THE HILBERT SYMBOL

This lecture is based on the book A *course in Arithmetic* by Serre, all the omitted proofs can be found there.

In the whole lecture, let $k = \mathbb{Q}_v$ for some $v \in V = \{\infty\} \cup \{p \text{ prime}\}$, where $\mathbb{Q}_\infty = \mathbb{R}$.

Definition. For any $a, b \in k^*$, the Hilbert symbol of a and b relative to \mathbb{Q}_v is defined as

$$(a,b)_v := \begin{cases} +1 & \text{if } z^2 - ax - by^2 = 0 \text{ has a nontrivial solution in } k^3, \\ -1 & \text{otherwise.} \end{cases}$$

Remark. If a and b are multiplied by squares, $(a, b)_v$ doesn't change, thus $(\ ,\)_v$ defines a map

$$k^*/k^{*2} \times k^*/k^{*2} \longrightarrow \{\pm 1\}.$$

Proposition 1. Let $a, b \in k^*$ and $k_b = k(\sqrt{b})$. We have $(a, b)_v = 1$ if and only if $a \in N(k_b^*)$, the group of norms of elements of k_b^* .

Proof. Easy.

Proposition 2. Let $a, a', b, c \in k$. We have:

i) $(a,b)_v = (b,a)_v$ and $(a,c^2)_v = 1$, *ii)* $(a,-a)_v = (a,1-a)_v = 1$, *iii)* $(a,b)_v = 1 \Rightarrow (a,b)_v = (aa',b)_v$, *iv)* $(a,b)_v = (a,-ab)_v = (a,(1-a)b)_v$,

Proof. i) and ii) are trivial and iv) is implied by ii) and iii). To prove iii), apply Proposition 1.

Lemma 1. All quadratic forms in at least 3 variables over a finite fields have a nontrivial zero.

Proof. See Serre's book.

Lemma 2. Let x be a zero of the reduction modulo p of a polynomial $f \in \mathbb{Z}_p[X_1, \ldots, X_m]$. Then, if x is simple (i.e. $\partial f / \partial X_i(x) \neq 0$ for some i), it lifts to a zero of f with coefficients in Z_p .

Proof. See Serre's book. Anyway, it's nothing deep, it's just a simple application of Taylor's formula. \Box

Lemma 3. Let $v \in \mathbb{Z}_p^*$ a p-adic unit. If the equation $z^2 - px^2 - wy^2 = 0$ has a nontrivial solution in \mathbb{Q}_p , it has a solution (z, x, y) with $z, y \in \mathbb{Z}_p^*$ and $x \in \mathbb{Z}_p$.

Proof. See Serre's book.

Theorem 1. If $k = \mathbb{R}$, we have

$$(a,b)_{\infty} = \begin{cases} +1 & \text{if } a \text{ or } b > 0, \\ -1 & \text{otherwise.} \end{cases}$$

If $k = \mathbb{Q}_p$ and if we write $a = p^{\alpha}u$, $b = p^{\beta}w$, with $u, w \in \mathbb{Z}_p^*$, we have

$$(a,b)_p = (-1)^{\alpha\beta\frac{(p-1)}{2}} \left(\frac{\overline{u}}{p}\right)^{\alpha} \left(\frac{\overline{w}}{p}\right)^{\beta} \qquad \text{if } p > 2,$$
$$(a,b)_2 = (-1)^{\frac{\overline{u}-1}{2}\frac{\overline{w}-1}{2} + \alpha\frac{\overline{w}^2-1}{8} + \beta\frac{\overline{u}^2-1}{8}} \left(\frac{\overline{u}}{p}\right)^{\alpha} \left(\frac{\overline{w}}{p}\right)^{\beta}.$$

Proof. If $k=\mathbb{R}$ the assertion is trivial. Let $k = \mathbb{Q}_p$ with p > 2. We can split the problem in three cases:

(1) $\alpha \equiv \beta \equiv 0 \pmod{2}$. We must check that $(u,w)_p = 1$. By lemma 1, the equation $z^2 - ux^2 - wy^2 = 0$

has a nontrivial zero mod p. By lemma 2, this lifts to \mathbb{Z}_p and so $(u, v)_p = 1$. (2) $\alpha \equiv 1, \ \beta \equiv 0 \pmod{2}$. We must check that $(pu, w)_p = \left(\frac{\overline{w}}{p}\right)$ and this, by 1) and *iii*) of Proposition 2, is equivalent to $(p, w)_p = \left(\frac{\overline{w}}{p}\right)$. If w is a square, both sides are clearly equal to 1, otherwise $\left(\frac{\overline{w}}{p}\right) = -1$ and so is $(p, w)_p$ by Lemma 3.

(3) $\alpha \equiv \beta \equiv 1 \pmod{2}$. We must check that

$$(pu, pw)_p = (-1)^{(p-1)/2} \left(\frac{\overline{u}}{p}\right) \left(\frac{\overline{w}}{p}\right).$$

By iv) of Proposition 2, we have

$$(pu, pw)_p = (pu, -p^2uw)_p = (pu, -uw)_p$$

and, by 2), this is

$$\left(\frac{\overline{u}\overline{w}}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{\overline{u}}{p}\right)\left(\frac{\overline{w}}{p}\right) = (-1)^{(p-1)/2}\left(\frac{\overline{u}}{p}\right)\left(\frac{\overline{w}}{p}\right)$$

For the case p = 2, see Serre's book.

Theorem 2. The Hilbert symbol is a bilinear form on the \mathbf{F}_2 -vector space k^*/k^{*2} . That is,

$$(aa',b)_v = (a,b)_v (a',b)_v,$$

for all $a, a', b \in k^*$. Moreover the Hilbert symbol is nondegenerate, i.e. if $b \in k^*$ is such that $(a, b)_v = 1$ for all $a \in k^*$, then $b \in k^{*2}$.

Proof. The bilinearity is clear form Theorem 1. To prove the nondegeneracy, see Serre's book. $\hfill \Box$

Theorem 3. If $a, b \in \mathbb{Q}^*$, we have $(a, b)_p = 1$ for almost all primes p and

$$\prod_{v \in V} (a, b)_p = 1.$$

Proof. Since the Hilbert symbols are bilinear, we just need to consider the case when a, b are equal to a prime or to -1. Theorem 1 and the quadratic reciprocity law allow us to do explicitly the computations and to prove the theorem.

Theorem 4. Let $(a_i)_{i \in I}$ a finite family of elements of \mathbb{Q}^* and let $(\varepsilon_{i,v})_{i \in I, v \in V}$ a family of numbers equal to ± 1 . Then, there exists an $x \in \mathbb{Q}^*$ such that $(a_i, x)_v = \varepsilon_{i,v}$ for all $i \in I$ and all $v \in V$ if and only if

- (1) $\varepsilon_{i,v} = 1$ for almost all $v \in V$.
- (2) $\prod_{v} \varepsilon_{i,v} = 1$ for all $i \in I$.
- (3) For all $v \in V$ there exists $x_v \in \mathbb{Q}_v^*$ such that $(a_i, x)_v = \varepsilon_{i,v}$ for all $i \in I$.

Proof. See Serre's book (the proof uses Dirichlet theorem on the infinity of primes in any arithmetic progression and the density of \mathbb{Q} in $\prod_{v} \mathbb{Q}_{v}$).