Lee Butler

1. RAMIFICATION AND THE DIFFERENT

Let A be a Dedekind domain with field of fractions K, and let L be a finite, separable extension of K. Let B be the integral closure of A in L.

Let \mathfrak{P} be a prime ideal of B and $\mathfrak{p} = \mathfrak{P} \cap A$. We'll assume throughout this talk that B/\mathfrak{P} is a separable extension of A/\mathfrak{p} . \mathfrak{P} lies over \mathfrak{p} so we have

$$\mathfrak{p}B = \mathfrak{P}^{e_{\mathfrak{P}}} \prod_{\substack{\mathfrak{Q} \mid \mathfrak{p} \\ \mathfrak{Q} \neq \mathfrak{P}}} \mathfrak{Q}^{e_{\mathfrak{Q}}}.$$

Recall from lecture 9 that L/K is called *unramified at* \mathfrak{P} if $e_{\mathfrak{P}} = 1$.

Let σ range over the embeddings $L \hookrightarrow \overline{K}$, then we have the canonical, nondegenerate, symmetric, bilinear form on the K-vector space L called the *trace form*:

$$T(x,y) = \operatorname{Tr}_{L/K}(xy) = \sum_{\sigma} \sigma(xy).$$

Definition. Let

$$B^* = \{ y \in L : \forall x \in B, \operatorname{Tr}(xy) \in A \}$$

It is a sub-*B*-module of *L* called *Dedekind's complementary module*, or the *inverse different* or *codifferent* of *B* over *A*. It's a fractional ideal of *L* so has an inverse, which we denote $\mathfrak{D}_{B/A}$ or $\mathfrak{D}_{L/K}$, called the *different of B over A* (or of L/K).

2. UNRAMIFIED EXTENSIONS

Theorem 1. L/K is unramified at \mathfrak{P} if and only if $\mathfrak{P} \nmid \mathfrak{D}_{B/A}$.

The proof of this needs a couple of lemmata.

Lemma 1 (Localisation). Suppose $S \subseteq A$ is closed under multiplication, $1 \in S$, and $0 \notin S$. Then

$$\mathfrak{D}_{S^{-1}B/S^{-1}A} = S^{-1}\mathfrak{D}_{B/A}.$$

Proof. For such sets S and fractional ideals \Im we have

$$(S^{-1}\mathfrak{I})^{-1} = S^{-1}\mathfrak{I}^{-1}$$

so it suffices to show that

$$S^{-1}B^* = (S^{-1}B)^*.$$

Suppose
$$x = s^{-1}y \in S^{-1}B^*$$
, and let $z = t^{-1}w \in S^{-1}B$ be arbitrary. Then
 $\operatorname{Tr}(zx) = \operatorname{Tr}((st)^{-1}wu)$

$$\mathbf{r}(zx) = \operatorname{Tr}((st)^{-1}wy)$$
$$= (st)^{-1}\operatorname{Tr}(wy) \in S^{-1}A$$

since $y \in B^*$. So $x \in (S^{-1}B)^*$.

Now suppose $x \in (S^{-1}B)^*$. B is an A-module with generators b_i , say. By the bilinearity of Tr it suffices to show there is an $s \in S$ such that $Tr((sx)b_i) \in A$ for each i. We have

$$\operatorname{Tr}(xb_i) \in S^{-1}A$$

so there exist $s_i \in S$ and $a_i \in A$ such that

$$\operatorname{Tr}(xb_i) = s_i^{-1}a_i.$$

Let $s = \prod s_i$ and $a'_i = a_i \prod_{j \neq i} s_j$, then

$$\operatorname{Tr}(xb_i) = s^{-1}a_i'$$

as required.

Lemma 2 (Completion). Let $B_{\mathfrak{P}}$ and $A_{\mathfrak{p}}$ be the completions of B and A with respect to \mathfrak{P} and \mathfrak{p} respectively. Then

$$\mathfrak{D}_{B/A}B_{\mathfrak{P}}=\mathfrak{D}_{B_{\mathfrak{P}}/A_{\mathfrak{p}}}.$$

Proof. By letting $S = A \setminus \mathfrak{p}$ in lemma 1 we may assume that A is a discrete valuation ring, that is a PID with a unique maximal ideal. We will show that B^* is dense in $(B_{\mathfrak{P}})^*$. We have

$$\mathrm{Tr}_{L/K} = \sum_{\mathfrak{Q}|\mathfrak{p}} \mathrm{Tr}_{L\mathfrak{Q}/K\mathfrak{p}}$$

Let $x \in B^*$ and $y \in B_{\mathfrak{P}}$. By weak approximation we can find $\alpha \in L$ with

$$|y-\alpha|_{\mathfrak{P}} < \varepsilon$$

and $|\alpha|_{\mathfrak{P}'} < \varepsilon$ for $\mathfrak{P}' \mid \mathfrak{p}, \mathfrak{P}' \neq \mathfrak{P}$. Let

$$T = \mathrm{Tr}_{L/K}(x\alpha) = \mathrm{Tr}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}}(x\alpha) + \sum_{\substack{\mathfrak{P}' \mid \mathfrak{p} \\ \mathfrak{P}' \neq \mathfrak{P}}} \mathrm{Tr}_{L_{\mathfrak{P}'}/K_{\mathfrak{p}}}(x\alpha).$$

Since $x \in B^*$ and $\alpha \in L$ we have that $T \in A \subseteq A_p$. But α is close to zero with respect to $v_{\mathfrak{P}'}$ hence the summands in the sum on the right are all in A_p too. So $\operatorname{Tr}_{L_{\mathfrak{P}}/K_p}(x\alpha) \in A_p$. Thence, by choosing ε small enough we will have $\operatorname{Tr}_{L_{\mathfrak{P}}/K_p}(xy) \in A_p$, in particular we have $x \in (B_{\mathfrak{P}})^*$.

Now suppose that $x \in (B_{\mathfrak{P}})^*$ and use weak approximation to find $\xi \in L$ close to x with respect to $v_{\mathfrak{p}}$ and close to zero with respect to \mathfrak{P}' for $\mathfrak{P}' \mid \mathfrak{p}, \mathfrak{P}' \neq \mathfrak{P}$. Let $y \in B$, then

$$\operatorname{Tr}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}}(\xi y) \in A_{\mathfrak{p}}$$

since

$$\operatorname{Tr}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}}(xy) \in A_{\mathfrak{p}}$$

Likewise,

$$\operatorname{Tr}_{L_{\mathfrak{N}'}/K_{\mathfrak{p}}}(\xi y) \in A_{\mathfrak{p}}$$

for $\mathfrak{P}' \mid \mathfrak{p}$ since ξ , and hence these traces, are close to zero with respect to $v_{\mathfrak{P}'}$. So, using the formula for $\operatorname{Tr}_{L/K}$ we have

$$\operatorname{Tr}_{L/K}(\xi y) = \operatorname{Tr}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}}(\xi y) + \sum_{\mathfrak{P}'} \operatorname{Tr}_{L_{\mathfrak{P}'}/K_{\mathfrak{p}}}(\xi y) \in A_{\mathfrak{p}} \cap K = A_{\mathfrak{p}}$$

So $\xi \in B^*$. Thus B^* is dense in $(B_{\mathfrak{P}})^*$, i.e. $B^*B_{\mathfrak{P}} = (B_{\mathfrak{P}})^*$, whence the lemma.

Proof of theorem 1. By lemmata 1 and 2 we may assume that A is a complete, discrete valuation ring with maximal ideal \mathfrak{p} . Being complete means that \mathfrak{p} is nonsplit, i.e. $\mathfrak{p}B = \mathfrak{P}^e$. Let the residue field be $A/\mathfrak{p} = k$. In particular, B is also a discrete valuation ring. \mathfrak{P} being unramified means that $B\mathfrak{p} = \mathfrak{P}$ and that B/\mathfrak{P} is a separable extension of A/\mathfrak{p} . So it's equivalent to $B/\mathfrak{p}B$ being a separable field extension of k.

Let $\{b_i\}$ be a basis of B over A and set

 $d = \det(\operatorname{Tr}(b_i b_j)).$

We have that d is the generator of the principal ideal $\mathfrak{d}_{B/A}$, called the *discriminant*. By its definition we have that $\mathfrak{P} \mid \mathfrak{D}_{B/A}$ if and only if $\det(\operatorname{Tr}(b_i b_j)) \in \mathfrak{p}A$, i.e. if and only if the image \overline{d} of d in k is zero. So $\mathfrak{P} \nmid \mathfrak{D}_{B/A}$ if and only if $\overline{d} \neq 0$ in k.

Let \bar{b}_i be the images of the b_i in $B/\mathfrak{p}B$. These form a basis of $B/\mathfrak{p}B$ over k, and this basis has discriminant \bar{d} . Big, bad algebra textbooks will tell you that $\bar{d} \neq 0$ is equivalent to $B/\mathfrak{p}B$ being a separable k-algebra. But B is a discrete valuation ring, hence a Noetherian local ring, and so $B/\mathfrak{p}B$ is a local ring. But being a local ring and a separable k-algebra is just saying that $B/\mathfrak{p}B$ is a separable field extension of k.

Corollary. L/K is unramified at \mathfrak{p} if and only if $\mathfrak{p} \nmid \mathfrak{d}_{B/A}$.

Proof. We have the relation $\mathfrak{d}_{B/A} = N_{L/K}(\mathfrak{D}_{B/A})$.

Theorem 2. Let A be a complete discrete valuation ring with residue field k and field of fractions K. Let k_s be the separable closure of k (i.e. the largest separable extension of k within a given algebraic closure of k), and let K_i be the unramified extensions of K corresponding to finite subextensions of k_s , ordered by inclusion. Let

$$K_{nr} = \lim K_i$$

be the inductive limit of this system. Then K_{nr} is Galois over K with residue field k_s , and

$$\operatorname{Gal}(K_{nr}/K) = \operatorname{Gal}(k_s/k).$$

The field K_{nr} is called the maximal unramified extension of K and is unique, up to unique isomorphism.

Example. Let $A = \mathbb{Z}_p$, so $k = \mathbb{F}_p$ and $K = \mathbb{Q}_p$. Unramified extensions of \mathbb{Q}_p are in 1-1 correspondence with finite extensions of \mathbb{F}_p . But for each $n \in \mathbb{N}$ there is a unique extension of \mathbb{F}_p of degree n, namely the splitting field of $x^{p^n} - x$. So for each $n \in \mathbb{N}$ there is a unique unramified extension of \mathbb{Q}_p of degree n, namely $K_n = \mathbb{Q}_p(\zeta_{p^n-1})$. So

$$(\mathbb{Q}_p)_{\mathrm{nr}} = \lim_{\stackrel{\longrightarrow}{(n,p)=1}} K_n.$$

We have

$$\operatorname{Gal}(K_n/\mathbb{Q}_p) \cong \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \cong \mathbb{Z}/n\mathbb{Z},$$

whence

$$\operatorname{Gal}((\mathbb{Q}_p)_{\operatorname{nr}}/\mathbb{Q}_p) \cong \lim_{\stackrel{\longleftarrow}{\longleftarrow} n} \mathbb{Z}/n\mathbb{Z} \cong \widehat{\mathbb{Z}}.$$