
IRRATIONAL POLYGONS AND CONVERGENTS

LEE A. BUTLER

Abstract. We show how anyone with patience, a protractor, and a calculator

that’s almost out of batteries can find the best rational approximations to any

real number.

1. Introduction

It is an important moment in every person’s life when he first sits down with his
pencil and his paper, his ruler and protractor, and of course his scientific calculator,
and decides that today is the day he is going to draw a regular n-sided polygon.
The process is utterly intuitive. First one determines the interior angle of the shape,
which thanks to a nifty proof by induction one knows to be θ = π(1− 2/n). Next
one draws a line of unit length, then turns left until the next line will make an
angle of θ with the previous one, and repeats the process. After n steps one returns
whence one started, and the polygon is complete.

Figure 1. A regular 5-sided polygon.

A braver person might ask what happens if one picks a value of n that is not a
natural number, but a rational one, say n = 5/2. Nothing in the above algorithm
seems to forbid this, so one finds that the internal angle for such a shape is θ = π/5,
and one starts drawing. And voila! After five lines one gets back to one’s starting
point, and one has entered the world of star polygons.

Ostensibly the natural setting for star polygons is the complex plane. Given inte-
gers a and b, an (a/b)-gon is realized by plotting the ath roots of unity, exp(2πik/a),
0 ≤ k < n, and then joining each root to the one b after, i.e. joining exp(2πik/a) to
exp(2πi(k + b)/a) for each k. This method removes all restrictions on the integers
a and b, allowing such shenanigans as (1/0)-gons, or proffering an (8/2)-gon that
isn’t just a square.
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Figure 2. A (5/2)-gon, yesterday.

As with many things in life, though, in passing to the complex plane we have
made it less clear how to extend the set-up still further. We’ve have seen n-gons
when n is an integer and n-gons when n is rational. What if n is irrational?
The joining-roots-of-unity interpretation is less intuitive here. Following the above
schema we should plot the points exp(

√
2πik) for k ∈ N, and join exp(

√
2πik) and

exp(
√

2πi(k + 1)) for each k. The equidistribution theorem in ergodic theory tells

us that these “
√

2
th

roots of unity” are dense on the circle |z| = 1, thus giving us
a countable set of lines that are dense in the annulus R ≤ |z| ≤ 1, where we can

easily check that R = sin((
√

2− 1)π/2) ≈ 0.606 . . ..

Figure 3. A
√
2-gon.

This is certainly a valid way of obtaining a
√

2-gon, but it somehow feels less
fulfilling. And so we pick up our pen and paper, our ruler and protractor, and of
course our scientific calculator, and we go back to the drawing board.

Let’s take a different irrational number this time, say π. The internal angle of
a π-gon should be θ = π − 2. And so we draw a line of unit length, turn left so
our next line makes an angle of π − 2 with the previous one, and then repeat. We
wouldn’t expect to ever return to the starting point, but every now and then we
do get rather close. If we were very patient and very careful and we kept track of
the number of lines we’d drawn when we made our closest approaches thus far to
the starting point then we’d form the sequence (3, 22, 333, 355, 103993, . . .). These
numbers should be familiar as the numerators in the best rational approximations
to π, the rational numbers that give a better approximation to π than any other
rational with smaller denominator. Since there is some variety in the meaning of
the term “best rational approximations” we had better define what is meant in this
note.
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Definition 1. Given a real number α, a best rational approximation to α is a
rational number p/q with q > 0 and hcf(p, q) = 1 such that for any rational number
s/t with 1 ≤ t ≤ q and p/q 6= s/t we have

|qα− p| < |tα− s|.

This definition gives what some of the literature refers to as “best rational ap-
proximations of the second kind”, and gives the same numbers as the convergents
of α, those rational numbers obtained by truncating the continued fraction of α
after finitely many terms. We will need a small result connecting the best rational
approximations of α and those of its reciprocal.

Lemma 2. Let α ∈ R× and suppose the best rational approximations to α are
pi/qi, i ∈ N. Then the best rational approximations to 1/α are qi/pi, i ∈ N.

Proof. We assume without loss of generality that α > 1; if α = 1 then the proof
would be shorter than this sentence is. Suppose that in simple continued fraction
form the number α is equal to

α = [a0; a1, a2, a3, . . .].

Then pi/qi = [a0; a1, . . . , ai]. Meanwhile, the continued fraction for 1/α is

1

α
= [0; a0, a1, a2, . . .].

And so if ri/si are the best rational approximations to 1/α then
ri
si

= [0; a0, . . . , ai]

=
1

[a0; a1, . . . , ai]

=
qi
pi
.

And since best rational approximations are necessarily in lowest terms, we must
have ri = qi and si = pi. �

We can now state our theorem.

Theorem 3. Let α ∈ R \ Q and θ = π(1 − 2/α). Let `0 be a point on a piece of
paper, and draw a line of length L to reach a point `1. Given a line from `i to `i+1,
`i+2 is formed by drawing a line of length L from `i+1 at an angle of θ to the line
from `i to `i+1, always with the same orientation. Form a sequence (ik)k∈N+ where
ik is such that the distance from `0 to `ik is smaller than the distance from `0 to `i
for any i < ik. Then the numbers i1 < i2 < i3 < . . . are the numerators in the best
rational approximations to α.

2. An elementary proof

Since the above theorem is elementary by nature we strive here to give an ele-
mentary proof. A snappier proof will be given afterwards that sacrifices geometric
charm for brevity.

Clearly the length L mentioned in the statement of the theorem is irrelevant:
the whole construction scales linearly with L so we will always obtain the same
sequence i1, i2, . . . regardless of our choice of L. So we may as well take L = 1.
As a preliminary result we need the circumradius of the shape we are constructing,
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that is the radius of the circle that circumscribes our “α-gon”. Drawing the first
two lines of the above construction gives something like the picture below.

`0 `1

`2
c

θ/2

θ/2

R

The picture implicitly suggests that θ > π/2, but the geometry works in the
acute case too. We want to calculate R. First we note that the triangle 4`0`1c is
isosceles, and so the angle ∠`0c`1 is just π − 2θ/2 = 2π/α. So, by the sine rule,

R =
sin(θ/2)

sin(2π/α)
.

Substituting π(1− 2/α) for θ and simplifying we deduce that R = cosec(π/α)/2.
Now we ask the question: how far are we from `0 after r lines? We now have

the following situation:

`0

`r

c

R

D

The angle ∠`0c`r increases by 2π/α with each extra line, so the angle ∠`0c`r is
either 2πr/α or 2π − 2πr/α, but since we are dealing with sines and cosines a
modulus sign at an opportune moment will cancel out the difference between these
two possibilities. The triangle 4`0c`r is again isosceles so the two equal angles are
each

∠c`r`0 =
1

2

(
π − 2πr

α

)
=
π

2
− πr

α
.

The quantity we are interested in is D. Using the sine rule again we have

D =

∣∣∣∣∣ R sin
(
2πr
α

)
sin
(
π
2 −

πr
α

) ∣∣∣∣∣
=

∣∣∣∣∣2 sin
(
πr
α

)
cos
(
πr
α

)
2 cos

(
πr
α

)
sin
(
π
α

) ∣∣∣∣∣
=

∣∣∣∣∣ sin
(
πr
α

)
sin
(
π
α

) ∣∣∣∣∣ .
Now we have a formula for how far the end of each line is from the starting point,

so we just need to find the successive minima for this sequence of distances, that
is the values r for which this distance is smaller than for any previous value. We
have the following result.
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Lemma 4. Let α ∈ R \Q and let (D(r))r∈N+ be the sequence given by

D(r) =

∣∣∣∣∣ sin
(
πr
α

)
sin
(
π
α

) ∣∣∣∣∣ .
Then for all r > 1,

∧r−1
i=1 D(r) < D(i) if and only if there is an integer s such that

r/s is a best rational approximation to α.

Proof. First we should note that the term | sin(π/α)| has no effect on the sequence of
successive minima we get. If we wish to compare D(r1) and D(r2) then, since both
contain the same denominator, we are just comparing their numerators. We have
thus reduced the problem to showing that the sequence (| sin(πr/α)|)r∈N+ takes
its successive minima at the numerators of the best rational approximations to α.
Bearing in mind lemma 2, this is the same as saying that the successive minima
of the sequence occur at the denominators of the best rational approximations to
1/α. And so if we define

δ(r) :=
∣∣∣sin(πr

α

)∣∣∣
for r ∈ N+ then we claim that for a given r we have that δ(r) < δ(R) for every
R < r if and only if there is a p ∈ N such that for every R < r and every P ∈ N,

|rα−1 − p| < |Rα−1 − P |.

We note that in this case we must have |rα−1 − p| < 1/2, for else we could take
R = 1 and P being the nearest integer to 1/α to get the right hand side smaller
than 1/2.

We first prove that the best rational approximations minimize the sequence. So
suppose p/r is a best rational approximation to 1/α, but suppose that there is some
R < r such that δ(R) ≤ δ(r). Since | sin(x)| is periodic with period π and an even
function we have

δ(r) =
∣∣∣sin(π ∣∣∣ r

α
− p
∣∣∣)∣∣∣

and, for any P we choose,

δ(R) =

∣∣∣∣sin(π ∣∣∣∣Rα − P
∣∣∣∣)∣∣∣∣ .

As mentioned above, we must have |rα−1 − p| < 1/2, and we choose P so that
|Rα−1 − P | ≤ 1/2. Hence

π
∣∣∣ r
α
− p
∣∣∣ , π ∣∣∣∣Rα − P

∣∣∣∣ ∈ (0, π/2].

But | sin(x)| = sin(x) is monotonically increasing on this interval, and so if δ(R) ≤
δ(r) then |Rα−1 − P | ≤ |rα−1 − p|. That is, p/r would not be a best rational
approximation to 1/α, a contradiction.

The other implication is proved in much the same way. Suppose that δ(r) < δ(R)
for every R < r but that there is some P such that for every p ∈ N,∣∣∣∣Rα − P

∣∣∣∣ ≤ ∣∣∣ rα − p∣∣∣ .
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Again, we must have the left hand side being at most 1/2, and we can pick p so
that the right hand side also falls in this interval. But then we should have

sin

(
π

∣∣∣∣Rα − P
∣∣∣∣) ≤ sin

(
π
∣∣∣ r
α
− p
∣∣∣) ,

contradicting the fact that δ(r) < δ(R). Hence for every R < r and any P we
must have |rα−1 − p| < |Rα−1 − P |, so that p/r is a best rational approximation
to 1/α. �

3. An alternative proof

The above proof is a nicely geometric justification of a fact that seems to lie
somewhere between geometry and number theory. A shorter proof can be found by
looking in the complex plane where the problem is neater to state. Again, we note
that we may as well set the length L of our lines to be 1. We can thus consider our
first line as going from 0 to 1 in C. The next line should make an angle of θ with the
previous one, which it is easy to check means that as a complex number it should
have argument π − θ = 2π/α. So after two lines we should be at 1 + exp(2πi/α).
And so we continue, adding π − θ to the argument of our exponential and adding
this to the previous total. So after r lines we are at

r−1∑
k=0

exp

(
2πik

α

)
.

From here we again define a function d(α, r) which tells us how far we are from
the starting point, i.e. from zero, after drawing r lines. This is simply the absolute
value of the above series,

d(α, r) =

∣∣∣∣∣
r−1∑
k=0

exp

(
2πik

α

)∣∣∣∣∣ .
And now our theorem is a little more obfuscated.

Theorem 5. Let α ∈ R \Q. Set λ0 = 1 and let r1 = min{r ∈ N+ : d(α, r) < λ0}
and λ1 = d(α, r1). Recursively define rn = min{r ∈ N+ : d(α, r) < λn−1} and
λn = d(α, rn). Then r1, r2, r3, . . . are the numerators in the best rational approxi-
mations to α.

Proof. The first thing to do is to simplify the function d(α, r). The series it deals
with is just a geometric one, so we can immediately arrive at

d(α, r) =

∣∣∣∣∣exp
(
2πir
α

)
− 1

exp
(
2πi
α

)
− 1

∣∣∣∣∣ .
Replacing the exponentials with trigonometric functions and using the double angle
formula for cosine this drastically simplifies to

d(α, r) =

∣∣∣∣∣ sin
(
πr
α

)
sin
(
π
α

) ∣∣∣∣∣ .
Unsurprisingly, then, we have the same distance-from-the-starting-point function.
The proof from here is identical to that given in the previous section. �
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The theorems above specify irrational α, but in fact nothing in the proof uses
the fact that α is irrational, and the claims hold true for most rational α too. The
only problematic cases are when α = 0 for the obvious reason that θ = π(1− 2/α)
is undefined when α = 0, and the other problems are the Egyptian fractions, those
numbers of the form 1/n for some integer n. The problem with these is that the
best rational approximations to these numbers are just the numbers themselves,
and so in particular the only numerator in their best rational approximations is 1.
In some sense the algorithm still works, since a “(1/n)-gon” will just be a straight
line forever moving away from the starting point, and so the closest we ever get
is after one line. But this isn’t exactly in the spirit of the algorithm, and so we
discount that possibility too.


