ALGEBRAIC NUMBER THEORY — LECTURE 8

Michael Harvey

“It has long been an axiom of mine that the little things are infinitely the
most important.”

— Sherlock Holmes

1. LATTICES

Recall that a lattice in R™ is a discrete additive subgroup of R™. If it is generated by the
vectors {ey,...,e,} then its fundamental domain T is given by

T= {Zaiei :0<a; < ].}
i=1
We then define the volume of T to be

vol(T) = |det(ey ... ep)|.

2. GEOMETRIC REPRESENTATION OF ALGEBRAIC NUMBERS

Our aim is to embed a number field K into a real vector space of dimension n = [K : Q].
From there we will establish a correspondence between ideals of O and lattices in this vector
space.

We know there are n distinct embeddings K — C, say o1,...,0,. Let s be the number of
real embeddings and 2t be the number of complex embeddings, so n = s+ 2t. After reordering
we can let 01,...,05 be the real embeddings, and 0441 = Tgt141,-..,0s4t = Ost2t be the t

pairs of complex embeddings.

Define L%t = R x Ct, i.e. it is the the set of s + t-tuples
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L*! as a vector space over R has dimension s + 2¢t = n. Define a map o : K — L%t by
O'(O[) = (01 (a)7 s 70'5(04), Us+l(04), see ;Os+t(a))-

Theorem 1. If ay,...,a, form a basis for K over Q then o(ay),...,o(ay) are linearly inde-
pendent over R.

Proof. Let
Uk(ag):xff) for1<k<s, 1<l<n,

gerjlar) =y +izl for 1< i<t 1< < n
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So
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Corollary 2. If a C Oy is an ideal with a Z-basis {a1,...,a,}, then o(a) is a lattice in L**
with generators o(ay),...,o(ay).

3. CLASS GROUP

Recall that F is the group of fractional ideals and P is the subgroup of principal fractional
ideals. The class group is defined to be H = F/P. We aim to show that it’s a finite group.

We define an equivalence relation on F by setting, for a,b € F, a ~ b if and only if a = ¢b
for some ¢ € P. We write [a] for the equivalence class containing a.

Proposition 3. Fvery equivalence class contains an ideal.

Proof. Since a € F, a =~ 'b for an ideal b and some v € O. So b = va = (y)a. Since (v) is
a principal ideal we have b ~ a. O

Recall Minkowski’s theorem: Given a lattice M C R™ with fundamental domain 7', and a
bounded, convex, symmetric set X C R™, then if

vol(X) > 2" vol(T')

then X contains a nonzero lattice point of M.
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Lemma 4. Let M be a lattice of dimension s + 2t in L. Let T be the fundamental domain
of M, and set V. =vol(T). If c1,...,cs+t > 0 satisfy

4 t
Cl"'Cs+t> () \%4
™

then there exists a nonzero element © = (L1,...,Ts,Tst1, Tstt) 10 M with

9 |zl < (1<i<s)
|zsrj? <esry (1<5<H).

Proof. Let X be the region in L** described by (). X is convex, symmetric, and bounded. It
has volume
vol(X) = 2°whey - - coye

Minkowski’s theorem says if vol(X) > 25+2!V then we're done. So we're done when

4 t
Cl"'Cs+t> () V.
™

([l
Now we want to find V' when M is o(a).
Theorem 5. Let a # 0 be an ideal, then V for o(a) is
27 N(a)y/|A|
Proof. V is the determinant
R R
R R R
from the proof of theorem 1, so
1
=|——+VA . n
‘ (22),5 [alv y (Y ]
From [Lecture 6/ we know that
Aloq, ..., ap] 1/2
N(o) = Bl T
A
SO
V =2"'N(a)\/|A|.
O

We'll use lemma 4 and theorem 5 to prove the following theorem.

Theorem 6. If a # 0 is an ideal then there exists o € a such that

N(a) < (2>t N(a)\/]Al.

t


http://www.maths.bris.ac.uk/~malab/PDFs/Algae_are_more_numb_6.pdf
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Proof. Fix € > 0 and choose ¢, ...,csy¢ > 0 such that

) t
Cl- " Cst = <7T> N(U.) |A| +e.

Since

4 t
Cl: - Csqt > (7‘(‘> 2*tN(a)\/ |A|,
N—_— ——

v
by lemma 4 there exists a € a such that

loi(a)| <e (1<i<s)
losrj (@) <oy (1<j<H).
Multiplying these together we get
IN(a)] <1+ st
2\ !
= () N(a)v/|A] +e.

™

The above inequality holds for some set of a for every € > 0. Taking the intersection of these
sets of a over all € > 0 gives at least one a € a such that

N(a) < (2)tN<a>W-

™

Corollary 7. Ewvery nonzero ideal a C Oy, is equivalent to an ideal with norm at most

(2/m)'/1A].

Proof. Consider the equivalence class [a~!] € H. By proposition 3, a=! ~ b C O, and by
theorem 6 there exists some (3 € b such that

N(B) < (i)tmwm-

Recall that § € b means b | (5), so () = bc for some ideal ¢ C Q). We have
IN(B)| = N((8)) = N(b)N(e),
S0
2\ ¢
N(c) < <7r> V1A
Moreover, a1 ~ b, s0 a ~ b~% and b71(8) = cso b= ~ ¢. Hence a ~ c. O

Theorem 8. The class number h = |H| < oo.

Proof. Let [b] € H. So [b] contains an ideal a by proposition 3, and by corollary 7, a ~ ¢ for an

ideal ¢ with ,
2
N(c) < (7r> VIAL

We learnt in Lecture 6, that only finitely many ideals have a given norm, so there are only
finitely many such c, hence only finitely many classes [b]. O
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