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1. Ramification and the different

Let A be a Dedekind domain with field of fractions K, and let L be a finite, separable extension
of K. Let B be the integral closure of A in L.

Let P be a prime ideal of B and p = P ∩ A. We’ll assume throughout this talk that B/P is a
separable extension of A/p. P lies over p so we have

pB = PeP

∏
Q|p

Q 6=P

QeQ .

Recall from lecture 9 that L/K is called unramified at P if eP = 1.

Let σ range over the embeddings L ↪→ K, then we have the canonical, nondegenerate, symmetric,
bilinear form on the K-vector space L called the trace form:

T (x, y) = TrL/K(xy) =
∑
σ

σ(xy).

Definition. Let
B∗ = {y ∈ L : ∀x ∈ B, Tr(xy) ∈ A}.

It is a sub-B-module of L called Dedekind’s complementary module, or the inverse different or
codifferent of B over A. It’s a fractional ideal of L so has an inverse, which we denote DB/A or
DL/K , called the different of B over A (or of L/K).

2. Unramified extensions

Theorem 1. L/K is unramified at P if and only if P - DB/A.

The proof of this needs a couple of lemmata.

Lemma 1 (Localisation). Suppose S ⊆ A is closed under multiplication, 1 ∈ S, and 0 /∈ S. Then

DS−1B/S−1A = S−1DB/A.

Proof. For such sets S and fractional ideals I we have

(S−1I)−1 = S−1I−1,

so it suffices to show that
S−1B∗ = (S−1B)∗.

Suppose x = s−1y ∈ S−1B∗, and let z = t−1w ∈ S−1B be arbitrary. Then

Tr(zx) = Tr((st)−1wy)

= (st)−1 Tr(wy) ∈ S−1A

since y ∈ B∗. So x ∈ (S−1B)∗.
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Now suppose x ∈ (S−1B)∗. B is an A-module with generators bi, say. By the bilinearity of Tr
it suffices to show there is an s ∈ S such that Tr((sx)bi) ∈ A for each i. We have

Tr(xbi) ∈ S−1A

so there exist si ∈ S and ai ∈ A such that

Tr(xbi) = s−1
i ai.

Let s =
∏
si and a′i = ai

∏
j 6=i sj , then

Tr(xbi) = s−1a′i

as required. �

Lemma 2 (Completion). Let BP and Ap be the completions of B and A with respect to P and p
respectively. Then

DB/ABP = DBP/Ap
.

Proof. By letting S = A \ p in lemma 1 we may assume that A is a discrete valuation ring, that is
a PID with a unique maximal ideal. We will show that B∗ is dense in (BP)∗. We have

TrL/K =
∑
Q|p

TrLQ/Kp
.

Let x ∈ B∗ and y ∈ BP. By weak approximation we can find α ∈ L with

|y − α|P < ε

and |α|P′ < ε for P′ | p, P′ 6= P. Let

T = TrL/K(xα) = TrLP/Kp
(xα) +

∑
P′|p

P′ 6=P

TrLP′/Kp
(xα).

Since x ∈ B∗ and α ∈ L we have that T ∈ A ⊆ Ap. But α is close to zero with respect to vP′

hence the summands in the sum on the right are all in Ap too. So TrLP/Kp
(xα) ∈ Ap. Thence,

by choosing ε small enough we will have TrLP/Kp
(xy) ∈ Ap, in particular we have x ∈ (BP)∗.

Now suppose that x ∈ (BP)∗ and use weak approximation to find ξ ∈ L close to x with respect
to vp and close to zero with respect to P′ for P′ | p, P′ 6= P. Let y ∈ B, then

TrLP/Kp
(ξy) ∈ Ap

since
TrLP/Kp

(xy) ∈ Ap.

Likewise,
TrLP′/Kp

(ξy) ∈ Ap

for P′ | p since ξ, and hence these traces, are close to zero with respect to vP′ . So, using the
formula for TrL/K we have

TrL/K(ξy) = TrLP/Kp
(ξy) +

∑
P′

TrLP′/Kp
(ξy) ∈ Ap ∩K = A.

So ξ ∈ B∗. Thus B∗ is dense in (BP)∗, i.e. B∗BP = (BP)∗, whence the lemma. �
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Proof of theorem 1. By lemmata 1 and 2 we may assume that A is a complete, discrete valuation
ring with maximal ideal p. Being complete means that p is nonsplit, i.e. pB = Pe. Let the residue
field be A/p = k. In particular, B is also a discrete valuation ring. P being unramified means
that Bp = P and that B/P is a separable extension of A/p. So it’s equivalent to B/pB being a
separable field extension of k.

Let {bi} be a basis of B over A and set

d = det(Tr(bibj)).

We have that d is the generator of the principal ideal dB/A, called the discriminant. By its
definition we have that P | DB/A if and only if det(Tr(bibj)) ∈ pA, i.e. if and only if the image d̄
of d in k is zero. So P - DB/A if and only if d̄ 6= 0 in k.

Let b̄i be the images of the bi in B/pB. These form a basis of B/pB over k, and this basis has
discriminant d̄. Big, bad algebra textbooks will tell you that d̄ 6= 0 is equivalent to B/pB being
a separable k-algebra. But B is a discrete valuation ring, hence a Noetherian local ring, and so
B/pB is a local ring. But being a local ring and a separable k-algebra is just saying that B/pB is
a separable field extension of k. �

Corollary. L/K is unramified at p if and only if p - dB/A.

Proof. We have the relation dB/A = NL/K(DB/A). �

Theorem 2. Let A be a complete discrete valuation ring with residue field k and field of frac-
tions K. Let ks be the separable closure of k (i.e. the largest separable extension of k within a
given algebraic closure of k), and let Ki be the unramified extensions of K corresponding to finite
subextensions of ks, ordered by inclusion. Let

Knr = lim
−→

Ki

be the inductive limit of this system. Then Knr is Galois over K with residue field ks, and

Gal(Knr/K) = Gal(ks/k).

The field Knr is called the maximal unramified extension of K and is unique, up to unique
isomorphism.

Example. Let A = Zp, so k = Fp and K = Qp. Unramified extensions of Qp are in 1-1 correspon-
dence with finite extensions of Fp. But for each n ∈ N there is a unique extension of Fp of degree
n, namely the splitting field of xp

n − x. So for each n ∈ N there is a unique unramified extension
of Qp of degree n, namely Kn = Qp(ζpn−1). So

(Qp)nr = lim
−→

(n,p)=1

Kn.

We have
Gal(Kn/Qp) ∼= Gal(Fpn/Fp) ∼= Z/nZ,

whence
Gal((Qp)nr/Qp) ∼= lim

←−
n

Z/nZ ∼= Ẑ.


