On a transcendence type lemma

The purpose of this note is to prove the following lemma:
Lemma. Let $K=\mathbb{Q}\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ with
(1) $\left\{x_{1}, \ldots, x_{m}\right\}$ a transcendence basis for K over \mathbb{Q}, and
(2) $\left\{y_{1}, \ldots, y_{n}\right\}$ a (vector space) basis for K over $\mathbb{Q}\left(x_{1}, \ldots, x_{m}\right)$.

Then the transcendence type of K is at least $m+1$.

The result is ostensibly by the pigeonhole principle, but there is a little more work that that statement suggests. The lemma actually results from the following three lemmata.

Lemma 1. Let $u_{i, j}$ be real numbers for $1 \leqslant i \leqslant \nu$, and $1 \leqslant j \leqslant \mu$. Let $U \in \mathbb{R}$ satisfy

$$
U \geqslant \max _{1 \leqslant j \leqslant \mu} \sum_{i=1}^{\nu}\left|u_{i, j}\right|,
$$

and let X and ℓ be two positive integers such that

$$
\ell^{\mu}<(X+1)^{\nu} .
$$

Then there exist $\xi_{1}, \ldots, \xi_{\nu} \in \mathbb{Z}$ not all zero such that

$$
\max _{1 \leqslant i \leqslant \nu}\left|\xi_{i}\right| \leqslant X
$$

and

$$
\max _{1 \leqslant j \leqslant \mu}\left|\sum_{i=1}^{\nu} u_{i, j} \xi_{i}\right| \leqslant \frac{U X}{\ell} .
$$

Proof. The result is reminiscent of Siegel's lemma, and like that result it uses the pigeonhole principle. Let

$$
\mathbb{N}(\nu, X):=\left\{\left(\xi_{1}, \ldots, \xi_{\nu}\right) \in \mathbb{Z}^{\nu} \mid 0 \leqslant \xi_{i} \leqslant X \text { for } 1 \leqslant i \leqslant \nu\right\} .
$$

Consider the map $\varphi: \mathbb{N}(\nu, X) \rightarrow \mathbb{R}^{\mu}$ that takes $\left(\xi_{1}, \ldots, \xi_{\nu}\right)$ to $\left(\eta_{1}, \ldots, \eta_{\mu}\right)$ where

$$
\eta_{j}=\sum_{i=1}^{\nu} u_{i, j} \xi_{i} \quad(1 \leqslant j \leqslant \mu) .
$$

For $1 \leqslant j \leqslant \mu$ we denote by $-V_{j}$ (and, respectively, W_{j}) the sum of the negative (respectively positive) elements of the set

$$
u_{1, j}, u_{2, j}, \ldots, u_{\nu, j} .
$$

Therefore we have by hypothesis

$$
V_{j}+W_{j} \leqslant U \quad \text { for all } 1 \leqslant j \leqslant \mu .
$$

We may note that if $\left(\xi_{1}, \ldots, \xi_{\nu}\right) \in \mathbb{N}(\nu, X)$ then $\left(\eta_{1}, \ldots, \eta_{\mu}\right)=\varphi\left(\xi_{1}, \ldots, \xi_{\nu}\right)$ is in the set

$$
E=\left\{\left(\eta_{1}, \ldots, \eta_{\mu}\right) \in \mathbb{R}^{\mu} \mid-V_{j} X \leqslant \eta_{j} \leqslant W_{j} X\right\} .
$$

We partition each of the intervals $\left[-V_{j} X, W_{j} X\right]$ into ℓ intervals, each of length $\leqslant U X / \ell$ (since $\left.W_{j} X-\left(-V_{j} X\right) \leqslant U X\right)$. This partitions E into ℓ^{μ} subsets E_{k} $\left(1 \leqslant k \leqslant \ell^{\mu}\right)$.

The set $\mathbb{N}(\nu, X)$ has $(1+X)^{\nu}$ elements, and by hypothesis

$$
\ell^{\mu}<(1+x)^{\nu} .
$$

So by the pigeonhole principle there exist two distinct elements ξ^{*} and $\xi^{* *}$ of $\mathbb{N}(\nu, X)$ whose image under φ belong to the same subset E_{k}. We denote by ξ their difference $\xi^{*}-\xi^{* *}$, and by η the value $\varphi(\xi)$. We have

$$
\xi=\left(\xi_{1}, \ldots, \xi_{\nu}\right) \neq 0
$$

since ξ^{*} and $\xi^{* *}$ are distinct, and

$$
\max _{1 \leqslant i \leqslant \nu}\left|\xi_{i}\right| \leqslant X
$$

by definition of $\mathbb{N}(\nu, X)$. Setting $\eta=\left(\eta_{1}, \ldots, \eta_{\mu}\right)$, we have

$$
\max _{1 \leqslant j \leqslant \mu}\left|\eta_{j}\right|=\max _{1 \leqslant j \leqslant \mu}\left|\sum_{i=1}^{\nu} u_{i, j} \xi_{i}\right| \leqslant \frac{U X}{\ell}
$$

since φ is a linear map and so $\varphi(\eta)=\varphi\left(\xi^{*}-\xi^{* *}\right)=\varphi\left(\xi^{*}\right)-\varphi\left(\xi^{* *}\right)$.

Lemma 2. Let $u_{0}, \ldots, u_{m} \in \mathbb{C}^{\times}$and let $H \in \mathbb{N}$. Then there exist $\xi_{0}, \ldots, \xi_{m} \in \mathbb{Z}$ not all zero such that

$$
\max _{0 \leqslant i \leqslant m}\left|\xi_{i}\right| \leqslant H
$$

and

$$
\left|u_{0} \xi_{0}+\ldots+u_{m} \xi_{m}\right|<\sqrt{2}\left(\left|u_{0}\right|+\ldots+\left|u_{m}\right|\right) H^{-(m-1) / 2}
$$

Proof. If $m=0$ we require

$$
\left|u_{0} \xi_{0}\right|<\sqrt{2 H}\left|u_{0}\right|
$$

Since $H \geqslant 1, \sqrt{2 H} \geqslant \sqrt{2}$, so $\xi_{0}=1$ suffices.
For $m=1$ we require

$$
\left|u_{0} \xi_{0}+u_{1} \xi_{1}\right|<\sqrt{2}\left(\left|u_{0}\right|+\left|u_{1}\right|\right) .
$$

Without loss of generality assume $\left|u_{0}\right| \leqslant\left|u_{1}\right|$, then take $\xi_{0}=1$ and $\xi_{1}=0$. Then

$$
\left|u_{0} \xi_{0}+u_{1} \xi_{1}\right|=\left|u_{0}\right|<\sqrt{2}\left(\left|u_{0}\right|+\left|u_{1}\right|\right) .
$$

And $H \geqslant 1$ so $\max _{0 \leqslant i \leqslant 1}\left|\xi_{i}\right| \leqslant H$.
For $m \geqslant 2$ we apply Lemma 1 . For $0 \leqslant i \leqslant m$ define $u_{i, 1}$ and $u_{i, 2}$ by $u_{i}=$ $u_{i, 1}+u_{i, 2} \sqrt{-1}$. Now let

$$
U=\sum_{i=0}^{m}\left|u_{i}\right|
$$

We have

$$
\max _{1 \leqslant j \leqslant 2} \sum_{i=0}^{m}\left|u_{i, j}\right| \leqslant U
$$

by the triangle inequality.

Let $\ell=\left\lfloor H^{(m+1) / 2}+1\right\rfloor$. So in particular

$$
H^{(m+1) / 2}<\ell \leqslant H^{(m+1) / 2}+1
$$

Since for all $x \geqslant 0$ and $n>2$ we have $\left(x^{n / 2}+1\right)^{2}<(x+1)^{n}$, we know that

$$
\ell^{2} \leqslant\left(H^{(m+1) / 2}+1\right)^{2}<(H+1)^{m+1}
$$

We may now apply Lemma 1 , so there exist integers ξ_{0}, \ldots, ξ_{m}, not all zero and such that

$$
\max _{0 \leqslant i \leqslant m}\left|\xi_{i}\right| \leqslant H
$$

and

$$
\begin{aligned}
\max _{1 \leqslant j \leqslant 2}\left|\sum_{i=0}^{m} u_{i, j} \xi_{i}\right| & \leqslant \frac{U H}{\ell} \\
& =\frac{\left(\left|u_{0}\right|+\ldots+\left|u_{m}\right|\right) H}{\left\lfloor H^{(m+1) / 2}+1\right\rfloor} \\
& <\frac{\left(\left|u_{0}\right|+\ldots+\left|u_{m}\right|\right) H}{H^{(m+1) / 2}} \\
& =\left(\left|u_{0}\right|+\ldots+\left|u_{m}\right|\right) H^{-(m-1) / 2}
\end{aligned}
$$

And since for $z \in \mathbb{C}$ we have $|z| \leqslant \sqrt{2} \max \{|\Re z|,|\Im z|\}$ the result follows.

Lemma 3. Let $x_{1}, \ldots, x_{q} \in \mathbb{C}$ and $N_{1}, \ldots, N_{q}, H \in \mathbb{N}$. Then there exists a nonzero polynomial $P \in \mathbb{Z}\left[X_{1}, \ldots, X_{q}\right]$ with $\operatorname{deg}_{X_{h}} P \leqslant N_{h}$ for $1 \leqslant h \leqslant q$ and height $\leqslant H$ such that

$$
\left|P\left(x_{1}, \ldots, x_{q}\right)\right| \leqslant \sqrt{2} H^{1-M / 2} \exp \left(c\left(N_{1}+\ldots+N_{q}\right)\right)
$$

where

$$
M=\prod_{k=1}^{q}\left(1+N_{k}\right)
$$

and

$$
c=1+\log \max \left(1,\left|x_{1}\right|, \ldots,\left|x_{q}\right|\right)
$$

Proof. Let $P \in \mathbb{Z}\left[X_{1}, \ldots, X_{q}\right]$ satisfy the hypotheses of the lemma, so $P\left(x_{1}, \ldots, x_{q}\right)$ is a sum of monomials in x_{1}, \ldots, x_{q} with degree $\leqslant N_{h}$ in x_{h}. This gives at most $\left(1+N_{1}\right)\left(1+N_{2}\right) \cdots\left(1+N_{q}\right)=M$ terms in total. Denote the M monomials by m_{1}, \ldots, m_{M}.

By Lemma 2 we can find integers ξ_{1}, \ldots, ξ_{M} not all zero such that if P has coefficients ξ_{i} then

$$
\left|P\left(x_{1}, \ldots, x_{q}\right)\right|<\sqrt{2} \rho H^{-(M-2) / 2}
$$

where

$$
\rho=\sum_{i=1}^{M}\left|m_{i}\left(x_{1}, \ldots, x_{q}\right)\right|
$$

Using the fact that $e^{t}>1+e^{t}$ for all $t>0$ we have

$$
\begin{aligned}
M & =\prod_{k=1}^{q}\left(1+N_{k}\right) \\
& <\prod_{k=1}^{q} e^{N_{k}} \\
& =\exp \left(N_{1}+\ldots+N_{q}\right) .
\end{aligned}
$$

We now estimate ρ as follows.

$$
\begin{aligned}
\rho & =\sum_{i=1}^{M}\left|m_{i}\left(x_{1}, \ldots, x_{q}\right)\right| \\
& \leqslant M \max \left\{1,\left|x_{1}\right|\right\}^{N_{1}} \cdots \max \left\{1,\left|x_{q}\right|\right\}^{N_{q}} \\
& <\exp \left(N_{1}+\ldots+N_{q}\right) \max \left\{1,\left|x_{1}\right|, \ldots,\left|x_{q}\right|\right\}^{N_{1}+\ldots+N_{q}} \\
& =\exp \left(\left(N_{1}+\ldots+N_{q}\right)\left(1+\log \max \left\{1,\left|x_{1}\right|, \ldots,\left|x_{q}\right|\right\}\right)\right)
\end{aligned}
$$

We can now prove the original lemma, which is restated below to include the definition of transcendence type.

Lemma. Let $x_{1}, \ldots, x_{m} \in \mathbb{C}$ be a transcendence basis for $K \subseteq \mathbb{C}$. Suppose that for every $\alpha \in \mathbb{Q}\left(x_{1}, \ldots, x_{m}\right)$ we have

$$
-(\operatorname{size} \alpha)^{\tau} \ll \log |\alpha|
$$

Then $\tau \geqslant m+1$.

Proof. Let $N, H \in \mathbb{N}$. Then by Lemma 3 there exists a nonzero polynomial $P \in$ $\mathbb{Z}\left[X_{1}, \ldots, X_{m}\right]$ such that

$$
\begin{array}{r}
\operatorname{deg}_{X_{i}} P \leqslant N, \\
\operatorname{ht} P \leqslant H,
\end{array}
$$

and

$$
\left|P\left(x_{1}, \ldots, x_{m}\right)\right| \leqslant \sqrt{2} H^{1-M / 2} e^{c m N}
$$

where

$$
M=\prod_{k=1}^{m}(1+N)<e^{m N}, \quad c=1+\log \max \left\{1,\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right\}
$$

Consider $\alpha=P\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{Q}\left(x_{1}, \ldots, x_{m}\right)$. Let $m N \geqslant \log H$, then

$$
\begin{aligned}
\operatorname{deg} \alpha & \leqslant m N \\
\text { ht } \alpha & \leqslant H \\
\operatorname{size} \alpha & =\max \{\operatorname{deg} \alpha, \log \operatorname{ht} \alpha\} \leqslant m N
\end{aligned}
$$

So:

$$
-(\operatorname{size} \alpha)^{\tau} \geqslant-(m N)^{\tau}
$$

Moreover,

$$
|\alpha| \leqslant \sqrt{2} H^{1-M / 2} e^{c m N}
$$

so

$$
\begin{aligned}
\log |\alpha| & \leqslant \log \sqrt{2}+(1-M / 2) \log H+c m N \\
& =\log \sqrt{2}+\left(1-\frac{1}{2}(1+N)^{m}\right) \log H+c m N
\end{aligned}
$$

Thus we must have

$$
-(m N)^{\tau} \ll \log \sqrt{2}+\left(1-\frac{1}{2}(1+N)^{m}\right) \log H+c m N
$$

i.e.

$$
N^{\tau} \gg N^{m} \log H
$$

Taking $N=m^{-1}\lceil\log H\rceil$ gives the result.

