Algebraic Number Theory - Lecture 2
 Michael Harvey

"He who abandons the field is beaten."

- Victor Hugo

1. Algebraic Numbers

Definition 1. A complex number $\alpha \in \mathbb{C}$ is said to be algebraic if it satisfies some polynomial equation $f(x)=0$ where $f \in \mathbb{Q}[x]$ is nonzero, i.e. $f(\alpha)=0$.

Remark. The polynomial f is not unique. But there is a unique irreducible polynomial $m(x) \in \mathbb{Q}[x]$ with leading coefficient 1 satisfying $m(\alpha)=0$. This polynomial is called the minimum polynomial of α. The degree of α is defined to be the degree of m.
Example 1. $\sqrt{5}, i, \varphi$ are all algebraic numbers, where φ is the golden ratio. They have minimum polynomials $x^{2}-5, x^{2}+1$, and $x^{2}-x-1$ respectively.

Definition 2. A number field (or algebraic number field) is a subfield K of \mathbb{C} such that $[K: \mathbb{Q}]<\infty$, where $[K: \mathbb{Q}]$ is the dimension of K when viewed as a vector space over \mathbb{Q}. The number $[K: \mathbb{Q}]$ is called the degree of K over \mathbb{Q}.
Remark. Suppose K is a number field.
(1) If $\alpha \in K$ then α is algebraic;
(2) K is of the form $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for finitely many algebraic numbers α_{i};
(3) the set of all algebraic numbers is not a number field;
(4) $\mathbb{Q}(\pi), \mathbb{Q}(e)$, and so on, are not number fields.

Theorem 1. If K is a number field then $K=\mathbb{Q}(\alpha)$ for some algebraic number α.

Sketch proof. By induction it suffices to show that a number field of the form $\mathbb{Q}(\beta, \gamma)$ is of the form $\mathbb{Q}(\alpha)$ for some algebraic α. For an auspicious choice of $c \in \mathbb{Q}$ if we let $\alpha=\beta+c \gamma$ then it can be shown $\gamma \in \mathbb{Q}(\alpha)$. Hence $\beta=\alpha-c \gamma \in \mathbb{Q}(\alpha)$ and so $\mathbb{Q}(\beta, \gamma) \subseteq \mathbb{Q}(\alpha)$. And clearly $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\beta, \gamma)$, so the two fields are equal. ${ }^{1}$

Definition 3. A complex number α is called an algebraic integer if there is a nonzero monic polynomial over \mathbb{Z}, say $f(x) \in \mathbb{Z}[x]$, such that $f(\alpha)=0$.
Example 2. $\sqrt{-2}$ and $\frac{1}{2}(\sqrt{29}-3)$ are algebraic integers, they satisfy $x^{2}+2=0$ and $x^{2}+3 x-5=0$ respectively.

Remark. The set of all algebraic integers forms a ring, call this B.

[^0]Definition 4. If K is a number field, the ring of integers of K, denoted \mathcal{O}_{K}, is given by

$$
\mathcal{O}_{K}=K \cap B
$$

Lemma 1. If $\alpha \in K$ then there is some nonzero $c \in \mathbb{Z}$ such that $c \alpha \in \mathcal{O}_{K}$.
Proof. If $\alpha \in \mathcal{O}_{K}$ then we may take $c=1$. If not consider the minimal polynomial of $\alpha, m(x)$. Say

$$
m(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0},
$$

where $a_{i} \in \mathbb{Q}(1 \leqslant i \leqslant n-1)$. Let $c \in \mathbb{Z}, c \neq 0$ be the lowest common denominator of $a_{0}, a_{1}, \ldots, a_{n-1}$, and multiply $m(x)$ by c^{n} :

$$
\begin{aligned}
c^{n} m(x) & =c^{n} x^{n}+c a_{n-1} c^{n-1} x^{n-1}+\ldots+c^{n-1} a_{1} c x+c^{n} a_{0} \\
& =(c x)^{n}+c a_{n-1}(c x)^{n-1}+\ldots+c^{n-1} a_{1}(c x)+c^{n} a_{0} .
\end{aligned}
$$

So $c \alpha$ satisfies the monic polynomial

$$
\widetilde{m}(y)=y^{n}+c a_{n-1} y^{n-1}+\ldots+c^{n-1} a_{1} y+c^{n} a_{0} \in \mathbb{Z}[y],
$$

and hence $c \alpha \in \mathcal{O}_{K}$.
Corollary. If K is a number field then $K=\mathbb{Q}(\theta)$ for some algebraic integer θ.
Proof. If $c \in \mathbb{Q}$ is nonzero then clearly $\mathbb{Q}(c \alpha)=\mathbb{Q}(\alpha)$. We know $K=\mathbb{Q}(\alpha)$ for some algebraic number α, and by the previous lemma there is a nonzero rational integer c such that $c \alpha=\theta$ is an algebraic integer, hence $K=\mathbb{Q}(\alpha)=\mathbb{Q}(c \alpha)=\mathbb{Q}(\theta)$.

2. Integral Basis

Definition 5. Let $\alpha_{1}, \ldots, \alpha_{s} \in \mathcal{O}_{K}$. The set $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ is an integral basis of \mathcal{O}_{K} iff every element of \mathcal{O}_{K} can be written as a unique linear combination of $\alpha_{1}, \ldots, \alpha_{s}$ with coefficients in \mathbb{Z}.

We note that an integral basis always exists, see Stewart and Tall page 51 for a proof.

Remark. Any integral basis is a basis for K over \mathbb{Q} by the previous lemma. Indeed, if $\alpha \in K$ then there is a nonzero $c \in \mathbb{Z}$ such that $c \alpha \in \mathcal{O}_{K}$. So $c \alpha$ can be written as a unique linear combination of our integral basis elements over \mathbb{Z}, so, dividing through by c, we have that α is a unique linear combination of the integral basis elements over \mathbb{Q}.

If $K=\mathbb{Q}(\theta)$ for an algebraic integer θ, and $[K: \mathbb{Q}]=n$, then $\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$ is a \mathbb{Q}-basis for K. However, this is not necessarily an integral basis. For example, consider $K=\mathbb{Q}(\sqrt{5})$. A basis for K over \mathbb{Q} is given by $\{1, \sqrt{5}\}$, but $\frac{1}{2}(1+\sqrt{5}) \in \mathcal{O}_{K}$ since it satisfies the polynomial equation $x^{2}-x-1=0$, but there are no rational integers a_{0}, a_{1} such that $\frac{1}{2}(1+\sqrt{5})=a_{0}+a_{1} \sqrt{5}$.

[^0]: ${ }^{1}$ Full proof is in Stewart and Tall, pp.40-41.

