
Algebraic Number Theory – Lecture 7

Lee Butler

A mathematician, an engineer, and a chemist are staying in
adjoining rooms in a hotel. One evening they are downstairs in
the bar. The mathematician goes to bed first. The chemist goes

next, followed a minute later by the engineer. The chemist notices
that in the corridor outside their rooms a rubbish bin is ablaze.

There is a bucket of water nearby. The chemist starts concocting
a means of generating carbon dioxide in order to create a

makeshift extinguisher but before he can do so the engineer
arrives, dumps the water on the fire and puts it out. The next

morning the chemist and engineer tell the mathematician about
the fire. She admits she saw it. They ask her why she didn’t put
it out. She replies contemptuously “There was a fire and a bucket

of water: a solution obviously existed.”

1. Exampletastic recappery

So far we’ve been introduced to algebraic numbers and rings of integers; we’ve
seen ideals and how they uniquely factorise, even when the underlying integers
don’t; and we’ve learnt about the embeddings of a number field into the complex
numbers. We’ve only scratched the surface of algebraic number theory, yet I decided
it’d be nice to see some number theoretical results that we can already prove. I’ll
only use results stated or proved in the previous six lectures (as well as standard
algebra and number theory).

Theorem 1. A prime number p > 2 is expressible as the sum of two squares if and
only if p ≡ 1 (mod 4).

Proof. To see the condition is necessary just consider the quadratic residues mod
4. For sufficiency we factor the equation

p = x2 + y2

over the number field Q(i) as

p = (x+ iy)(x− iy).

So the question becomes: when does a prime p ∈ Z factorise in the ring Z[i]?

Since −1 6≡ 1 (mod 4) we know from L4 Thm S3 that Z[i] is the ring of integers in
Q(i). We’ll show that Z[i] is a Euclidean domain, and hence a unique factorisation
domain.
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By L3 Thm 1, [Q(i) : Q] = 2, and indeed the embeddings Q(i) ↪→ C are

σ1 : x+ iy 7→ x+ iy

σ2 : x+ iy 7→ x− iy.

So the norm of a+ bi ∈ Q(i) is

N(a+ bi) =
2∏

j=1

σj(a+ bi) = a2 + b2.

We’ll show Z[i] is Euclidean with respect to this norm. Let α, β ∈ Z[i], β 6= 0. We
need to show there exist γ, ρ ∈ Z[i] such that

α = γβ + ρ, N(ρ) < N(β).

That is, we need γ ∈ Z[i] such that

N

(
α

β
− γ
)
< 1.

Let α/β = u + vi ∈ Q(i) and let u′, v′ ∈ Z be the closest integers to u and v
respectively. So |u− u′| 6 1/2, |v − v′| 6 1/2, and if γ = u′ + v′i then

N

(
α

β
− γ
)

= N(u− u′ + (v − v′)i)

= (u− u′)2 + (v − v′)2

6
1
2
< 1.

So Z[i] is a Euclidean domain, hence a principal ideal domain, hence a unique
factorisation domain. We want to show that if p ≡ 1 (mod 4) then p is not a prime
in Z[i]. Having proved this we’ll know there are non-units α, β ∈ Z[i] such that
p = αβ. Then

N(p) = N(α)N(β)

i.e.
p2 = N(α)N(β).

Since α, β aren’t units we must have N(α) = N(β) = p. If α = a + bi we’ll then
have

a2 + b2 = p

as required.

So we just have to show that p = 4n+ 1 isn’t prime in Z[i] Note first that −1 is
a quadratic residue mod p since p ≡ 1 (mod 4). So −1 ≡ x2 (mod p) for some x,
hence

p | x2 + 1 = (x+ i)(x− i).
But x

p ±
i
p 6∈ Z[i] so p doesn’t divide either factor on the right in Z[i]. But in a

unique factorisation domain every prime that divides a product must divide one of
the factors. Hence p is not a prime in Z[i], which is what we wanted. �
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Lemma 1. Let d > 0 be square-free and K = Q(
√
−d). The only units in Ok are:

{±1,±i} if d = 1
{±1,±ω,±ω2} if d = 3
{±1} for all other d > 0.

Proof. Suppose α = a+ b
√
−d is a unit in Ok. So N(α)N(β) = 1 for some β. From

L3 we know N(α) ∈ Z and also that N(a + b
√
−d) = a2 + db2 > 0, so N(α) = 1.

Thus we need to solve
a2 + db2 = 1.

If d = 1 then a, b ∈ Z so we get a = ±1, b = 0 or a = 0, b = ±1, giving the
stated units.

If d = 2 then a, b ∈ Z so the only solutions are a = ±1 and b = 0.

If d > 3 then either a, b ∈ Z or a, b ∈ 1
2Z. Either way a = ±1 and b = 0 else

a2 + db2 > db2 > 1.

If d = 3 then a, b ∈ 1
2Z. If b = 0 we get a = ±1, but we could also have a = A/2,

b = B/2 for odd integers A,B. Then

A2 + 3B2 = 4,

which has solutions A = ±1, B = ±1. The four combinations of sign give ±ω and
±ω2. �

While the above result is of mild interest in itself, it does allow us to prove the
following surprising result.

Theorem 2. Only finitely many imaginary quadratic fields are Euclidean.

Proof. Let ψ : Ok → Z be a norm for Ok. (So for every a, b 6= 0 in Ok there exist
q, r ∈ Ok such that a = qb + r and ψ(r) < ψ(b).) Let α ∈ Ok be a non-unit have
minimal nonzero norm and consider the residue classes of Ok modulo α. Each class
can be represented either by 0 or by an element r with ψ(r) < ψ(α), since for any
β ∈ Ok we may write

β = qα+ r ∈ r + αOk

with ψ(r) < ψ(α). In particular either r = 0 or r is a unit by the choice of α. For
d > 11 we know the ring of integers of Q(

√
−d) only has the units ±1 so for every

β ∈ Ok

β ≡ −1, 0, or 1 (mod (α)).
Thus |Ok/(α)| 6 3. By L6 Thm 2 we know

|Ok/(α)| = N((α)) = |N(α)|,

so |N(α)| 6 3. But if α = a+ b
√
d then N(α) = a2 + db2.
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If d ≡ 1 (mod 4) then we need |a2 + db2| 6 3 with a, b ∈ Z.

If d 6≡ 1 (mod 4) then we need |a2 + db2| 6 3 with a = A/2, b = B/2 and
A,B ∈ Z.

The restriction d > 11 forces b = 0 in all cases leading us solely to the solutions
a = ±1 and thus |N(α)| = 1, i.e. the realisation that α is a unit. But this
contradicts the non-unityness of α, and so for d > 11 the ring of integers of Q(

√
−d)

cannot be Euclidean. �

In fact the only Euclidean imaginary quadratic fields are Q(
√
−d) for

d = 1, 2, 3, 7, 11.

It is known which real quadratic fields are norm-Euclidean, i.e. Euclidean using the
usual norm. But it is an open problem if there are any real quadratic fields that
are Euclidean but not norm-Euclidean.
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