
Algebraic Number Theory – Lecture 2

Michael Harvey

“He who abandons the field is beaten.”

– Victor Hugo

1. Algebraic Numbers

Definition 1. A complex number α ∈ C is said to be algebraic if it satisfies some
polynomial equation f(x) = 0 where f ∈ Q[x] is nonzero, i.e. f(α) = 0.

Remark. The polynomial f is not unique. But there is a unique irreducible poly-
nomial m(x) ∈ Q[x] with leading coefficient 1 satisfying m(α) = 0. This polynomial
is called the minimum polynomial of α. The degree of α is defined to be the degree
of m.

Example 1.
√

5, i, ϕ are all algebraic numbers, where ϕ is the golden ratio. They
have minimum polynomials x2 − 5, x2 + 1, and x2 − x− 1 respectively.

Definition 2. A number field (or algebraic number field) is a subfield K of C such
that [K : Q] < ∞, where [K : Q] is the dimension of K when viewed as a vector
space over Q. The number [K : Q] is called the degree of K over Q.

Remark. Suppose K is a number field.

(1) If α ∈ K then α is algebraic;
(2) K is of the form Q(α1, . . . , αn) for finitely many algebraic numbers αi;
(3) the set of all algebraic numbers is not a number field;
(4) Q(π),Q(e), and so on, are not number fields.

Theorem 1. If K is a number field then K = Q(α) for some algebraic number α.

Sketch proof. By induction it suffices to show that a number field of the form
Q(β, γ) is of the form Q(α) for some algebraic α. For an auspicious choice of c ∈ Q
if we let α = β + cγ then it can be shown γ ∈ Q(α). Hence β = α− cγ ∈ Q(α) and
so Q(β, γ) ⊆ Q(α). And clearly Q(α) ⊆ Q(β, γ), so the two fields are equal.1 �

Definition 3. A complex number α is called an algebraic integer if there is a
nonzero monic polynomial over Z, say f(x) ∈ Z[x], such that f(α) = 0.

Example 2.
√
−2 and 1

2 (
√

29 − 3) are algebraic integers, they satisfy x2 + 2 = 0
and x2 + 3x− 5 = 0 respectively.

Remark. The set of all algebraic integers forms a ring, call this B.

1Full proof is in Stewart and Tall, pp.40–41.

1



2

Definition 4. If K is a number field, the ring of integers of K, denoted OK , is
given by

OK = K ∩B.

Lemma 1. If α ∈ K then there is some nonzero c ∈ Z such that cα ∈ OK .

Proof. If α ∈ OK then we may take c = 1. If not consider the minimal polynomial
of α, m(x). Say

m(x) = xn + an−1x
n−1 + . . .+ a1x+ a0,

where ai ∈ Q (1 6 i 6 n− 1). Let c ∈ Z, c 6= 0 be the lowest common denominator
of a0, a1, . . . , an−1, and multiply m(x) by cn:

cnm(x) = cnxn + can−1c
n−1xn−1 + . . .+ cn−1a1cx+ cna0

= (cx)n + can−1(cx)n−1 + . . .+ cn−1a1(cx) + cna0.

So cα satisfies the monic polynomial

m̃(y) = yn + can−1y
n−1 + . . .+ cn−1a1y + cna0 ∈ Z[y],

and hence cα ∈ OK . �

Corollary. If K is a number field then K = Q(θ) for some algebraic integer θ.

Proof. If c ∈ Q is nonzero then clearly Q(cα) = Q(α). We know K = Q(α) for some
algebraic number α, and by the previous lemma there is a nonzero rational integer
c such that cα = θ is an algebraic integer, hence K = Q(α) = Q(cα) = Q(θ). �

2. Integral Basis

Definition 5. Let α1, . . . , αs ∈ OK . The set {α1, . . . , αs} is an integral basis of OK

iff every element of OK can be written as a unique linear combination of α1, . . . , αs

with coefficients in Z.

We note that an integral basis always exists, see Stewart and Tall page 51 for a
proof.

Remark. Any integral basis is a basis for K over Q by the previous lemma. Indeed,
if α ∈ K then there is a nonzero c ∈ Z such that cα ∈ OK . So cα can be written
as a unique linear combination of our integral basis elements over Z, so, dividing
through by c, we have that α is a unique linear combination of the integral basis
elements over Q.

If K = Q(θ) for an algebraic integer θ, and [K : Q] = n, then {1, θ, θ2, . . . , θn−1}
is a Q-basis for K. However, this is not necessarily an integral basis. For example,
consider K = Q(

√
5). A basis for K over Q is given by {1,

√
5}, but 1

2 (1+
√

5) ∈ OK

since it satisfies the polynomial equation x2 − x− 1 = 0, but there are no rational
integers a0, a1 such that 1

2 (1 +
√

5) = a0 + a1

√
5.


