinearity is clear form Theorem 1. To prove the nondegeneracy, see Serre's book.

Theorem 3. If $a, b \in \mathbb{Q}^{*}$, we have $(a, b)_{p}=1$ for almost all primes p and

$$
\prod_{v \in V}(a, b)_{p}=1
$$

Proof. Since the Hilbert symbols are bilinear, we just need to consider the case when a, b are equal to a prime or to -1 . Theorem 1 and the quadratic reciprocity law allow us to do explicitly the computations and to prove the theorem.

Theorem 4. Let $\left(a_{i}\right)_{i \in I}$ a finite family of elements of \mathbb{Q}^{*} and let $\left(\varepsilon_{i, v}\right)_{i \in I, v \in V}$ a family of numbers equal to ± 1. Then, there exists an $x \in \mathbb{Q}^{*}$ such that $\left(a_{i}, x\right)_{v}=\varepsilon_{i, v}$ for all $i \in I$ and all $v \in V$ if and only if
(1) $\varepsilon_{i, v}=1$ for almost all $v \in V$.
(2) $\prod_{v} \varepsilon_{i, v}=1$ for all $i \in I$.
(3) For all $v \in V$ there exists $x_{v} \in \mathbb{Q}_{v}^{*}$ such that $\left(a_{i}, x\right)_{v}=\varepsilon_{i, v}$ for all $i \in I$.

Proof. See Serre's book (the proof uses Dirichlet theorem on the infinity of primes in any arithmetic progression and the density of \mathbb{Q} in $\prod_{v} \mathbb{Q}_{v}$).

