Algebraic Number Theory - Lecture 3 Jobin Lavasani

"Verbum sapienti satis est."

1. Conjugates

If $K=\mathbb{Q}(\theta)$ is a number field there will be, in general, several distinct monomorphisms $\sigma: K \rightarrow \mathbb{C}$.

Example. Take $K=\mathbb{Q}(i)$ where $i=\sqrt{-1}$. Then we have

$$
\begin{aligned}
& \sigma_{1}(x+i y)=x+i y \\
& \sigma_{2}(x+i y)=x-i y
\end{aligned}
$$

where $x, y \in \mathbb{Q}$.
Theorem 1. Let $K=\mathbb{Q}(\theta)$ be a number field of degree n over \mathbb{Q}. Then:

- there are exactly n distinct monomorphisms $\sigma_{i}: K \rightarrow \mathbb{C}(1 \leqslant i \leqslant n)$, called the embeddings of K into \mathbb{C};
- the elements $\theta_{i}:=\sigma_{i}(\theta)$ are the distinct zeros in \mathbb{C} of the minimal polynomial of θ over \mathbb{Q}.

Proof. See Stewart \& Tall page 42.
Example. For $K=\mathbb{Q}(i)$, the minimal polynomial of i is $x^{2}+1$, and K has a basis $\{1, i\}$ over \mathbb{Q}. So

$$
\begin{aligned}
& \sigma_{1}(i)=i \\
& \sigma_{2}(i)=-i .
\end{aligned}
$$

2. The Field Polynomial

Definition. For each $\alpha \in K=\mathbb{Q}(\theta)$ we define the field polynomial of α to be

$$
f_{\alpha}(t)=\prod_{i=1}^{n}\left(t-\sigma_{i}(\alpha)\right)
$$

where the elements $\sigma_{i}(\alpha)$ are called the K-conjugates of α. Note that f_{α} depends on the field K.

Theorem 2. - The field polynomial f_{α} is a power of the minimal polynomial p_{α} of α.

- The K-conjugates of α are the zeros of p_{α} in \mathbb{C}, each repeated n / m times where m is the degree of p_{α}.
- The element α is in \mathbb{Q} if and only if all of its K-conjugates are equal.
- $\mathbb{Q}(\alpha)=\mathbb{Q}(\theta)$ if and only if all K-conjugates of α are distinct.

Proof. See Stewart \& Tall page 43.
Definition. Let $K=\mathbb{Q}(\theta)$ be of degree n and let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be an integral basis. We define the discriminant of this basis to be

$$
\Delta\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left(\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)_{1 \leqslant i, j \leqslant n}\right)^{2}
$$

Example. Let $K=\mathbb{Q}(i)$. Then,

$$
\begin{array}{ll}
\sigma_{1}(1)=1 & \sigma_{1}(i)=i \\
\sigma_{2}(1)=1 & \sigma_{2}(i)=-i .
\end{array}
$$

So

$$
\Delta[1, i]=\left|\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right|^{2}=-4
$$

Gauss' lemma. Let $p \in \mathbb{Z}[t]$ and suppose $p=g h$ where $g, h \in \mathbb{Q}[t]$. Then there exists $\lambda \in \mathbb{Q}^{\times}$such that $\lambda g, \lambda^{-1} h \in \mathbb{Z}[t]$.

Lemma 1. An algebraic number α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has coefficients in \mathbb{Z}.

Proof. Let p be the minimal polynomial of α over \mathbb{Q}, so p is monic and irreducible in $\mathbb{Q}[t]$.
$(\Leftarrow):$ If $p \in \mathbb{Z}[t]$ then α is an algebraic integer by definition.
$(\Rightarrow):$ If α is an algebraic integer then $q(\alpha)=0$ for some monic polynomial
$q \in \mathbb{Z}[t]$, and $p \mid q$, so $q=p h$ for some $h \in \mathbb{Q}[t]$. By Gauss' lemma there
is some $\lambda \in \mathbb{Q}^{\times}$such that $\lambda p \in \mathbb{Z}[t]$ and $\lambda p \mid q$. But p and q are monic so
necessarily $\lambda=1$.

Let $K=\mathbb{Q}(\theta)$ be a number field of degree n and let $\sigma_{1}, \ldots, \sigma_{n}$ be the monomorphisms $K \rightarrow \mathbb{C}$. By theorem 1 , the field polynomial of $\alpha \in \mathbb{Q}(\theta)$ is a power of the minimal polynomial of α. So by lemma 1 and Gauss' lemma it follows that $\alpha \in K$ is an algebraic integer if and only if the field polynomial is in $\mathbb{Z}[t]$.

3. Norm and Trace

Definition. For $\alpha \in K$ we define the norm of α as

$$
N(\alpha)=\prod_{i=1}^{n} \sigma_{i}(\alpha)
$$

and the trace as

$$
T(\alpha)=\sum_{i=1}^{n} \sigma_{i}(\alpha)
$$

Note that they both depend on the field K.

Since the σ_{i} are monomorphisms it's clear that $N(\alpha \beta)=N(\alpha) N(\beta)$ and if $\alpha \neq 0$ then $N(\alpha) \neq 0$. If $p, q \in \mathbb{Q}$ then we have $T(p \alpha+q \beta)=p T(\alpha)+q T(\beta)$.
Example. If $K=\mathbb{Q}(\sqrt{7})$ then the integers of K are given by $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{7}]$. The monomorphisms are

$$
\begin{aligned}
& \sigma_{1}(p+q \sqrt{7})=p+q \sqrt{7} \\
& \sigma_{2}(p+q \sqrt{7})=p-q \sqrt{7}
\end{aligned}
$$

So

$$
\begin{aligned}
& N(p+q \sqrt{7})=p^{2}-7 q^{2} \\
& T(p+q \sqrt{7})=2 p,
\end{aligned}
$$

and

$$
\Delta[1, \sqrt{7}]=\left|\begin{array}{cc}
1 & \sqrt{7} \\
1 & -\sqrt{7}
\end{array}\right|^{2}=28
$$

Note that $N(\alpha)$ and $T(\alpha)$ are coefficients of f_{α}, and so are rational numbers in general, and rational integers if α is an algebraic integer.

