
On a transcendence type lemma

The purpose of this note is to prove the following lemma:

Lemma. Let K = Q(x1, . . . , xm, y1, . . . , yn) with

(1) {x1, . . . , xm} a transcendence basis for K over Q, and
(2) {y1, . . . , yn} a (vector space) basis for K over Q(x1, . . . , xm).

Then the transcendence type of K is at least m+ 1.

The result is ostensibly by the pigeonhole principle, but there is a little more
work that that statement suggests. The lemma actually results from the following
three lemmata.

Lemma 1. Let ui,j be real numbers for 1 6 i 6 ν, and 1 6 j 6 µ. Let U ∈ R
satisfy

U > max
16j6µ

ν∑
i=1

|ui,j |,

and let X and ` be two positive integers such that

`µ < (X + 1)ν .

Then there exist ξ1, . . . , ξν ∈ Z not all zero such that

max
16i6ν

|ξi| 6 X

and

max
16j6µ

∣∣∣∣∣
ν∑
i=1

ui,jξi

∣∣∣∣∣ 6 UX

`
.

Proof. The result is reminiscent of Siegel’s lemma, and like that result it uses the
pigeonhole principle. Let

N(ν,X) := {(ξ1, . . . , ξν) ∈ Zν | 0 6 ξi 6 X for 1 6 i 6 ν}.
Consider the map ϕ : N(ν,X)→ Rµ that takes (ξ1, . . . , ξν) to (η1, . . . , ηµ) where

ηj =
ν∑
i=1

ui,jξi (1 6 j 6 µ).

For 1 6 j 6 µ we denote by −Vj (and, respectively, Wj) the sum of the negative
(respectively positive) elements of the set

u1,j , u2,j , . . . , uν,j .

Therefore we have by hypothesis

Vj +Wj 6 U for all 1 6 j 6 µ.

We may note that if (ξ1, . . . , ξν) ∈ N(ν,X) then (η1, . . . , ηµ) = ϕ(ξ1, . . . , ξν) is in
the set

E = {(η1, . . . , ηµ) ∈ Rµ | −VjX 6 ηj 6WjX}.
1



2

We partition each of the intervals [−VjX,WjX] into ` intervals, each of length
6 UX/` (since WjX − (−VjX) 6 UX). This partitions E into `µ subsets Ek
(1 6 k 6 `µ).

The set N(ν,X) has (1 +X)ν elements, and by hypothesis

`µ < (1 + x)ν .

So by the pigeonhole principle there exist two distinct elements ξ∗ and ξ∗∗ of N(ν,X)
whose image under ϕ belong to the same subset Ek. We denote by ξ their difference
ξ∗ − ξ∗∗, and by η the value ϕ(ξ). We have

ξ = (ξ1, . . . , ξν) 6= 0

since ξ∗ and ξ∗∗ are distinct, and

max
16i6ν

|ξi| 6 X

by definition of N(ν,X). Setting η = (η1, . . . , ηµ), we have

max
16j6µ

|ηj | = max
16j6µ

∣∣∣∣∣
ν∑
i=1

ui,jξi

∣∣∣∣∣ 6 UX

`

since ϕ is a linear map and so ϕ(η) = ϕ(ξ∗ − ξ∗∗) = ϕ(ξ∗)− ϕ(ξ∗∗). �

Lemma 2. Let u0, . . . , um ∈ C× and let H ∈ N. Then there exist ξ0, . . . , ξm ∈ Z
not all zero such that

max
06i6m

|ξi| 6 H

and
|u0ξ0 + . . .+ umξm| <

√
2(|u0|+ . . .+ |um|)H−(m−1)/2.

Proof. If m = 0 we require
|u0ξ0| <

√
2H|u0|.

Since H > 1,
√

2H >
√

2, so ξ0 = 1 suffices.

For m = 1 we require

|u0ξ0 + u1ξ1| <
√

2(|u0|+ |u1|).
Without loss of generality assume |u0| 6 |u1|, then take ξ0 = 1 and ξ1 = 0. Then

|u0ξ0 + u1ξ1| = |u0| <
√

2(|u0|+ |u1|).
And H > 1 so max

06i61
|ξi| 6 H.

For m > 2 we apply Lemma 1. For 0 6 i 6 m define ui,1 and ui,2 by ui =
ui,1 + ui,2

√
−1. Now let

U =
m∑
i=0

|ui|.

We have

max
16j62

m∑
i=0

|ui,j | 6 U

by the triangle inequality.
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Let ` = bH(m+1)/2 + 1c. So in particular

H(m+1)/2 < ` 6 H(m+1)/2 + 1.

Since for all x > 0 and n > 2 we have (xn/2 + 1)2 < (x+ 1)n, we know that

`2 6 (H(m+1)/2 + 1)2 < (H + 1)m+1.

We may now apply Lemma 1, so there exist integers ξ0, . . . , ξm, not all zero and
such that

max
06i6m

|ξi| 6 H

and

max
16j62

∣∣∣∣∣
m∑
i=0

ui,jξi

∣∣∣∣∣ 6 UH

`

=
(|u0|+ . . .+ |um|)H
bH(m+1)/2 + 1c

<
(|u0|+ . . .+ |um|)H

H(m+1)/2

= (|u0|+ . . .+ |um|)H−(m−1)/2.

And since for z ∈ C we have |z| 6
√

2 max{|<z|, |=z|} the result follows. �

Lemma 3. Let x1, . . . , xq ∈ C and N1, . . . , Nq, H ∈ N. Then there exists a nonzero
polynomial P ∈ Z[X1, . . . , Xq] with degXh

P 6 Nh for 1 6 h 6 q and height 6 H
such that

|P (x1, . . . , xq)| 6
√

2H1−M/2 exp(c(N1 + . . .+Nq))

where

M =
q∏

k=1

(1 +Nk)

and
c = 1 + log max(1, |x1|, . . . , |xq|).

Proof. Let P ∈ Z[X1, . . . , Xq] satisfy the hypotheses of the lemma, so P (x1, . . . , xq)
is a sum of monomials in x1, . . . , xq with degree 6 Nh in xh. This gives at most
(1 + N1)(1 + N2) · · · (1 + Nq) = M terms in total. Denote the M monomials by
m1, . . . ,mM .

By Lemma 2 we can find integers ξ1, . . . , ξM not all zero such that if P has
coefficients ξi then

|P (x1, . . . , xq)| <
√

2ρH−(M−2)/2

where

ρ =
M∑
i=1

|mi(x1, . . . , xq)|.
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Using the fact that et > 1 + et for all t > 0 we have

M =
q∏

k=1

(1 +Nk)

<

q∏
k=1

eNk

= exp(N1 + . . .+Nq).

We now estimate ρ as follows.

ρ =
M∑
i=1

|mi(x1, . . . , xq)|

6M max{1, |x1|}N1 · · ·max{1, |xq|}Nq

< exp(N1 + . . .+Nq) max{1, |x1|, . . . , |xq|}N1+...+Nq

= exp((N1 + . . .+Nq)(1 + log max{1, |x1|, . . . , |xq|})).

�

We can now prove the original lemma, which is restated below to include the
definition of transcendence type.

Lemma. Let x1, . . . , xm ∈ C be a transcendence basis for K ⊆ C. Suppose that for
every α ∈ Q(x1, . . . , xm) we have

−(sizeα)τ � log |α|.

Then τ > m+ 1.

Proof. Let N,H ∈ N. Then by Lemma 3 there exists a nonzero polynomial P ∈
Z[X1, . . . , Xm] such that

degXi
P 6 N,

htP 6 H,

and
|P (x1, . . . , xm)| 6

√
2H1−M/2ecmN

where

M =
m∏
k=1

(1 +N) < emN , c = 1 + log max{1, |x1|, . . . , |xm|}.

Consider α = P (x1, . . . , xm) ∈ Q(x1, . . . , xm). Let mN > logH, then

degα 6 mN
htα 6 H

sizeα = max{degα, log htα} 6 mN.

So:
−(sizeα)τ > −(mN)τ .
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Moreover,
|α| 6

√
2H1−M/2ecmN ,

so

log |α| 6 log
√

2 + (1−M/2) logH + cmN

= log
√

2 +
(

1− 1
2

(1 +N)m
)

logH + cmN.

Thus we must have

−(mN)τ � log
√

2 +
(

1− 1
2

(1 +N)m
)

logH + cmN,

i.e.
Nτ � Nm logH.

Taking N = m−1dlogHe gives the result. �


