
Algebraic Number Theory – Lecture 8

Michael Harvey

“It has long been an axiom of mine that the little things are infinitely the
most important.”

– Sherlock Holmes

1. Lattices

Recall that a lattice in Rn is a discrete additive subgroup of Rn. If it is generated by the
vectors {e1, . . . , en} then its fundamental domain T is given by

T = {
n∑

i=1

aiei : 0 6 ai < 1}.

We then define the volume of T to be

vol(T ) = |det(e1 . . . en)|.

2. Geometric representation of algebraic numbers

Our aim is to embed a number field K into a real vector space of dimension n = [K : Q].
From there we will establish a correspondence between ideals of Ok and lattices in this vector
space.

We know there are n distinct embeddings K ↪→ C, say σ1, . . . , σn. Let s be the number of
real embeddings and 2t be the number of complex embeddings, so n = s+ 2t. After reordering
we can let σ1, . . . , σs be the real embeddings, and σs+1 = σs+t+1, . . . , σs+t = σs+2t be the t
pairs of complex embeddings.

Define Lst = Rs × Ct, i.e. it is the the set of s+ t-tuples

(x1, . . . , xs︸ ︷︷ ︸
∈R

, xs+1, . . . , xs+t︸ ︷︷ ︸
∈C

).

Lst as a vector space over R has dimension s+ 2t = n. Define a map σ : K → Lst by

σ(α) = (σ1(α), . . . , σs(α), σs+1(α), . . . , σs+t(α)).

Theorem 1. If α1, . . . , αn form a basis for K over Q then σ(α1), . . . , σ(αn) are linearly inde-
pendent over R.

Proof. Let

σk(α`) = x
(`)
k for 1 6 k 6 s, 1 6 ` 6 n,

σs+j(α`) = y
(`)
j + iz

(`)
j for 1 6 j 6 t, 1 6 ` 6 n.
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So
σ(α`) = (x(`)

1 , . . . , x(`)
s , y

(`)
1 + iz

(`)
1 , . . . , y

(`)
t + iz

(`)
t ).
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(2i)t
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1

(2i)t

∣∣∣∣∣∣∣
σ1(α1) · · · σs(α1) σs+1(α1) σs+1(α1) · · · σs+t(α1)

...
...

σ1(αn) · · · σs(αn) σs+1(αn) σs+1(αn) · · · σs+t(αn)

∣∣∣∣∣∣∣
=

1
(2i)t

√
∆[α1, . . . , αn]

6= 0.

�

Corollary 2. If a ⊂ Ok is an ideal with a Z-basis {α1, . . . , αn}, then σ(a) is a lattice in Lst

with generators σ(α1), . . . , σ(αn).

3. Class group

Recall that F is the group of fractional ideals and P is the subgroup of principal fractional
ideals. The class group is defined to be H = F/P. We aim to show that it’s a finite group.

We define an equivalence relation on F by setting, for a, b ∈ F , a ∼ b if and only if a = cb
for some c ∈ P. We write [a] for the equivalence class containing a.

Proposition 3. Every equivalence class contains an ideal.

Proof. Since a ∈ F , a = γ−1b for an ideal b and some γ ∈ Ok. So b = γa = (γ)a. Since (γ) is
a principal ideal we have b ∼ a. �

Recall Minkowski’s theorem: Given a lattice M ⊂ Rn with fundamental domain T , and a
bounded, convex, symmetric set X ⊂ Rn, then if

vol(X) > 2n vol(T )

then X contains a nonzero lattice point of M .
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Lemma 4. Let M be a lattice of dimension s + 2t in Lst. Let T be the fundamental domain
of M , and set V = vol(T ). If c1, . . . , cs+t > 0 satisfy

c1 · · · cs+t >

(
4
π

)t

V

then there exists a nonzero element x = (x1, . . . , xs, xs+1, xs+t) in M with

(∗)

{
|xi| < ci (1 6 i 6 s)
|xs+j |2 < cs+j (1 6 j 6 t).

Proof. Let X be the region in Lst described by (∗). X is convex, symmetric, and bounded. It
has volume

vol(X) = 2sπtc1 · · · cs+t.

Minkowski’s theorem says if vol(X) > 2s+2tV then we’re done. So we’re done when

c1 · · · cs+t >

(
4
π

)t

V.

�

Now we want to find V when M is σ(a).

Theorem 5. Let a 6= 0 be an ideal, then V for σ(a) is

2−tN(a)
√
|∆|.

Proof. V is the determinant∣∣∣∣∣∣∣∣
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from the proof of theorem 1, so

V =
∣∣∣∣ 1
(2i)t

√
∆[α1, . . . , αn]

∣∣∣∣ .
From Lecture 6 we know that

N(a) =
∣∣∣∣∆[α1, . . . , αn]

|∆|

∣∣∣∣1/2

,

so
V = 2−tN(a)

√
|∆|.

�

We’ll use lemma 4 and theorem 5 to prove the following theorem.

Theorem 6. If a 6= 0 is an ideal then there exists α ∈ a such that

N(α) 6
(

2
t

)t

N(a)
√
|∆|.

http://www.maths.bris.ac.uk/~malab/PDFs/Algae_are_more_numb_6.pdf
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Proof. Fix ε > 0 and choose c1, . . . , cs+t > 0 such that

c1 · · · cs+t =
(

2
π

)t

N(a)
√
|∆|+ ε.

Since

c1 · · · cs+t >

(
4
π

)t

2−tN(a)
√
|∆|︸ ︷︷ ︸

V

,

by lemma 4 there exists α ∈ a such that

|σi(α)| < ci (1 6 i 6 s)

|σs+j(α)|2 < cs+j (1 6 j 6 t).

Multiplying these together we get

|N(α)| < c1 · · · cs+t

=
(

2
π

)t

N(a)
√
|∆|+ ε.

The above inequality holds for some set of α for every ε > 0. Taking the intersection of these
sets of α over all ε > 0 gives at least one α ∈ a such that

N(α) 6
(

2
π

)t

N(a)
√
|∆|.

�

Corollary 7. Every nonzero ideal a ⊂ Ok is equivalent to an ideal with norm at most
(2/π)t

√
|∆|.

Proof. Consider the equivalence class [a−1] ∈ H. By proposition 3, a−1 ∼ b ⊂ Ok, and by
theorem 6 there exists some β ∈ b such that

N(β) 6
(

2
π

)t

N(b)
√
|∆|.

Recall that β ∈ b means b | (β), so (β) = bc for some ideal c ⊂ Ok. We have

|N(β)| = N((β)) = N(b)N(c),

so

N(c) 6
(

2
π

)t√
|∆|.

Moreover, a−1 ∼ b, so a ∼ b−1, and b−1(β) = c so b−1 ∼ c. Hence a ∼ c. �

Theorem 8. The class number h = |H| <∞.

Proof. Let [b] ∈ H. So [b] contains an ideal a by proposition 3, and by corollary 7, a ∼ c for an
ideal c with

N(c) 6
(

2
π

)t√
|∆|.

We learnt in Lecture 6 that only finitely many ideals have a given norm, so there are only
finitely many such c, hence only finitely many classes [b]. �

http://www.maths.bris.ac.uk/~malab/PDFs/Algae_are_more_numb_6.pdf
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