Algebraic Number Theory - Lecture 4
 Sandro Bettin

"What the world needs is more geniuses with humility, there are so few of us left."

- Oscar Levant

1. Discriminants

Definition 1. Let K be a number field and $\underline{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a basis for K.
The discriminant of $\underline{\alpha}$ is

$$
\Delta[\underline{\alpha}]=\left(\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)\right)^{2}
$$

where σ_{i} are the embeddings $K \hookrightarrow \mathbb{C}$.
Remark. $\Delta[\underline{\alpha}] \in \mathbb{Q}$ since

$$
\begin{aligned}
\sigma_{\rho}(\Delta[\underline{\alpha}]) & =\left(\operatorname{det}\left(\sigma_{\rho} \sigma_{i}\left(\alpha_{j}\right)\right)\right)^{2} \\
& =\left(\pm \operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)\right)^{2} \\
& =\Delta[\underline{\alpha}] .
\end{aligned}
$$

If $\underline{\alpha} \subset \mathcal{O}_{K}$ then $\Delta[\underline{\alpha}] \in \mathcal{O}_{K} \cap \mathbb{Q}=\mathbb{Z}$.
Theorem S1. There exists an integral basis $\underline{\alpha}=\left\{\alpha_{1} \ldots, \alpha_{n}\right\}$ with $n=[K: \mathbb{Q}]$.

Sketch proof. Take a \mathbb{Q}-basis $\underline{\alpha} \subset \mathcal{O}_{K}$ of K with $\Delta[\underline{\alpha}]$ minimal. Then suppose that $\underline{\alpha}$ is not an integral basis, so there exists $\omega \in \mathcal{O}_{K}$ with, say,

$$
\omega=\theta_{1} \alpha_{1}+\ldots+\theta_{n} \alpha_{n}
$$

where $\theta_{1} \notin \mathbb{Z}$, i.e. $\theta_{1}=\theta+r$ for some $0<r<1$. Then $\underline{\alpha}^{\prime}=\left\{\omega-\theta \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is given by

$$
\underline{\alpha}^{\prime}=\left(\begin{array}{ccccc}
\theta_{1}-\theta & \theta_{2} & \theta_{3} & \cdots & \theta_{n} \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \cdots & 1
\end{array}\right) \underline{\alpha} .
$$

So

$$
\Delta\left[\underline{\alpha}^{\prime}\right]=r^{2} \Delta[\underline{\alpha}]<\Delta[\underline{\alpha}]
$$

contradicting the minimality of $\Delta[\underline{\alpha}]$.
Corollary. All integral bases of a given number field have the same discriminant up to sign, say $|\Delta|$.
Corollary. If $\underline{\alpha}$ is a \mathbb{Q}-basis of K and $\underline{\alpha} \subset \mathcal{O}_{K}$, and if $\Delta[\underline{\alpha}]$ is square free then $\underline{\alpha}$ is an integral basis.

Proof. If $\underline{\alpha}^{\prime}$ is an integral basis then $\underline{\alpha}=\left(c_{i, j}\right) \underline{\alpha}^{\prime}$ for some matrix $\left(c_{i, j}\right) \in \mathbb{Z}^{n, n}$. So $\Delta[\underline{\alpha}]=\left(\operatorname{det}\left(c_{i, j}\right)\right)^{2} \Delta$, whence $\operatorname{det}\left(c_{i, j}\right)= \pm 1$ as $\Delta[\underline{\alpha}]$ is square free. So $\left(c_{i, j}\right) \in \mathrm{Gl}_{n}(\mathbb{Z})$ and so $\underline{\alpha}^{\prime}=\left(c_{i, j}\right)^{-1} \underline{\alpha}$, thus $\underline{\alpha}$ is an integral basis as well.

Theorem S2. If $K=\mathbb{Q}(\theta)$ is a number field of degree n, then

$$
\Delta\left[1, \theta, \ldots, \theta^{n-1}\right]=(-1)^{n(n-1) / 2} N(D p(\theta))
$$

where p is the minimal polynomial of θ and D is the formal derivative.

2. Quadratic fields

K is a quadratic field if $[K: \mathbb{Q}]=2$. If $K=\mathbb{Q}(\theta)$ is a quadratic field then

$$
\theta=\frac{-a \pm \sqrt{a^{2}-4 b}}{2}
$$

i.e. θ is a root of $t^{2}+a t+b$. Writing $\sqrt{a^{2}-4 b}=r \sqrt{d}$ with $d \in \mathbb{Z}$ square free, then clearly $K=\mathbb{Q}(\sqrt{d})$.

Theorem S3. Let $d \in \mathbb{Z}$ be square free and $K=\mathbb{Q}(\sqrt{d})$. Then

- if $d \not \equiv 1(\bmod 4)$ then $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$ and $\Delta=4 d$;
- if $d \equiv 1(\bmod 4)$ then $\mathcal{O}_{K}=\mathbb{Z}[(1+\sqrt{d}) / 2]$ and $\Delta=d$.

Proof. Let $\alpha \in K$, so $\alpha=\frac{a+b \sqrt{d}}{c}$ with $\operatorname{hcf}(a, b, c)=1$. Claim that $\alpha \in \mathcal{O}_{K}$ if and only if

$$
\left(t-\frac{a+b \sqrt{d}}{c}\right)\left(t-\frac{a-b \sqrt{d}}{c}\right) \in \mathbb{Z}[t]
$$

So if and only if

$$
\begin{align*}
& \frac{2 a}{c} \in \mathbb{Z}, \text { and } \tag{1}\\
& \frac{a^{2}-b^{2} d}{c^{2}} \in \mathbb{Z} \tag{2}
\end{align*}
$$

Let $q=\operatorname{hcf}(a, c)$. From (2), $q^{2} \mid a^{2}-b^{2} d$. But $q^{2} \mid a^{2}$ and d is square free, so $q \mid b$. But $h c f(a, b, c)=1$ so $q=1$. From (1), then, $c=1$ or 2 . If $c=1$ then $\alpha \in \mathcal{O}_{K}$ anyway.

If $c=2$ then $a^{2}-b^{2} d \equiv 0(\bmod 4)$ by (2). But a is odd as $q=1$ and so b must be odd too, whence $a^{2} \equiv b^{2} \equiv 1(\bmod 4)$. Hence $1-d \equiv 0(\bmod 4)$.

3. Cyclotomic fields

Cyclotomic fields are those of the form $K=\mathbb{Q}(\zeta)$ where $\zeta=e^{2 \pi i / m}$ is a primitive, complex m th root of unity. We'll consider those of the form $m=p>2$ with p prime.

Theorem S4. $[\mathbb{Q}(\zeta): \mathbb{Q}]=p-1$. Equivalently, the polynomial

$$
f(t)=t^{p-1}+t^{p-2}+\ldots+t+1
$$

is irreducible (and hence the minimal polynomial of ζ).

Proof. By the formula for a geometric sum,

$$
f(t+1)=\frac{(t+1)^{p}-1}{t}=\sum_{r=1}^{p}\binom{p}{r} t^{r}
$$

which is irreducible by Eisenstein's criterion.
Theorem S5. If $K=\mathbb{Q}(\zeta)$ then $\mathcal{O}_{K}=\mathbb{Z}[\zeta]$.

Proof. See Stewart and Tall page 72 or Neukirch page 60.
Corollary. The discriminant Δ of $\mathbb{Q}(\zeta)$ is $(-1)^{(p-1) / 2} p^{p-2}$.

Proof. By theorems S2 and S5 we have

$$
\Delta=\Delta\left[1, \zeta, \ldots, \zeta^{p-2}\right]=(-1)^{(p-1)(p-2) / 2} N(D f(\zeta)) .
$$

We have

$$
D f(t)=\frac{(t-1) p t^{p-1}-\left(t^{p}-1\right)}{(t-1)^{2}}
$$

whence

$$
D f(\zeta)=\frac{-p \zeta^{p-1}}{1-\zeta}
$$

and so

$$
\begin{aligned}
N(D f(\zeta)) & =\frac{N(-p) N(\zeta)^{p-1}}{N(1-\zeta)} \\
& =\frac{(-p)^{p-1}}{p} \\
& =p^{p-2}
\end{aligned}
$$

4. Factorisation into irreducibles

Definition 2. Given a ring R,
(1) we say $x \in R$ is irreducible if and only if $x=m n$ implies m or n is a unit;
(2) we say $p \in R$ is prime if and only if p is not a unit or zero, and $p \mid m n$ implies $p \mid m$ or $p \mid n$.

Every prime is irreducible, but not necessarily vice versa. We often denote the units of a ring R by $U(R)$ or, if the ring is clear from the context, then just U.

Definition 3. An integral domain D is called noetherian if one of the following holds:
(1) every ideal in D is finitely generated;
(2) (the ascending chain condition) if $I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \ldots$ are all ideals then there exists $N \in \mathbb{N}$ such that $I_{n}=I_{N}$ for every $n \geqslant N$;
(3) (maximality condition) every nonempty set of ideals of D has a maximal element by inclusion.

Theorem S6. If D is noetherian then every nonzero element can be written as a product of irreducible elements.

Proof. Exercise. Hints: proceed by contradiction and let
$X=\{x \in D \backslash U \mid x$ cannot be expressed as a product of irreducible elements $\} \subset D$.
Consider the ideals (x) with $x \in X$, and choose the maximal one - which we can do since D is noetherian. Note that x is not irreducible since it is in X so write $x=y z$ for non-units y and z and consider the ideals (y) and (z). Show these aren't in X and hence derive a contradiction to $x \in X$.

Theorem S7. For any number field K the ring \mathcal{O}_{K} is noetherian.

Proof. Let $I \subseteq \mathcal{O}_{K}$ be an ideal. As an additive group \mathcal{O}_{K} is free abelian of rank $n=[K: \mathbb{Q}]$, so the subgroup $(I,+)$ is free abelian of rank $s \leqslant n$. If $\left\{x_{1}, \ldots, x_{s}\right\}$ is a \mathbb{Z}-basis for $(I,+)$ then $I=\left(x_{1}, \ldots, x_{s}\right)$, so I is finitely generated and hence \mathcal{O}_{K} is noetherian

Corollary. Factorisation into irreducibles is possible in \mathcal{O}_{K} for any number field K.

