ALGEBRAIC NUMBER THEORY — LECTURE 2

Michael Harvey

“He who abandons the field is beaten.”

— Victor Hugo

1. ALGEBRAIC NUMBERS

Definition 1. A complex number « € C is said to be algebraic if it satisfies some
polynomial equation f(x) = 0 where f € Q[z] is nonzero, i.e. f(a) = 0.

Remark. The polynomial f is not unique. But there is a unique irreducible poly-
nomial m(z) € Q[z] with leading coefficient 1 satisfying m(a) = 0. This polynomial
is called the minimum polynomial of ce. The degree of « is defined to be the degree
of m.

Example 1. /5, i, ¢ are all algebraic numbers, where ¢ is the golden ratio. They
have minimum polynomials z? — 5, 22 4+ 1, and 22 — = — 1 respectively.

Definition 2. A number field (or algebraic number field) is a subfield K of C such
that [K : Q] < oo, where [K : Q] is the dimension of K when viewed as a vector
space over Q. The number [K : Q] is called the degree of K over Q.

Remark. Suppose K is a number field.

(1) If o € K then « is algebraic;

(2) K is of the form Q(az,...,q,) for finitely many algebraic numbers ay;
(3) the set of all algebraic numbers is not a number field;

(4) Q(7),Q(e), and so on, are not number fields.

Theorem 1. If K is a number field then K = Q(«) for some algebraic number c.

Sketch proof. By induction it suffices to show that a number field of the form
Q(B,7) is of the form Q(«) for some algebraic «. For an auspicious choice of ¢ € Q
if we let @ = 3+ ¢y then it can be shown v € Q(«). Hence § = a — ¢y € Q(«) and
so Q(8,7) € Q(a). And clearly Q(a) € Q(B,7), so the two fields are equal.! O

Definition 3. A complex number « is called an algebraic integer if there is a
nonzero monic polynomial over Z, say f(x) € Z[x], such that f(a) =

Example 2. v/—2 and (\/ — 3) are algebraic integers, they satisfy 22 +2 =0
and 22+ 3z —-5=0 rebpectlvely

Remark. The set of all algebraic integers forms a ring, call this B.

LFull proof is in Stewart and Tall, pp.40-41.
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Definition 4. If K is a number field, the ring of integers of K, denoted Ok, is
given by
Ox =KnNB.

Lemma 1. If a € K then there is some nonzero ¢ € 7 such that ca € Ok

Proof. If a € Ok then we may take ¢ = 1. If not consider the minimal polynomial
of o, m(z). Say
m(x) =z + 12"V 4+ .. 4 a1z + ag,
where a; € Q (1 <i<n—1). Let ¢ € Z, ¢ # 0 be the lowest common denominator
of ag, a1, ...,an_1, and multiply m(z) by ¢™:
c"m(z) = "z + can_1" " L lager + cMag
= (cx)™ + cap_1(cx)" P 4 ... +c"ai(cx) + c"ao.
So ca satisfies the monic polynomial
m(y) = y™ + can_1y" '+ ...+ " rayy + cMag € Ly,
and hence ca € Ok. O

Corollary. If K is a number field then K = Q(0) for some algebraic integer 6.

Proof. If ¢ € Q is nonzero then clearly Q(ca) = Q(«). We know K = Q(«) for some
algebraic number «, and by the previous lemma there is a nonzero rational integer
¢ such that ca = 0 is an algebraic integer, hence K = Q(a) = Q(ca) = Q). O

2. INTEGRAL BASIS

Definition 5. Let aq,...,as € Ok. Theset {a1,...,as} is an integral basis of Ok
iff every element of Ok can be written as a unique linear combination of aq, ..., as
with coefficients in Z.

We note that an integral basis always exists, see Stewart and Tall page 51 for a
proof.

Remark. Any integral basis is a basis for K over Q by the previous lemma. Indeed,
if « € K then there is a nonzero ¢ € Z such that ca € Og. So ca can be written
as a unique linear combination of our integral basis elements over Z, so, dividing
through by ¢, we have that « is a unique linear combination of the integral basis
elements over Q.

If K = Q(0) for an algebraic integer 6, and [K : Q] = n, then {1,0,0%, ..., 671}
is a Q-basis for K. However, this is not necessarily an integral basis. For example,
consider K = Q(+v/5). A basis for K over Q is given by {1,v/5}, but 1(1+V/5) € O
since it satisfies the polynomial equation 22 — 2 — 1 = 0, but there are no rational
integers ag, a; such that %(1 + \/5) = ag + a1 V5.



