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LEE A. BUTLER

Abstract. This essay covers the history and proof of two famous mathemat-
ical results, one on the transcendence of a large class of numbers, and one on
the irrationality of a single number.
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1. Introduction

The study of equations forms an uninterrupted backbone of mathematical re-
search over the last three thousand years. As Baker points out, “a history of the
subject amounts, more or less, to a history of mathematics itself.”[3] To try to in-
vestigate the entirety of this subject would be folly, it is just too vast. Instead we
will look at the solutions of certain equations, or rather the numbers which cannot
be solutions of these equations.

We shall limit ourselves to polynomial equations in the ring Z[x] in this essay,
for we will be studying the field Q of algebraic numbers. In this essay we will
look at two kinds of number: irrational numbers, which are those complex numbers
that are not a root of any polynomial of degree 1 in Z[x], and the transcendental
numbers, which are not the root of any polynomial in Z[x].

The discovery of irrational numbers far predates that of transcendentals. The
first proof of the irrationality of a number is usually credited to Hippasus, a
Pythagorean, who proved that

√
2 is irrational using a geometric approach. Due

to the relative simplicity of the result there now exist a vast plethora of proofs.
When set theory was developed in the nineteenth century it was uncovered that

“almost all” real numbers are irrational, that is, if we pick a real number at random
the probability that it will be irrational is 1. This is actually quite intuitive if you
consider the difference between rational and irrational numbers. We can define
a real number x in the interval (0, 1) by a sequence of digits d1, d2, d3, . . . which
will be the decimal expansion of x, that is x = 0.d1d2d3 . . .. The condition that x
is rational is equivalent to the condition that eventually this sequence enters some
repeating pattern. But if we use some massive supercomputer to randomly generate
the digits dn then the thought of this computer after some finite time beginning
to churn out the same series of numbers over and over from now until infinity is
clearly absurd. So barring some miracle the random number will be irrational.

The first proof that displayed the transcendence of a number had to wait until
1844 when Joseph Liouville proved that the so called “Liouville numbers” were not
algebraic[8]. More familiar numbers such as e and π had been suspected of being
transcendental for some time, in 1755 Euler wrote the following about π:

“It appears to be fairly certain that the periphery of a circle con-
stitutes such a peculiar kind of transcendental quantity that it can
in no way be compared with other quantities, either roots or other
transcendentals.”

And indeed, thirty years after Lioville’s result Hermite showed that e was tran-
scendental, and in 1882 Lindemann backed up Euler’s suspicions by proving the
transcendence of π. Further proofs were given over the coming decades, but there
are still many unknowns about transcendental numbers, and proving anything
about them remains a great challenge.
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2. A Transcendence Proof

2.1. e and π: The Lindemann-Weierstrass Theorem.

The irrationality of e was established by Euler in 1744 and that of π was proven
by Johann Heinrich Lambert in 1761. Their transcendence was proved about a
century later by Hermite and Lindemann respectively. Their work established that
eα is transcendental for any nonzero algebraic number α. The transcendence of
e and π follow immediately from this. For e we can take α = 1 while for π we
proceed by contradiction. If π is algebraic then so is πi, but then eπi = −1 should
be transcendental, which clearly it is not.

A generalisation of the above result was given by Weierstrass in 1885, and is as
follows.

Theorem 1 (Lindemann-Weierstrass theorem). For any N > 0, given N + 1 dis-
tinct algebraic numbers α0, α1, . . . , αN , the numbers eα0 , eα1 , . . . , eαN are linearly
independent over Q.1

This result is very powerful indeed in establishing the transcendence of many
numbers, since so many familiar objects in maths can be related to the exponential
function somehow. The following are just a handful of results stemming straight
from the above theorem.

Corollary 2.1. Given N + 1 distinct nonzero algebraic numbers α0, α1, . . . , αN
and any nonzero algebraic numbers β0, β1, . . . , βN , the number

N∑
n=0

βne
αn

is transcendental.

Proof. Suppose the statement is false and
∑N
n=0 βne

αn is in fact algebraic, say∑N
n=0 βne

αn = γ = γe0. Now set αN+1 = 0 and βN+1 = −γ, and we thus
have

∑N+1
n=0 βne

αn = 0 for distinct algebraic αi. But this contradicts the linear
independence of the eαi , and so we must have that

∑N
n=0 βne

αn is transcendental.
�

Corollary 2.2. log(α) is transcendental for any real algebraic number α 6= 0, 1.

Proof. Suppose log(α) is algebraic, then by the special case of Theorem 1 with
N = 1, α0 = α, α1 = 0, we have that elog(α) is transcendental. But elog(α) = α ∈ Q,
thus we have a contradiction. �

1Some texts prefer to state the theorem in terms of αi which are linearly independent over Q
and then eαi being linearly independent over Q. The two formulations are equivalent, so here we
proceed with the statement as preferred in [3], [10], and [5].
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Corollary 2.3. For any real nonzero algebraic number α, cos(α) is transcenden-
tal.

Proof. Suppose cos(α) is algebraic for some real nonzero algebraic number α, say
cos(α) = β. Then we would have:

cos(α) =
eiα + e−iα

2i
=
eiα

2i
+
e−iα

2i
= β.

We can rewrite this as(
−i
2

)
eiα +

(
−i
2

)
e−iα + (−β)e0 = 0.

But −iα, 0, iα are distinct algebraic numbers so e−iα, e0, eiα should be linearly
independent over Q, hence we have a contradiction.

Alternatively this result follows immediately from Corollary 2.1 applied to the
sum cos(α) =

(−i
2

)
eiα +

(−i
2

)
e−iα. �

Virtually identical proofs to the last one show that sin, sinh, and cosh applied
to a real nonzero algebraic number gives a transcendental result.

I will strive here to give an elementary proof of Theorem 1 in the sense that I
will use only results from Algebraic Number Theory rather than analytic results.
First and foremost the following useful result is needed.

Lemma 2.1. Let h(z) ∈ Z[z] be given by h(z) =
∑N
n=0 cnz

n and let α1, α2, . . . , αN
be the zeroes of h(z). Now let P(z) be any polynomial with integer coefficients.
Then the quantity

P(α1) + P(α2) + . . .+ P(αN )

is a rational number whose denominator can be written as cdeg(P)
N .

Proof. First we note that the polynomial P (α1, . . . , αN ) = P(α1) + . . .+P(αN )
is symmetric, since permuting the αi’s only changes the order of addition on the
right hand side, hence we can write it as a polynomial in the elementary symmetric
polynomials2 σ1, σ2, . . . , σN of α1, α2, . . . , αN . Specifically we can write

P (α1, . . . , αN ) = F (σ1, . . . , σN ) ∈ Z[σ1, . . . , σN ]

where deg (F) ≤ deg (P). We also know that

h(z) = cNz
N + cN−1z

N−1 + . . .+ c1z + c0

= cN

N∏
i=1

(z − αi)

= cN
(
zN − σ1z

N−1 + . . .+ (−1)N−1σN−1z + (−1)NσN
)
.

2Here we will suppress the arguments of the σi’s, letting σi denote the more ungainly
σi(α1, . . . , αN ).
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Comparing coefficients gives the well known equations relating the roots of a poly-
nomial to its coefficients:

σk = (−1)k
cN−k
cN

.

From this it follows that each of the elementary symmetric functions in the αk’s is a
rational number with denominator cN . Thus when we plug these rational numbers
into F (σ1, . . . , σN ) we will get out a rational number (recall that F is a polynomial
with integer coefficients) with denominator cdeg(F)

N . But deg (F) ≤ deg (P) so we
can multiply the numerator and denominator of this rational number by the integer
c
deg(P)−deg(F)
N for the result of the Lemma.

�

Using this Lemma we can prove a weakened form of Theorem 1. That may not
sound like a particularly good strategy; why prove a weak form of the Theorem
when we could just aim straight for a proof of the full result? Well the weakened
form actually leads directly to a proof of the Lindemann-Weierstrass theorem, and
possesses a lot of useful symmetry which makes a proof far simpler. This weakened
version is as follows3.

Theorem 2. Let A = {α1, α2, . . . , αN} be a set of distinct nonzero algebraic
numbers with the property that if αn ∈ A then each conjugate of αn is also in
A. Suppose that β0, β1, . . . , βN are nonzero integers satisfying the condition that if
αi, αj ∈ A are conjugate then βi = βj . Then:

β0 +
N∑
n=1

βne
αn 6= 0.

Proof. Since proving that something is nonzero can be a bit tricky we will proceed
by contradiction and assume that there exist nonzero integers β0, β1, . . . , βN that
satisfy all the hypotheses of the theorem, but which also satisfy

(♠) β0 +
N∑
n=1

βne
αn = 0.

Next we simplify things by grouping the αi’s together into complete sets of
conjugates. We can do this since the set A only contains such sets, so we may
relabel them as

α11, α12, . . . , α1N1 , α21, α22, . . . , α2N2 , . . . , αM1, αM2, . . . , αMNM .

Here {αm1, αm2, . . . , αmNm} is a complete set of conjugates, and our original set of
algebraic numbers contains M such sets. If we relabel the βn’s in sympathy with
the αn’s, so that the coefficient of eαmi in (♠) is βmi then by our hypothesis we
know that βm1 = βm2 = . . . = βmNm , so we will label all these βmi as simply
βm. As a final piece of notation in this proof we will let α̂ denote the element of

3The proof of this weakened version and, later, the full Lindemann-Weierstrass theorem follow
a series of exercises in [5].
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A with maximal absolute value. With all this notation we can rewrite our initial
assumption (♠) as

β0 +
M∑
m=1

βm

(
Nm∑
n=1

eαmn

)
= 0.

Now let fm(z) = (z−αm1)(z−αm2) · · · (z−αmNm). That is, fm(z) is the minimum
polynomial, up to multiplication by an integer, for all the algebraic numbers in the
set {αm1, αm2, . . . , αmNm}, and hence is in Q[z]. Let dm > 0 be the lowest common
multiple of the denominators of all the coefficients of fm, so dmfm ∈ Z[z].

We now define the auxiliary polynomial which will eventually lead to our con-
tradiction. This polynomial is defined as

f(z) = (d1d2 · · · dM )p zp−1f1(z)pf2(z)p · · · fM (z)p

for an as yet undetermined prime number p. We can rewrite this as

f(z) =
(N+1)p−1∑
j=p−1

cjz
j .

Since f(z) = (d1f1(z))p (d2f2(z))p · · · (dMfM (z))p zp−1 and each bracketed poly-
nomial is in Z[z] we have that f ∈ Z[z], so cj ∈ Z for p− 1 ≤ j ≤ (N + 1)p− 1.

By inspection we see that

cp−1 = ± (d1d2 · · · dMα11α12 · · ·αMNM )p

= ± (d1d2 · · · dMα1α2 · · ·αN )p

We know that di > 0 for each i, and by hypothesis the αj ’s are nonzero, so we can
note for future reference that cp−1 6= 0.

Now we want to prove that
p−1∑
j=1

f (j)(z) =
(N+1)p−1∑
J=p−1

J !cJ
J−1∑

j=J−p+1

zj

j!

 .

To verify this we note it’s a simple matter to check that

f (j)(z) =
(N+1)p−1∑
J=p−1

J !
(J − j)!

cJz
J−j for 1 ≤ j ≤ p− 1.

Hence,

p−1∑
j=1

f (j)(z) =
p−1∑
j=1

(N+1)p−1∑
J=p−1

J !
(J − j)!

cJz
J−j


=

(N+1)p−1∑
J=p−1

J !cJ
p−1∑
j=1

zJ−j

(J − j)!


=

(N+1)p−1∑
J=p−1

J !cJ
J−1∑

j=J−(p−1)

zj

j!

 ,
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which was what we wanted. We can also see that since f(z) = g(z)(z − α)p for
each α ∈ A, where g(z) is some polynomial dependent on α, then f (j)(α) = 0 for
1 ≤ j ≤ p− 1. So

p−1∑
j=1

f (j)(α) = 0

for all α ∈ A.

The fact that a sum involving
zj

j!
appears above suggests that we might now

want to to look at the following product.

eα
(N+1)p−1∑
J=p−1

J !cJ =
(N+1)p−1∑
J=p−1

J !cJ
∞∑
j=0

αj

j!



=
(N+1)p−1∑
J=p−1

J !cJ
J−p∑
j=0

αj

j!

+
(N+1)p−1∑
J=p−1

J !cJ
J−1∑

j=J−p+1

αj

j!

+
(N+1)p−1∑
J=p−1

J !cJ
∞∑
j=J

αj

j!

 .

The two minor results above tell us that the middle of these three sums is in fact∑p−1
j=1 f

(j)(α) = 0. So we have:

eα
(N+1)p−1∑
J=p−1

J !cJ =
(N+1)p−1∑
J=p−1

J !cJ
J−p∑
j=0

αj

j!

+
(N+1)p−1∑
J=p−1

J !cJ
∞∑
j=J

αj

j!


= Pp(α) + Tp(α)

where Pp and Tp are the first and second sums respectively. (A polynomial and a
tail.)

If you recall, the assumption contrary to the theorem that we were hoping to
build a contradiction out of, (♠), was that

β0 +
M∑
m=1

βm

(
Nm∑
n=1

eαmn

)
= 0.

Let us multiply both sides of this identity by
J !cJ

(p− 1)!
and sum from J = p− 1 to

(N + 1)p− 1, so we get

(N+1)p−1∑
J=p−1

β0
J !cJ

(p− 1)!
+

(N+1)p−1∑
J=p−1

J !cJ
(p− 1)!

(
M∑
m=1

βm

(
Nm∑
n=1

eαmn

))
= 0.

Changing the order of summation gives
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β0

(N+1)p−1∑
J=p−1

J !cJ
(p− 1)!

+
M∑
m=1

βm

 1
(p− 1)!

(N+1)p−1∑
J=p−1

J !cJ
Nm∑
n=1

eαmn

 = 0.

But the double sum in the brackets is just the sum of Pp(αmn) and Tp(αmn):

β0

(N+1)p−1∑
J=p−1

J !cJ
(p− 1)!

+
M∑
m=1

βm

(
1

(p− 1)!

Nm∑
n=1

(Pp(αmn) + Tp(αmn))

)
= 0.

And taking the Tp(αmn) to the other side leads us to

(♣) β0

(N+1)p−1∑
J=p−1

J !cJ
(p− 1)!

+
M∑
m=1

βm

(
Nm∑
n=1

Pp(αmn)
(p− 1)!

)
= −

M∑
m=1

βm

(
Nm∑
n=1

Tp(αmn)
(p− 1)!

)
.

Clearly β0

∑(N+1)p−1
J=p−1

J!cJ
(p−1)! ∈ Z (recall that β0 ∈ Z). Now recall that

Pp(z) =
(N+1)p−1∑
J=p−1

J !cJ
J−p∑
j=0

zj

j!
.

But the first term in this sum, when J = p− 1, is an empty sum and thus equal to
zero:

(p− 1)!cp−1

−1∑
j=0

zj

j!
= 0

So in fact

Pp(z) =
(N+1)p−1∑

J=p

J !cJ
J−p∑
j=0

zj

j!
∈ Z[z].

We now want to prove that p! divides every coefficient of Pp(z) so we can apply
Lemma 2.1 to Ppp! and fm. Obviously p! | J ! for each J ≥ p, but the problem is
that the 1

j! terms in the inner sum may cancel out this divisibility property. The
worst case is when j is maximal. If in this case J!

j! is divisible by p! then we will
be okay for all the smaller values of j. If J = p+ r then this maximal value of j is
(p+ r)− p = r. Then we have

J !
j!

=
(p+ r)!
r!

= p!
(
p+ r

r

)
which is clearly divisible by p!, so we have verified the above claim and shown that
1
p!Pp(z) ∈ Z[z].

We now apply Lemma 2.1. In our case h(z) is dmfm(z) which has zeroes
αm1, . . . , αmNm , and P(z) is Pp(z)p! which is an integer polynomial by the above
reasoning. We know that degPp ≤ Np− 1 so by Lemma 2.1 for each m there is an
integer ãm such that
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Nm∑
n=1

Pp(αmn)
p!

=
ãm

dNp−1
m

.

Multiplying through by p and setting am = pãm we can see that for each m there
is an integer am such that p | am and

Nm∑
n=1

Pp(αmn)
(p− 1)!

=
am

dNp−1
m

.

With this result we can now see that (♣) becomes

β0

(N+1)p−1∑
J=p−1

J !cJ
(p− 1)!

+
M∑
m=1

amβm

dNp−1
m

= −
M∑
m=1

βm

(
Nm∑
n=1

Tp(αmn)
(p− 1)!

)
.

We now define the integer D = d1d2 · · · dM , and multiply both sides above by
DNp to get

β0D
Np

(N+1)p−1∑
J=p−1

J !cJ
(p− 1)!

+
M∑
m=1

amβmdm(D/dm)Np = −
M∑
m=1

βmD
Np

(
Nm∑
n=1

Tp(αmn)
(p− 1)!

)
.

Clearly D/dm is an integer for each m so the left hand side of this identity is
an integer, which we will denote N . This integer N will eventually provide our
contradiction, for we will show that for the right choice of p, N must be an integer
satisfying 0 < |N | < 1, which is clearly impossible. First we will show it is nonzero.

Let us rewrite N as

N = β0D
Npcp−1 +

β0D
Np

(N+1)p−1∑
J=p

J !cJ
(p− 1)!

+
M∑
m=1

amβmdm(D/dm)Np

 .

We found some time ago that cp−1 6= 0. We also know that p | am for each m,
and clearly p | J ! for J ≥ p. So p divides the integer in the brackets, while β0, D,
and cp−1 are all fixed nonzero integers. Thus if we choose p > max{|β0|, D, |cp−1|}
then p - β0D

Npcp−1.
Putting this together we see that N 6≡ 0 (mod p), thus we definitely have that

N 6= 0. If we now want to find a value of p such that |N | < 1 then we need to look
at the alternative way of defining N , that is

N = −
M∑
m=1

βmD
Np

(
Nm∑
n=1

Tp(αmn)
(p− 1)!

)
.

Using the triangle inequality gives

0 < |N | ≤
M∑
m=1

(
Nm∑
n=1

∣∣βmDNpTp(αmn)
∣∣

(p− 1)!

)
.

If we can show that the sum on the right is strictly less than 1 then we will be
done. So let us try to estimate the size of Tp(αmn).
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Tp(z) =
(N+1)p−1∑
J=p−1

J !cJ
∞∑
j=J

zj

j!



=
(N+1)p−1∑
J=p−1

cJ ∞∑
j=0

J !
(j + J)!

zj+J

 .

But

(j + J)!
j!J !

=
(
j + J

j

)
≥ 1

so that

J !
(j + J)!

≤ 1
j!
.

So

|Tp(α)| =

∣∣∣∣∣∣
(N+1)p−1∑
J=p−1

cJ ∞∑
j=0

J !
(j + J)!

αj+J

∣∣∣∣∣∣
≤

(N+1)p−1∑
J=p−1

∣∣∣∣∣∣cJ
∞∑
j=0

J !
(j + J)!

αj+J

∣∣∣∣∣∣
≤

(N+1)p−1∑
J=p−1

|cJ |
∞∑
j=0

J !
(j + J)!

|α|j+J

≤
(N+1)p−1∑
J=p−1

|cJ ||α|J
∞∑
j=0

|α|j

j!

≤ |α̂|(N+1)p−1
e|α|

(N+1)p−1∑
J=p−1

|cJ |.

Here we have assumed that |α̂| ≥ 1 when pulling the α’s out of the sum. If this
is not the case then we could replace |α̂| in all that follows by 1. Since that would
simplify the rest of the proof slightly we will assume here that in fact |α̂| ≥ 1. Hence
to bound Tp(α) we must find an upper bound for

∑(N+1)p−1
J=p−1 |cJ |. Recall that

f(z) =
(N+1)p−1∑
j=p−1

cjz
j = Dpzp−1(z − α1)p(z − α2)p · · · (z − αN )p.

Each bracketed factor could be written as
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(z − αn)p =
p∑
l=0

(
p

l

)
(−αn)p−lzl.

This suggests that to find an upper bound for the sum of the |cJ |’s we should look
at

max
l=0,1,...,p

{∣∣∣∣(pl
)

(−α)p−l
∣∣∣∣} ≤ p∑

l=0

(
p

l

)
|α̂|p−l

≤ |α̂|p
p∑
l=0

(
p

l

)
= (2 |α̂|)p .

So each coefficient in these factors is at most (2 |α̂|)p and there are N factors giving

|cj | ≤ Dp
N∏
n=1

(2 |α̂|)p = Dp (2 |α̂|)Np .

This bound may seem excessively poor, but the key point is that it is of the form
Kp for some constant K. Plugging this bound into the sum we were considering
gives

(N+1)p−1∑
J=p−1

|cJ | ≤ Np
(

2D1/N |α̂|
)Np

.

And so we can finally place a bound on Tp(α) as follows.

|Tp(α)| ≤ |α̂|(N+1)p−1
e|α|Np

(
2D1/N |α̂|

)Np
≤ e|α|Np2 |α̂|(N+1)p−1

(
2D1/N |α̂|

)Np
=
e|α|

|α̂|
NpDp

(
(2 |α̂|)N

)p (
|α̂|N+1

)p
= K1 (K2)p

Where

K1 =
e|α|

|α̂|
K2 = ND

(
2 |α̂|2N+1

)
.

Again, the important thing is not the quality of these bounds, but the fact that
they are of the form K1 (K2)p and no worse.

We are now ready to show that our integer N is less than 1. Recall we had that

0 < |N | ≤
M∑
m=1

(
Nm∑
n=1

∣∣βmDNpTp(αmn)
∣∣

(p− 1)!

)
.

Now let B = max{|β1|, |β2|, . . . , |βM |}. Then in light of the bounds we’ve just found
we can say that
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0 < |N | ≤ BNK1

(
DNK2

)p
(p− 1)!

.

Each of the numbers B,N,K1, D, and K2 is constant and independent of p. And
since xp

p! → 0 as p→∞ we can see that for sufficiently large primes the right hand
side will be less than 1, thus we will have

0 < |N | < 1
which is impossible. Hence the assumption that

β0 +
N∑
n=1

βne
αn = 0

must have been false, and the theorem is proved to be true. �

At first glance, Theorem 2 may seem like such a diluted version of the real
Lindemann-Weierstrass theorem that it will be of little use. After all, the Lindemann-
Weierstrass theorem deals with an arbitrary collection of algebraic numbers and
assures their linear independence over Q, while we have taken a far from arbitrary
collection of algebraic numbers and shown that they are linearly independent over
Z. But the general case can in fact be poked and prodded until it is of the form used
in our special case, and all this can be done without losing the information neces-
sary to draw conclusions about the general case. All this will be done presently,
but first we need to get a few small lemmas out of the way that will let us do the
aforementioned prodding.

Lemma 2.2. Let ρ1, ρ2, . . . , ρL, τ1, τ2, . . . , τM ∈ C be distinct and let
r1, r2, . . . , rL, t1, t2, . . . , tM ∈ C be nonzero. If(

L∑
`=1

r`e
ρ`

)(
M∑
m=1

tme
τm

)
is expanded and like exponential terms are combined then the result is of the form

N∑
n=1

sne
λn

for some N ∈ N, sn ∈ C, and distinct λn ∈ C with λn = ρ`+ τm. Moreover, at least
one of the sn is nonzero.

Proof. Clearly(
L∑
`=1

r`e
ρ`

)(
M∑
m=1

tme
τm

)
=

∑
1≤`≤L

1≤m≤M

r`tme
ρ`+τm .
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Let S = {ρ` + τm | 1 ≤ ` ≤ L, 1 ≤ m ≤ M}, then #S ≥ 1 and so we can write
S = {λ1, . . . , λN} for distinct λn ∈ C and some N ∈ N. Let

sn =
∑

`,m such that
ρ`+τm=λn

r`tm,

then (
L∑
`=1

r`e
ρ`

)(
M∑
m=1

tme
τm

)
=

N∑
n=1

sne
λn .

Now look at {<(ρ1), . . . ,<(ρL)}. This is a finite set of real numbers, and thus
has a least element (or elements). If we say that {ρ`1 , . . . , ρ`K} is the set of such
elements with minimal real part then we can trivially note that all these elements
have the same real part. By the same reasoning as above there is an element in this
subset with minimal imaginary part, but this time the element must be unique. For
suppose there were two elements in this subset with the same minimal imaginary
part, then these two elements would be equal. But ρ1, ρ2, . . . , ρL are distinct so
this could not happen.

Similarly we can find a minimal element out of τ1, τ2, . . . , τM . Let ρα and τα be
these minimal elements, then there exists an element λα ∈ S such that λα = ρα+τα
and no other two elements sum to give this element of S. For suppose there were
other elements ρβ and τβ such that λα = ρβ + τβ . Then <(ρα + τα) = <(ρβ + τβ)
and =(ρα + τα) = =(ρβ + τβ), but this contradicts the minimality condition on ρα
and τα, so there are no other such elements.

Since we have some λα uniquely expressible as ρα + τα we know that sα = rαtα,
and since the r` and tm are all nonzero we have that sα 6= 0, which is all we had
left to prove. �

The above lemma tells us that we can multiply one exponential sum by another
without everything going to zero if we have the appropriate exponents and coef-
ficients. Hopefully that will be enough to ensure that when prodding our general
case into something akin to the hypotheses in Theorem 2 we don’t accidentally end
up proving little more than 0 = 0.

Next we want to see how to turn a set of arbitrary algebraic numbers into a
set of algebraic numbers like those in our weak form of the Lindemann-Weierstrass
theorem. Recall that in that version of the theorem our set of algebraic numbers
had the useful property that if a number α was in the set then so were all conjugates
of α. Rather than keep using this clunky description we will call a set of algebraic
numbers with the property that if α appears n times then each conjugate of α
appears n times a “conjugate complete” set of algebraic numbers.

We want to turn an arbitrary set of algebraic numbers into a conjugate complete
one, and to that end the following lemma gives a useful criterion for conjugate
completeness.
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Lemma 2.3. The set {α1, α2, . . . , αL} ⊆ Q is conjugate complete if and only if
the polynomial (z − α1)(z − α2) · · · (z − αL) has rational coefficients.

Proof. First suppose {α1, α2, . . . , αL} is conjugate complete, so we can split it
into M conjugate complete sets in which any particular element appears only once.
That is:

{α1, . . . , αL} = {α11 , . . . , α1L1
} ∪ . . . ∪ {αM1 , . . . , αMLM

},
where each set {αm1 , . . . , αmLm } is conjugate complete and no two elements are
the same. So for each set like this the polynomial

(z − αm1)(z − αm2) · · · (z − αmLm )

is the minimum polynomial (up to multiplication by an integer) of αm1 , . . . , αmLm ,
and thus is in Q[z]. And the polynomial

(z − α1)(z − α2) · · · (z − αL)

is just the product of these minimal polynomials, so is also in Q[z], as required.

Now suppose f(z) = (z − α1)(z − α2) · · · (z − αL) ∈ Q[z]. If any of the α`’s are
rational then we can remove them and what’s left will still have rational coefficients.
Moreover if α` is rational then {α`} is conjugate complete so we can ignore all the
rational α`’s for now.

Having done so, relabel what remains and let g(z) = (z−α1) · · · (z−αK) ∈ Q[z],
where αk 6∈ Q.

If g is irreducible then it must be the minimum polynomial of α1, . . . , αK , and
thus {α1, . . . , αK} would be a conjugate complete set and we would be done. If g
is not irreducible then we can write

g = he11 h
e2
2 · · ·h

eJ
J

where each hj ∈ Q[z] is irreducible and ej ≥ 1. Now we can relabel the αi’s again
so that

hj(z) = (z − αj1)(z − αj2) · · · (z − αjLj ).

Now we note that hj ∈ Q[z] is the minimum polynomial for αj1 , αj2 , . . . , αjLj ,
and so {αj1 , αj2 , . . . , αjLj } is a conjugate complete set. Moreover,

{α1, α2, . . . , αL} =
J⋃
j=1

ej⋃
i=1

{αj1 , αj2 , . . . , αjLj },

that is our set of algebraic numbers is a union of conjugate complete sets, and thus
is conjugate complete itself.

�

Now that we have a handy criterion for when a set is conjugate complete we can
use this to manipulate our arbitrary set of algebraic numbers in the Lindemann-
Weierstrass theorem into a conjugate complete set. The next lemma shows how.
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Lemma 2.4. Let {γ1, . . . , γJ} be a set of algebraic numbers and f(x1, . . . , xJ) =
a1x1 + . . .+ aJxJ with aj ∈ Z for j = 1, . . . , J . Then the set

{f(τ1, . . . , τJ) | τj is a conjugate of γj for all j }
is conjugate complete.

Proof. By Lemma 2.3 this claim is equivalent to showing that the polynomial

p(z) =
∏

τj is a conjugate

of γj for all j

(z − f(τ1, . . . , τJ))

is in Q[z].
We can rewrite p(z) as

p(z) =
∏

τj is a conjugate

of γj for

2≤j≤J

 ∏
τ1 is a conjugate

of γ1 for all j

(z − f(τ1, . . . , τJ))



=
∏

τj is a conjugate

of γj for

2≤j≤J

q(z).

Now we see that if the conjugates of γ1 are γ1 = γ11 , γ12 , . . . , γ1n then

q(z) = (z − f(γ11 , τ2, . . . , τJ))(z − f(γ12 , τ2, . . . , τJ)) · · · (z − f(γ1n , τ2, . . . , τJ))

=
n∏
i=1

(z − a2τ2 − . . .− aJτJ)︸ ︷︷ ︸
=:y

−a1γ1i


= yn − σ1y

n−1 + σ2y
n−2 − . . .+ (−1)nσn.

where here the σi’s are the elementary symmetric polynomials of the conjugates of
γ1, and hence are all rational. So

yn − σ1y
n−1 + σ2y

n−2 − . . .+ (−1)nσn ∈ Q[y]

and so q(z) ∈ Q[z, τ1, . . . , τJ ].
But the exact same argument works to eliminate any of the τj ’s, and so we

must have that p(z) ∈ Q[z], and thus by Lemma 2.3, {f(τ1, . . . , τJ)} is conjugate
complete. �

This Lemma tells us how to get a conjugate complete set out of an arbitrary
one, but what we are really dealing with is the sum of e raised to such algebraic
numbers, so if {α1, . . . , αM} ⊂ Q is a conjugate complete set then we call the sum
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eα1 + . . . + eαM a conjugate complete exponential sum. A nice property of these
sums is as follows.

Lemma 2.5. The product of two conjugate complete exponential sums is a
conjugate complete exponential sum.

Proof. Let eα1 + eα2 + . . . + eαL and eβ1 + eβ2 + . . . + eβM be two conjugate
complete exponential sums. Now,

(eα1 + eα2 + . . .+ eαL)
(
eβ1 + eβ2 + . . .+ eβM

)
=

∑
1≤`≤L

1≤m≤M

eα`+βm ,

so we need to show that {α`+βm | 1 ≤ ` ≤ L, 1 ≤ m ≤M} is a conjugate complete
set of algebraic numbers.

But if we apply Lemma 2.4 to the polynomial f(x1, x2) = x1 + x2 then we see
that {α` + βm | 1 ≤ ` ≤ L, 1 ≤ m ≤M} is indeed a conjugate complete set, and so∑

1≤`≤L
1≤m≤M

eα`+βm

is a conjugate complete exponential sum. �

We now have all the ingredients needed to complete the proof of the Lindemann-
Weierstrass theorem, starting with the general version stated in the hypotheses and
coaxing it into the particular form we assumed in the weak version we proved earlier.
So let us do that now.

Theorem 1 (Lindemann-Weierstrass theorem). Given M + 1 distinct algebraic
numbers α0, α1, . . . αM , the numbers eα0 , eα1 , . . . eαM are linearly independent over
Q. That is, for any β0, . . . , βM ∈ Q not all zero,

M∑
m=0

βme
αm 6= 0.

Proof. Rather than attempt to prove that for any collection of M + 1 algebraic
numbers β0, . . . , βM not all zero we have

∑M
m=0 βme

αm 6= 0 we will proceed by
contradiction and suppose that there do exist βi for which

(†)
M∑
m=0

βme
αm = 0

and from this assumption we shall strive to create a contradiction, specifically a
contradiction to Theorem 2.
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The first step to this end is to multiply expression (†) by analogous expressions
with each αm replaced by each of its conjugates in all possible combinations:

∏
ρm a conjugate

of αm for

0≤m≤M

(β0e
ρ0 + β1e

ρ1 + . . .+ βMe
ρM ) = 0.

This is a truly large product, if each αi has degree ni then the above product is
composed of

∏M
i=1 ni terms, each of them being a sum of M terms. Nevertheless,

once we multiply it out we will get something of the form

(‡) b0E0 + b1E1 + . . .+ bLEL = 0

where the b` are integer polynomials in the βm and the E` are conjugate complete
exponential sums. This may seem implausible, but looking at the product should
reveal it to be true. Each term in the sum we get when we multiply out the product
will be of the form

g(β1, β2, . . . , βM )er1+r2+...+rM

where g ∈ Z[t1, . . . , tM ] is some polynomial and the ri’s are algebraic numbers from
the set of all the conjugates of α1, α2, . . . , αM .

If we apply Lemma 2.4 to the polynomial x1 + x2 + . . . + xM and the set
{α1, α2, . . . , αM} then we see that the terms in the above expression with the same
coefficients will form conjugate complete exponential sums. And so the product
multiplies out to b0E0 + b1E1 + . . .+ bLEL as we stated. We can also apply Lemma
2.2 to this product to note that not all the b`’s can be zero, so we have not simply
given a long proof of the identity 0 = 0. Without losing any generality we may as
well assume that all the b`’s are nonzero, since if any are zero we can remove them
and relabel what’s left.

In Theorem 2 the coefficients we were dealing with were integers, whereas at the
moment our b`’s are polynomials in algebraic numbers over the integers. But with
another enormous product we can rectify this situation. In an analogous move to
our last one we now multiply (‡) by all similar expressions where each b` is replaced
by its conjugates to form the product∏

σ` a conjugate

of b` for

0≤`≤L

(σ0E0 + σ1E1 + . . .+ σLEL) = 0.

Once again this product, once multiplied out, will simplify greatly to something
looking like

ζ0E0 + ζ1E1 + . . .+ ζKEK = 0,
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where each ζk is a symmetric polynomial in a conjugate complete set of the b`’s,
and hence is rational, and each Ek is a product of E`’s and so by Lemma 2.5 is
a conjugate complete exponential sum. Moreover, by Lemma 2.2, not all the ζk
can be zero, so we are still not down to the trivial identity 0 = 0. Again we can
remove any of the terms in the sum which are zero to assume that ζk 6= 0 for all the
k’s. And since each ζk is rational we can multiply the last identity by the lowest
common multiple of all their denominators and so assume without loss of generality
that each ζk is in fact an integer.

As a final piece of housekeeping we may assume that all the exponents in any
of the Ek are conjugate to one another, since any conjugate complete exponential
sum can be simply split into a sum of conjugate complete exponential sums with
this property. So our identity

(F) ζ0E0 + ζ1E1 + . . .+ ζKEK = 0

now has ζk ∈ Z \ {0} for all k and each Ek is an exponential sum with each
exponent being conjugate to all others in that sum. The hypotheses of our weakened
Lindemann-Weierstrass theorem are now almost entirely met, except that in that
version we required one of the terms in the sum was just an integer, so in our case
we require Ek = 1 for some k.

If Ek = 1 for any of the k then we are done, so let us assume that Ek 6= 1 for
k = 0, 1, . . . ,K. In particular we have

E0 = eη1 + eη2 + . . .+ eηJ

where {η1, η2, . . . , ηJ} is a conjugate complete set of nonzero algebraic numbers.
Now let

E ′0 = e−η1 + e−η2 + . . .+ e−ηJ ,

and we may note that E ′0 is also a conjugate complete exponential sum. Thus, by
Lemma 2.5, E0E ′0 is also a conjugate complete exponential sum, and moreover this
product contains at least J copies of e0 = 1 from the products eηje−ηj . So we may
write

E0E ′0 = J + E ′′0 ,

where E ′′0 is a conjugate complete exponential sum. Now recall the final bit of
housekeeping we did on the sum ζ0E0 + . . . + ζKEK = 0 to ensure that within
distinct Ek’s there were distinct exponents. In particular if k 6= 0 then none of
the exponents in Ek will come from the set {η1, η2, . . . , ηJ}, and so EkE ′0 = E ′′k will
contain no e0 terms, but will be a conjugate complete exponential sum by Lemma
2.5. So, multiplying the identity (F) through by E ′0 gives us

Jζ0 + ζ0E ′′0 + ζ1E ′′1 + . . .+ ζKE ′′K = 0
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with the ζk being nonzero integers and each E ′′k a conjugate complete exponential
sum with no terms of the form e0. So Jζ0 is the only free integer, and it is nonzero.
Thus this sum meets the hypotheses of Theorem 2 but contradicts that theorem’s
conclusion. So we are forced to conclude that our assumption (†) was false, and
thence the Lindemann-Weierstrass theorem is true. �

2.2. Later Results.

The Lindemann-Weierstrass theorem was the pinnacle of the study of transcen-
dence in the nineteenth century, but it was not the end of the story. Fifteen years
after Weierstrass’ proof David Hilbert delivered perhaps the most famous lecture
in mathematical history at the International Congress of Mathematicians in Paris.
In the talk he presented ten open problems in mathematics that he considered of
the utmost importance to the development of the subject in the twentieth century.

The list, which would eventually be comprised of twenty three problems, is per-
haps most famous now because of the appearance of Problem Number 8, better
known as the Riemann hypothesis. This problem and Problem 12 (on extending
Kronecker’s theorem on abelian extensions of the rational numbers to any base
number field) are the only two problems that have remained unsolved to this day4.
At the time, though, Hilbert was hopeful that a solution to the Riemann hypoth-
esis would be found soon, he even discussed follow-up problems in his lecture. A
much harder problem, in his opinion, was Problem Number 7, which he described
as follows.

“Hermite’s arithmetical theorems on the exponential function and
their extension by Lindemann are certain of the admiration of all
generations of mathematicians. Thus the task at once presents itself
to penetrate further along the path here entered. . . I consider the
proof of the following theorem very difficult:

The expression αβ, for an algebraic base α and an irrational
algebraic exponent β, e.g., the number 2

√
2 or eπ = i−2i, always

represents a transcendental or at least an irrational number.”5

Despite Hilbert’s misgivings about the problem it was fully solved within his
lifetime. In the 1930s Aleksandr Gelfond and Theodor Schneider independently
proved that αβ is always transcendental for algebraic α( 6= 0, 1) and algebraic irra-
tional β. The two numbers highlighted by Hilbert, eπ and 2

√
2, became known as

Gelfond’s constant and the Gelfond-Schneider constant respectively.
An extension to the theorem proposed by Gelfond was proved by Alan Baker

in the 1960s, who also proved the definitive result in this area and earned a Fields
Medal for his work. He proved that for non-zero algebraic numbers α1, α2, . . . , αn

4Several of the twenty three problems - and, indeed, the omitted twenty fourth problem - have

been deemed too vague to admit a solution one way or the other.
5English translation of the lecture is available at http://aleph0.clarku.edu/ djoyce/hilbert/problems.html
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such that logα1, logα2, . . . , logαn are linearly independent over the rational num-
bers, the numbers 1, logα1, logα2, . . . , logαn are linearly independent over the al-
gebraic numbers. This has several immediate consequences just as the Lindemann-
Weierstrass theorem did. Most notably, perhaps, is that given 2n + 1 non-zero
algebraic numbers α1, . . . αn, β0, . . . βn the number eβ0αβ1

1 · · ·αβnn is transcendental.
The Gelfond-Schneider and Lindemann-Weierstrass theorems are both corollaries

of a much more general result, Schanuel’s conjecture. This result concerns the
degree of an extension field over the rational numbers. This conjecture is almost
fifty years old now and it is generally accepted that with current techniques a
proof is unattainable[6]. If a proof was found, though, it would not only turn the
aforementioned theorems into mere corollaries it would also prove that π and e are
algebraically independent over Q. One consequence of this is that e + π would be
transcendental, a result that has gone unproved for centuries.



TRANSCENDENCE AND IRRATIONALITY PROOFS 21

3. An Irrationality Proof

3.1. ζ(3): Apéry’s theorem.

It would be unfair to say that mathematical progress in the area of irrationality
and transcendence proofs had ground to a halt in the latter half of the twentieth cen-
tury. But results like the Gelfond-Schneider theorem and Roth’s theorem had been
the pinnacle of their respective lines of inquiry. Certainly no one had announced a
proof that a particularly famous number was irrational for quite some time. So it
came as something of a shock to the mathematical community in 1979 when French
mathematician Roger Apéry announced a proof that ζ(3) was irrational.

Before then he had liked to joke that he was the worst mathematician in France,
since no famous theorem bore his name. But this result assured that both the
theorem and the number itself would bear the name Apéry.

Apéry’s approach is more reminiscent of the inequalities that Liouville dealt with
rather than the complicated ways of constructing an integer in the interval (0, 1)
that many newer proofs rely on. That is not to say Apéry’s proof is not complicated,
it is just perhaps slightly more direct. It hinges on the following useful result.

Lemma 3.1. If there are infinitely many coprime solutions p, q of

(♦)
∣∣∣∣α− p

q

∣∣∣∣ < c

q1+δ
,

with fixed c, δ > 0, then α is irrational.

Proof. We will deal with the contrapositive, proving that for rational α there
are finitely many coprime integers p and q satisfying the inequality. So suppose
that α = a

b for coprime a, b with b > 0. Then for p
q 6= α that satisfy (♦) we can

immediately get the following inequality.

c

q1+δ
>

∣∣∣∣α− p

q

∣∣∣∣
=
∣∣∣∣ab − p

q

∣∣∣∣
=
∣∣∣∣aq − bpbq

∣∣∣∣
≥ 1
bq
.

From this it follows that q < (cb)1/δ, hence there are only finitely many possibil-
ities for q. Of course, there could be infinitely many choices for p, so we must check
that too. Suppose we have p and q which satisfy the inequality of our hypothesis.
Now consider fractions of the form p+t

q for some integer variable t. If this fraction
satisfies the inequality of our hypothesis then we can use the triangle inequality to
deduce that

|t|
q

=
∣∣∣∣ tq +

p

q
− a

b
− p

q
+
a

b

∣∣∣∣ ≤ ∣∣∣∣p+ t

q
− a

b

∣∣∣∣+
∣∣∣∣pq − a

b

∣∣∣∣ < 2c
q1+δ

.
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Hence |t| < 2cq−δ ≤ 2c, so at best t is bounded by −2[c] + 1 ≤ t ≤ 2[c]− 1. So
for any of our finitely many values of q there are at most 4[c]− 1 values of p which
will satisfy the hypothesis. Hence there are only finitely many coprime solutions
p, q as required. �

With this irrationality criterion in mind we should be looking for infinite se-
quences of integers (pn) and (qn) such that pn

qn
→ ζ(3) about as fast as 1

q1+δn
→ 0.

Apéry outlined a way of doing just this in 1978[1] and not long afterwards Alfred
van der Poorten filled in most of the gaps. The following series of lemmas follow
the outline given in [14] and the entertaining outline provided by [11].

First we need to define three sequences which will form the backbone of all that
follows. For integers 0 ≤ k ≤ n, define

cn,k =
n∑

m=1

1
m3

+
k∑

m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
and

an =
n∑
k=0

cn,k

(
n

k

)2(
n+ k

k

)2

bn =
n∑
k=0

(
n

k

)2(
n+ k

k

)2

.

As well as these three sequences we will also be using the Landau-Vinogradov
symbols, also known as big O notation. We will say f(x) = O (g(x)) or equivalently
f(x)� g(x) for some g(x) ≥ 0 if:

lim sup
x→∞

|f(x)|
g(x)

is bounded,

or if there exists some constant C ≥ 0 such that |f(x)| ≤ Cg(x) for sufficiently
large x. In this language Lemma 3.1’s criterion becomes∣∣∣∣ζ(3)− pn

qn

∣∣∣∣� 1
q1+δn

.

With this notation we are now ready for the first step in Apéry’s proof.

Lemma 3.2.

lim
n→∞

an
bn

= ζ(3) =
∞∑
n=1

1
n3
.
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Proof.

an =
n∑
k=0

cn,k

(
n

k

)2(
n+ k

k

)2

=
n∑
k=0

(
n∑

m=1

1
m3

+
k∑

m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

))(n
k

)2(
n+ k

k

)2

=
n∑
k=0

(
n

k

)2(
n+ k

k

)2 n∑
m=1

1
m3

+
n∑
k=0

(
n

k

)2(
n+ k

k

)2 k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
= bn

n∑
m=1

1
m3

+
n∑
k=0

(
n

k

)2(
n+ k

k

)2 k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) .(1)

For 1 ≤ m ≤ n we have(
n

m

)(
n+m

m

)
≥
(
n

1

)(
n+ 1

1

)
= n(n+ 1) ≥ n2.

So
1(

n
m

)(
n+m
m

) ≤ 1
n2
.

Hence

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) ≤ k∑
m=1

1
n2
·

1
2 (−1)m−1

m3
≤ 1
n2

k∑
m=1

1
m3

.

We know that
∑k
m=1

1
m3 → ζ(3) ≈ 1.202 as k → ∞. So 1

n2

∑k
m=1

1
m3 ≤ 2 1

n2 ,
say. That is,

1
n2

k∑
m=1

1
m3
� 1

n2
.

Putting this together with (1) gives

an = bn

n∑
m=1

1
m3

+O

(
bn
n2

)
(2)

If we now write
n∑

m=1

1
m3

= ζ(3)−
∞∑

m=n+1

1
m3

then, by the integral test,
∞∑

m=n+1

1
m3
≤
∫ ∞
n

1
u3

du =
−1
2u2

∣∣∣∣∞
n

=
1

2n2
� 1

n2
.
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Putting this into (2) gives us

an = bn

n∑
m=1

1
m3

+O

(
bn
n2

)

= bn

(
ζ(3)−

∞∑
m=n+1

1
m3

)
+O

(
bn
n2

)
.

Rearranging this slightly gives

an
bn
− ζ(3) = O

(
1
n2

)
+O

(
1
n2

)
,

thence

an
bn
− ζ(3)� 1

n2
→ 0.

And so
an
bn
→ ζ(3). �

It might be tempting at this point to proclaim that we have found the necessary
sequences to apply Lemma 3.1, but the convergence we have proved above is not
nearly fast enough6. We have to do better than this to prove the irrationality of
ζ(3), and to do so we will need the following lemma.

Lemma 3.3. Let B(n) = 34n3 + 51n2 + 27n+ 5. Then (an) and (bn) satisfy the
recursion formula:

(n+ 1)3un+1 −B(n)un + n3un−1 = 0, n ∈ N.

Proof. The mysterious B(n) is in fact the nth partial quotient in the continued
fraction representation of ζ(3). Cohen proved this in 1979, but for now we concen-
trate on proving this lemma, which requires us to define the following number for
integers 0 ≤ k ≤ n.

λn,k =
(
n

k

)2(
n+ k

k

)2

=
n!2

k!2(n− k)!2
· (n+ k)!2

k!2n!2

=
(n+ k)!2

k!4(n− k)!2
.

6A somewhat more grave problem with using these sequences is brought up later for those who
have not yet noticed it.



TRANSCENDENCE AND IRRATIONALITY PROOFS 25

If this looks familiar then it’s probably because this number appears in the
definition of both an and bn. We also need the following definition:

Bn,k = 4(2n+ 1)(2k2 + k − (2n+ 1)2)λn,k.

We now claim the following:

Bn,k −Bn,k−1 = (n+ 1)3λn+1,k −B(n)λn,k + n3λn−1,k.

If we explicitly write out the left hand side and divide this through by λn,k,
which is nonzero by definition, then we find that this claim is equivalent to the
following one:

4(2n+ 1)(2k2 + k − (2n+ 1)2)− 4(2n+ 1)
(
2(k − 1)2 + k − 1− (2n+ 1)2

) λn,k−1

λn,k

=(n+ 1)3
λn+1,k

λn,k
−B(n) + n3λn−1,k

λn,k
.(3)

So let us calculate the three quotients of the λ’s explicitly.

λn,k−1

λn,k
=

(n+ k − 1)!2

(k − 1)!4(n− k + 1)!2

/
(n+ k)!2

k!4(n− k)!2

=
k!4(n− k)!2(n+ k − 1)!2

(k − 1)!4(n+ k)!2(n− k + 1)!2

=
k4

(n+ k)2(n− k + 1)2
,

λn+1,k

λn,k
=

(n+ k + 1)!2

(k)!4(n− k + 1)!2

/
(n+ k)!2

k!4(n− k)!2

=
k!4(n− k)!2(n+ k + 1)!2

(k)!4(n− k + 1)!2(n+ k1)!2

=
(n+ k + 1)2

(n− k + 1)2
,

λn−1,k

λn,k
=
(

λn,k
λn−1,k

)−1

=
(n− k)2

(n+ k)2
.
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Substituting these into (3) shows that our claim is equivalent to the daunting
identity

4(2n+1)(2k2+k−(2n+1)2)−4(2n+1)
(
2(k − 1)2 + k − 1− (2n+ 1)2

) k4

(n+ k)2(n− k + 1)2

= (n+ 1)3
(n+ k + 1)2

(n− k + 1)2
−B(n) + n3 (n− k)2

(n+ k)2
,

which in turn is equivalent to

4(2n+1)(2k2+k−(2n+1)2)(n+k)2(n−k+1)2−4(2n+1)
(
2(k − 1)2 + k − 1− (2n+ 1)2

)
k4

= (n+1)3(n+k+1)2(n+k)2−B(n)(n+k)2(n−k+1)2 +n3(n−k)2(n−k+1)2.

Multiplying out both sides of this expression, either by hand or with a computer
package, and then comparing coefficients shows that this identity does indeed hold.
Hence our claim was right and we have

Bn,k −Bn,k−1 = (n+ 1)3λn+1,k −B(n)λn,k + n3λn−1,k.

Let us now put k = 0, 1, . . . , n+ 1 into this identity and sum.

n+1∑
k=0

(Bn,k −Bn,k−1) =
n+1∑
k=0

(
(n+ 1)3λn+1,k −B(n)λn,k + n3λn−1,k

)
which means

Bn,n+1 −Bn,−1 = (n+ 1)3
n+1∑
k=0

λn+1,k −B(n)
n+1∑
k=0

λn,k + n3
n+1∑
k=0

λn−1,k.

And since
(
n
k

)
= 0 if n < k or k < 0,

0 = (n+ 1)3
n+1∑
k=0

λn+1,k −B(n)
n∑
k=0

λn,k + n3
n−1∑
k=0

λn−1,k.

But
∑n+1
k=0 λn+1,k =

∑n+1
k=0

(
n+1
k

)2(n+1+k
k

)2
= bn+1, and similarly for the other two

sums. Thus we have

0 = (n+ 1)3bn+1 −B(n)bn + n3bn−1

which proves half of the lemma.
To prove that an also satisfies this recurrence we first recall that

cn,k =
n∑

m=1

1
m3

+
k∑

m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) .
Hence we can immediately see that
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cn,k − cn,k−1 =
n∑

m=1

1
m3

+
k∑

m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) − n∑
m=1

1
m3
−

k−1∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
=

(−1)k−1

2k3
(
n
k

)(
n+k
k

) .
More troublesome is the following claim for 1 ≤ k ≤ n.

cn,k − cn−1,k =
(−1)kk!2(n− k − 1)!

n2(n+ k)!
.

We will prove this by induction on k. The case k = 1 is simple enough. The right
hand side becomes:

−(n− 2)!
n2(n+ 1)!

=
−1

n2(n+ 1)n(n− 1)
=

1
n3(1− n2)

.

The left hand side, meanwhile, is:

cn,1 − cn−1,1 =
n∑

m=1

1
m3

+
1∑

m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) − n−1∑
m=1

1
m3
−

1∑
m=1

(−1)m−1

2m3
(
n−1
m

)(
n+m−1

m

)
=

1
n3

+
1

2n(n+ 1)
− 1

2n(n− 1)

=
2(n+ 1)(n− 1) + n2(n− 1)− n2(n+ 1)

2n3(n+ 1)(n− 1)

=
2n2 − 2 + n3 − n2 − n3 − n2

2n3(n2 − 1)

=
1

n3(1− n2)
.

Which was what we wanted.

Now suppose the claim is true for some k < n. We then have the following.
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cn,k+1 − cn−1,k+1 = cn,k − cn−1,k +
(−1)k

2(k + 1)3
(
n
k+1

)(
n+k+1
k+1

) − (−1)k

2(k + 1)3
(
n−1
k+1

)(
n+k
k+1

)
=

(−1)kk!2(n− k − 1)!
n2(n+ k)!

+
(−1)k(k + 1)!2(n− k − 1)!

2(k + 1)3(n+ k + 1)!

− (−1)k(k + 1)!2(n− k − 2)!(n− 1)!
2(k + 1)3(n− 1)!(n+ k)!

=
(−1)kk!2(n− k − 2)!

(n+ k)!

[
n− k − 1

n2
+

n− k − 1
2(n+ k + 1)(k + 1)

− 1
2(k + 1)

]

=
(−1)kk!2(n− k − 2)!

(n+ k)!

[
2(n− k − 1)(n+ k + 1)(k + 1) + (n− k − 1)n2 − n2(n+ k + 1)

2n2(n+ k + 1)(k + 1)

]
Multiplying out the numerator inside the brackets, and simplifying leads to

cn,k+1 − cn−1,k+1 =
(−1)kk!2(n− k − 2)!

(n+ k)!

[
−2(k + 1)3

2n2(n+ k + 1)(k + 1)

]

=
(−1)k+1(k + 1)!2(n− k − 2)!

n2(n+ k + 1)!

which is precisely our claim for k + 1. Thus we have proved the claim.
Much as we did earlier, let us now define the following number.

Cn,k = (n+ 1)3λn+1,kcn+1,k −B(n)λn,kcn,k + n3λn−1,kcn−1,k.

If we note the following two facts

cn+1,k = cn,k +
(−1)kk!2(n− k)!

(n+ 1)2(n+ 1 + k)!

cn−1,k = cn,k −
(−1)kk!2(n− k − 1)!

(n)2(n+ k)!

then, with a bit of algebra, we can rewrite Cn,k in the following form,

Cn,k =
[
(n+ 1)3λn+1,k −B(n)λn,k + n3λn−1,k

]
cn,k

+ (−1)kk!2
(

(n+ 1)3λn+1,k(n− k)!
(n+ 1)2(n+ 1 + k)!

− n3λn−1,k(n− k − 1)!
n2(n+ k)!

)
.

Looking back a few pages we note that the expression in the square brackets is in
fact Bn,k −Bn,k−1. So the above expression becomes
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Cn,k = (Bn,k −Bn,k−1) cn,k + (−1)kk!2
(n− k − 1)!

(n+ k)!

(
(n+ 1)λn+1,k

n− k
n+ 1 + k

− nλn−1,k

)
.

We now define another number which, having used Bn,k and Cn,k, we will call
An,k. It is given by

An,k = Bn,kcn,k +
5(−1)k−1k(2n+ 1)

n(n+ 1)

(
n

k

)(
n+ k

k

)
.

This number may not seem immediately useful, but it is important because with a
little bit more algebraic legwork we arrive at the following fact.

An,k −An,k−1 = (Bn,k −Bn,k−1) cn,k +Bn,k−1
(−1)k−1

2k3
(
n
k

)(
n+k
k

)
+

5(−1)k−1(2n+ 1)
n(n+ 1)

[
k

(
n

k

)(
n+ k

k

)
+ (k − 1)

(
n

k − 1

)(
n+ k − 1
k − 1

)]
While this may not immediately seem much to get excited about, if we let
Sn,k = Cn,k − (An,k − An,k−1) then, after a great deal of algebraic manipulation,
we will find that Sn,k ≡ 0. Or,

Cn,k = An,k −An,k−1.

We are now in familiar territory, and can repeat the dramatic conclusion of the
first half of this proof. If we sum the above identity over k = 0, 1, . . . , n + 1 then
we get:

n+1∑
k=0

Cn,k = An,n+1 −An,−1 = 0.

So, inserting the definition of Cn,k,

n+1∑
k=0

(
(n+ 1)3λn+1,kcn+1,k −B(n)λn,kcn,k + n3λn−1,kcn−1,k

)
= 0,

which, recalling that λn,k = 0 if k > n, gives

(n+ 1)3
n+1∑
k=0

λn+1,kcn+1,k −B(n)
n∑
k=0

λn,kcn,k + n3
n−1∑
k=0

λn−1,kcn−1,k = 0.

But
∑n
k=0 λn,kcn,k = an, and so

(n+ 1)3an+1 −B(n)an + n3an−1 = 0,

as required. �
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To recap, then, we have defined two sequences, an and bn, which we proved
had the property that limn→∞

an
bn

= ζ(3). Now we have shown that they satisfy
the rather bizarre recurrence relation laid out in Lemma 3.3. Why is this useful?
Well it allows us to improve our knowledge on how fast the sequence an

bn
converges.

Before, we had the rather meagre fact that an
bn
− ζ(3)� 1

n2 . The next lemma will
much improve on this.

Lemma 3.4. ∣∣∣∣ζ(3)− an
bn

∣∣∣∣� 1
b2n
.

Proof. Remember that the Landau-Vinogradov symbol here means that we want
to show lim sup b2n

∣∣∣ζ(3)− an
bn

∣∣∣ is bounded.
We have just shown that{

n3an −B(n− 1)an−1 + (n− 1)3an−2 = 0
n3bn −B(n− 1)bn−1 + (n− 1)3bn−2 = 0

for all n ≥ 2.
Multiplying the first of these by bn−1, the second by an−1, and then subtracting

the second from the first gives us that

n3(anbn−1 − bnan−1) + (n− 1)3(an−2bn−1 − bn−2an−1) = 0

or that

n3(anbn−1 − bnan−1) = (n− 1)3(an−1bn−2 − an−2bn−1).

Letting n 7−→ n− 1 gives

(n− 1)3(an−1bn−2 − bn−1an−2) = (n− 2)3(an−2bn−3 − an−3bn−2).

Note that the left hand side of this last line is equal to the right hand side of the
penultimate line, so we can say

n3(anbn−1 − bnan−1) = (n− 2)3(an−2bn−3 − an−3bn−2).

Proceeding inductively we find that in fact

n3(anbn−1 − bnan−1) = (n− k)3(an−kbn−k−1 − an−k−1bn−k)

for all k < n. If we then take the case k = n− 1 we get the following identity,

n3(anbn−1 − bnan−1) = a1b0 − a0b1
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or

anbn−1 − bnan−1 =
1
n3

(a1b0 − a0b1).

But it is easy to check that a0 = 0, a1 = 6, b0 = 1, and b1 = 5. So we have:

anbn−1 − bnan−1 =
6
n3

∀n ∈ N.

Let us now define sn = ζ(3)− an/bn. For any natural number n we note that

sn−1 − sn =
an
bn
− an−1

bn−1
=
anbn−1 − an−1bn

bn−1bn
=

6
n3bn−1bn

.

We know from Lemma 3.2 that sn → 0 so we may write

ζ(3)− an
bn

= sn

= sn − sn+1 + sn+1

= sn − sn+1 + sn+1 − sn+2 + sn+2 − sn+3 + . . .

=
∞∑

m=n+1

(sm−1 − sm)

= 6
∞∑

m=n+1

1
m3bm−1bm

.

Clearly from its definition, (bn) is a strictly increasing sequence of positive integers,
so we may now say

∣∣∣∣ζ(3)− an
bn

∣∣∣∣ = 6
∞∑

m=n+1

1
m3bm−1bm

≤ 6
∞∑

m=n+1

1
m3b2n

which gives us

b2n

∣∣∣∣ζ(3)− an
bn

∣∣∣∣ ≤ 6
∞∑

m=n+1

1
m3
≤ 6ζ(3) < 12.

Which was what we wanted.
�

We are now entering the final stages of Apéry’s proof, so let us recap what we
have done so far and what still needs to be done.
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We are trying to use Lemma 3.1 to prove that ζ(3) is irrational. Hence we need
to find sequences of integers (pn) and (qn) such that for some fixed δ > 0 we have∣∣∣∣ζ(3)− pn

qn

∣∣∣∣� 1
q1+δn

.

So far we have found two sequences (an) and (bn) such that∣∣∣∣ζ(3)− an
bn

∣∣∣∣� 1
b2n
.

So you may think we are done. Taking δ = 1 surely allows us to apply the lemma
and conclude that ζ(3) /∈ Q. But no! Lemma 3.1 required (pn) and (qn) to be
sequences of integers. And while (bn) is a sequence of integers - a fact we’ve used in
the proofs above - the sequence (an) is not so lucky. For while a0 = 0 and a1 = 6,
we only have to get to n = 2 to find that a2 = 351

4 . And things don’t get any better
from there.

All is not lost, though, for if we could multiply an and bn by the right factor
then we could turn an into an integer while preserving the ratio an

bn
. Of course, if

we multiply the two sequences by some factor dependent on n, say ν(n), then we
will need to satisfy the tighter relation:∣∣∣∣ζ(3)− ν(n)an

ν(n)bn

∣∣∣∣� 1

(ν(n)bn)1+δ
.

This could pose a problem, but not if we can show that neither bn nor this factor
ν(n) grows too fast. So first let us place some bound on the growth of bn.

Lemma 3.5. Let α = (1 +
√

2)4, then αn � bn � αn.

Proof. We know from Lemma 3.3 that

n3bn −B(n− 1)bn−1 + (n− 1)3bn−2 = 0.

If we write B(n−1) out explicitly and divide through by n3bn−1 then, after a little
simplifying, we arrive at

bn
bn−1

−
(

34− 51
n

+
27
n2
− 5
n3

)
+
(

1− 3
n

+
3
n2
− 1
n3

)
bn−2

bn−1
= 0.

Suppose that
bn+1

bn
→ X, then for large n the above identity tell us that

X − 34 +
1
X

= 0.

Or, more helpfully, that X2 − 34X + 1 = 0. We know (bn) is increasing so we take
the positive root here and arrive at X = 17 + 12

√
2 = (1 +

√
2)4 = α. So we have

the estimate αn � bn � αn. �
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This kind of growth is called quasi-geometric, since it is approximately geometric,
at least in the long term. With the previous two lemmas we have the following
corollary.

Corollary 3.1. ∣∣∣∣ζ(3)− an
bn

∣∣∣∣� 1
α2n

.

This suggests our final line of attack. If we can find a factor ν(n) such that
ν(n)an is an integer and ν(n)bn � α2n/(1+δ) then we will have∣∣∣∣ζ(3)− ν(n)an

ν(n)bn

∣∣∣∣� 1
α2n
� 1

(ν(n)bn)1+δ
.

Looking back at the definitions of an and cn,k we note that the problem seems
to be the presence of 2m3 terms in the denominator. So a good value for our ν(n)
might be 2 lcm [1, 2, . . . , n]3. With that guess in mind we now take the following
useful estimate.

Lemma 3.6. For any ε > 0 there exists a natural number N such that

lcm [1, 2, . . . , n] ≤ exp ((1 + ε)n)

for all n > N .

Proof. First note that if p | lcm [1, 2, . . . , n] for some prime p then p ≤ n, but
if p ≤ n then p | lcm [1, 2, . . . , n], in other words p | lcm [1, 2, . . . , n] if and only if
p ≤ n. So we can say that

lcm [1, 2, . . . , n] =
∏
p≤n

pep

for suitable ep.
By their definition, then, we have that pep ≤ n < pep+1, which is the same as

saying:

ep ≤
log n
log p

< ep + 1.

But ep ∈ Z, so this is equivalent to saying

ep =
[

log n
log p

]
.

This proves that ordp (lcm [1, 2, . . . , n]) =
[

logn
log p

]
, a fact that will be used later.

For now we note that we can place this value into the formula for the lcm that we
found a few lines above to find:
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lcm [1, 2, . . . , n] =
∏
p≤n

p[
logn
log p ]

≤
∏
p≤n

p
logn
log p

=
∏
p≤n

n

= nπ(n),

where π(n) is the prime counting function.
Now, in what is perhaps an unexpected move when we set out to prove that ζ(3)

was irrational, we appeal to the prime number theorem. It says that for any ε > 0
there is a natural number N such that for all n > N we have

π(n) ≤ n

log n
+ ε.

So for all n > N we have

log (lcm [1, 2, . . . , n]) = π(n) log n

≤ n

log n
log n+ ε log n

≤ n+ εn

= (1 + ε)n.

Or, simply,
lcm [1, 2, . . . , n] ≤ exp ((1 + ε)n) .

�

This bound will prove very useful when we have to show that ν(n)bn � α2n/(1+δ)

for some δ, but the previous proof also holds a detail that will be pivotal in checking
that if we take ν(n) = 2 lcm [1, 2, . . . , n]3 then ν(n)an is an integer as required.
Checking that detail is the crux of the next lemma.

Lemma 3.7. For integers 0 ≤ k ≤ n,

2 lcm [1, 2, . . . , n]3
(
n+ k

k

)
cn,k ∈ Z.

Proof. Recall that

cn,k =
n∑

m=1

1
m3

+
k∑

m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) .
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So if we can show that both

2 lcm [1, 2, . . . , n]3
(
n+ k

k

)
1
m3

and
2 lcm [1, 2, . . . , n]3

(
n+k
k

)
2m3

(
n
m

)(
n+m
m

)
are integers for 1 ≤ m ≤ n then their sum over this range will also be an integer,
as required.

The first of these numbers is clearly an integer, since if m ≤ n then
m3 | lcm [1, 2, . . . , n]3. The second value is somewhat less trivially an integer. First
we make the following claim:

Claim: ordp
((
n
m

))
≤ ordp (lcm [1, 2, . . . , n])− ordp(m).

Proof of claim: De Polignac’s formula tells us that

ordp (n!) =
∞∑
k=1

[
n

pk

]
.

So,

ordp

((
n

m

))
= ordp

(
n!

m!(n−m)!

)
= ordp(n!)− ordp(m!)− ordp ((n−m)!)

=
∞∑
k=1

([
n

pk

]
−
[
m

pk

]
−
[
n−m
pk

])

=
N∑
k=1

([
n

pk

]
−
[
m

pk

]
−
[
n−m
pk

])

where N =
[

logn
log p

]
= ordp (lcm [1, 2, . . . , n]), since if k > logn

log p then pk > n and so[
n
pk

]
= 0. We now consider three cases.

Case 1 pk | m. In this case we have m = apk for some integer a. Suppose
n = qpk + r with 0 ≤ r < pk.

Then
[
n

pk

]
= q,

[
m

pk

]
= a and

[
n−m
pk

]
=
[

(q − a)pk + r

pk

]
= q − a.

So
[
n

pk

]
−
[
m

pk

]
−
[
n−m
pk

]
= q − a− q + a = 0.
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Case 2 pk | n −m. So we have n −m = bpk for some integer b. Suppose again
that n = qpk + r with 0 ≤ r < pk.
Then [

n

pk

]
= q,

[
n−m
pk

]
= b,

and [
m

pk

]
=
[
n− (n−m)

pk

]
=
[

(q − b)pk + r

pk

]
= q − b.

So
[
n

pk

]
−
[
m

pk

]
−
[
n−m
pk

]
= q − q + b− b = 0.

Case 3 pk - m, pk - n−m. Write

{
m = µpk + r1, 0 < r1 < pk

n−m = νpk + r2, 0 < r2 < pk
, so

n = (n−m) +m = (ν + µ)pk + r1 + r2, 0 < r1 + r2 < 2pk.

And
[
m

pk

]
= µ,

[
n−m
pk

]
= ν, and

[
n

pk

]
=

{
ν + µ if 0 < r1 + r2 < pk

ν + µ+ 1 if pk ≤ r1 + r2 < 2pk
.

So
[
n

pk

]
−
[
m

pk

]
−
[
n−m
pk

]
=

{
ν + µ− µ− ν = 0 if 0 < r1 + r2 < pk

ν + µ+ 1− µ− ν = 1 if pk ≤ r1 + r2 < 2pk

From these three cases we see that ordp
((
n
m

))
is a sum of ordp (lcm [1, . . . , n])

terms, each of them either 0 or 1. Moreover, at least ordp(m) are zero corresponding
to the ordp(m) cases where pk | m. Hence

ordp

((
n

m

))
≤ ordp (lcm [1, 2, . . . , n])− ordp(m).

We can now prove that
lcm [1, 2, . . . , n]3

(
n+k
k

)
m3
(
n
m

)(
n+m
m

) is an integer by showing that any

given prime divides the numerator more times than it divides the denominator. If
we write the denominator as

m3

(
n

m

)(
n+m

m

)(
n+ k

k

)−1
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then we note that(
n+m

m

)(
n+ k

k

)−1

=
(n+m)!
n!m!

/
(n+ k)!
n!k!

=
k!
m!

/
(n+ k)!
(n+m)!

=
k!

m!(k −m)!

/
(n+ k)!

(n+m)!(k −m)!

=
(
k

m

)(
n+ k

k −m

)−1

.

Now, looking at the denominator of our number and using the Claim from above
as well as results from the previous lemma, we get

ordp

(
m3

(
n

m

)(
n+m

m

)(
n+ k

k

)−1
)

= ordp

(
m3

(
n

m

)(
k

m

)(
n+ k

k −m

)−1
)

= 3 ordp (m) + ordp

((
n

m

))
+ ordp

((
k

m

))
− ordp

((
n+ k

k −m

))
≤ 3 ordp (m) + ordp (lcm [1, . . . , n])− ordp (m) + ordp (lcm [1, . . . , k])− ordp (m)

= ordp (m) +
[

log n
log p

]
+
[

log k
log p

]

≤ 3
[

log n
log p

]
since m ≤ k ≤ n.

If we look at the numerator of our number then we simply get

ordp
(

lcm [1, . . . , n]3
)

= 3
[

log n
log p

]
.

So any given prime divides the numerator of our number at least as often as it
divides the denominator, or in other words our number is an integer. Thus

2 lcm [1, 2, . . . , n]3
(
n+ k

k

)
cn,k

is a sum of integers, hence is an integer itself.
�

We now have everything we need to prove the main result of this section.
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Theorem 3 (Apéry’s theorem). ζ(3) is irrational.

Proof. By Lemma 3.1 it suffices to show that there exist sequences of integers
(pn) and (qn) such that, for some fixed δ > 0, we have∣∣∣∣ζ(3)− pn

qn

∣∣∣∣� 1
q1+δn

for infinitely many n. So let us define{
pn = 2 lcm [1, 2, . . . , n]3 an
qn = 2 lcm [1, 2, . . . , n]3 bn.

Since bn ∈ Z for all n we know that qn ∈ Z. And by Lemma 3.7 we can also say
that pn ∈ Z. Clearly pn

qn
= an

bn
, so by Lemma 3.2 we know pn

qn
→ ζ(3).

By Lemmas 3.5 and 3.6 we know that for any ε > 0 there exists a natural number
N such that if n > N then

qn = 2 lcm [1, 2, . . . , n]3 bn
� αn exp ((3 + ε)n)

= αnα(3+ε)n/ logα

= αn(1+ 3+ε
logα )

= α2n( logα+3+ε
2 logα ).

Remember we wanted something of the form qn � α2n/(1+δ), so we want

2 logα
logα+ 3 + ε

= 1 + δ

for some δ > 0. Setting ε = 1
3 shows then that qn � α2n/(1+δ) where

δ =
3 logα− 10
3 logα+ 10

≈ 0.028 > 0

which will suffice. So we have that∣∣∣∣ζ(3)− pn
qn

∣∣∣∣� 1
α2n
� 1

q1+δn

for a positive constant δ, and so by Lemma 3.1, ζ(3) is irrational.
�
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3.2. The source of Apéry’s proof.
It was 2.00pm on a thursday afternoon in June 1978 when Roger Apéry gave a

talk “Sur l’irrationalité de ζ(3).” In this talk he claimed to have proofs that both
ζ(2) and ζ(3) were irrational.7

The talk itself was exceedingly sketchy, Apéry made a series of increasingly
outlandish claims that, if all true, would indeed confirm that ζ(3) 6∈ Q. However,
Apéry’s rather blasé approach to the proof and a general doubt about the result
being proved meant that the talk did not spark huge interest at the time.

Scepticism was rife, but some mathematicians in the audience believed Apéry
might have found a valid proof and set out to verify his claims. Three of these
mathematicians, Henri Cohen, Hendrik Lestra, and Alfred van der Poorten spent
an evening discussing the ideas surrounding Apéry’s proof and checking some of his
more outlandish numerical claims on their pocket calculators. They came away con-
vinced that he was right, but they were unable to prove one crucial step, specifically
Lemma 3.3 from above concerning the recursion relationship that the sequences (an)
and (bn) satisfy. At a conference in Helsinki in July 1978 Alfred van der Poorten
pointed out to Apéry his groups’ inability to prove this part, Apéry is reported to
have considered this as more a compliment than a criticism.

After nearly two months of fruitless labour on the lemma, Cohen and van der
Poorten showed the problem to German-American mathematician Don Bernhard
Zagier, who quickly solved the corresponding recurrence quandary for the ζ(2)
case. Using Zagier’s idea, Cohen soon managed to prove the desired result for the
sequences in the ζ(3) case. On August 18, just two months after Apéry’s talk,
Cohen delivered a lecture which finally explained how to complete the steps of
Apéry’s proof, and thus ζ(3) became Apéry’s constant.

As van der Poorten himself put it, his and Cohen’s work on the proof “constitutes
a mystification rather than an explanation.” However, following the talk Apéry
himself took the podium to deliver a brief monologue on the state of the French
language and then discuss the source of his ideas briefly. The most important
identity Apéry used, hidden in the actual proof, is the following:

ζ(3) =
5
2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) .
7Of course, it is well known that for any even integer n, ζ(n) is of the form p

q
πn, and thus is

irrational. Apéry’s proof that ζ(2) = π2

6
is irrational was interesting not only because it didn’t

use any properties of π, but also because it gave a better estimate on the irrationality measure8

of ζ(2) and hence of π2. In fact Apéry’s proof improved the bound on the irrationality measure
of π2 to

µ(π2) ≤ 11.85078 . . . .

8The irrationality measure of a number x, as the name suggests, is a measure of how irrational

the number is, or rather of how well x can be approximated by rational numbers. It is also called

the Liouville-Roth constant or irrationality exponent of x, denoted µ(x), and is the supremum of
the real numbers µ such that

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qµ

is satisfied by infinitely many coprime pairs of integers p and q.
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To prove this result we first note that for any sequence of integers a1, a2, . . . we
have

K∑
k=1

a1a2 · · · ak−1

(x+ a1)(x+ a2) · · · (x+ ak)
=

1
x
− a1a2 · · · aK
x(x+ a1) · · · (x+ aK)

.

If we let x = n2, ak = −k2, and take K = n− 1 we arrive at

n−1∑
k=1

(−1)k−1(k − 1)!2

(n2 − 12) · · · (n2 − k2)
=

1
n2
− (−1)n−1(n− 1)!2

n2(n2 − 12) · · · (n2 − (n− 1)2)

=
1
n2
− 2(−1)n−1

n2
(
2n
n

) .

The last line follows from:

(n− 1)!2

(n2 − 12)(n2 − 22) · · · (n2 − (n− 1)2)

=
(n− 1)!2

(n+ 1)(n− 1)(n+ 2)(n− 2) · · · (n+ n− 1)(n− n+ 1)

=
(n− 1)!2

(2n− 1)(2n− 2) · · · (n+ 1)(n− 1) · · · 2 · 1

=
2n2(n− 1)!2

2n(2n− 1)(2n− 2) · · · (n+ 1)n(n− 1) · · · 2 · 1

=2
n!2

(2n)!

=2
(

2n
n

)−1

.

Now if we define

εn,k =
k!2(n− k)!
2k3(n+ k)!

then we can note that

(−1)kn (εn,k − εn−1,k) =
(−1)k−1(k − 1)!2

(n2 − 12) · · · (n2 − k2)
.

And so
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N∑
n=1

n−1∑
k=1

(−1)k (εn,k − εn−1,k) =
N∑
n=1

1
n3
− 2

N∑
n=1

(−1)n−1

n3
(
2n
n

)(4)

=
N∑
k=1

(−1)k (εN,k − εk,k)

=
N∑
k=1

(−1)k

2k3
(
N+k
k

)(
N
k

) +
1
2

N∑
k=1

(−1)k−1

k3
(
2k
k

) .(5)

If we now let N → ∞ then we can see that the left hand term of (5) will tend
to zero, and so putting the right hand side of (4) and (5) together gives

ζ(3) =
5
2

∞∑
n=1

(−1)n−1

n3
(
2n
n

) .
Looking at the above working we can now see that the sequence we used in the

proof, cn,k, differs from ζ(3) by the same amount as the above series differs. This is
the starting point for Apéry’s approach. The terms cn,k themselves don’t converge
on ζ(3) fast enough to assure its irrationality, so he “accelerated” the convergence
with the sequences an and bn which, roughly speaking, have the ratio cn,k. And as
we saw in this section, they do converge to ζ(3) quickly enough to prove that it is
not a rational number.

The fact that Apéry’s approach simplifies to work on ζ(2) is a byproduct of the
pleasant identity

ζ(2) = 3
∞∑
n=1

1
n2
(
2n
n

) .
However, it is now widely supposed that a similar proof will not work for ζ(5) nor
any higher value of the zeta function evaluated at an odd integer. In the years since
Apéry’s proof much work has been done attempting to find a constant ξ5 such that

ζ(5) = ξ5

∞∑
n=1

(−1)n−1

n5
(
2n
n

) .
Alas, with extensive computer searching[2] it has been shown that if ξ5 does exist
and is algebraic with degree less than 25 then the coefficients of its minimum poly-
nomial must have Euclidean norm exceeding 10383, so proving the irrationality of
ζ(5) and the higher zeta constants will almost certainly rely on different methods.

3.3. More proofs.
Alfred van der Poorten’s paper on Apéry’s proof was titled “A Proof that Euler

Missed”, and indeed the mathematics involved in the proof would certainly not
have been beyond Euler9, though the deeper reasoning which led up to the proof
may have been.

While the proof may have eluded Euler, and indeed all other mathematicians
until the 1970s, once Apéry had published his proof, others soon followed. Frits

9In fact it was Nick Katz who, after Cohen’s talk in Helsinki, enthusiastically proclaimed “This
is marvellous! It is something Euler could have done!”
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Beukers was the first to find an alternative approach[4], with a very tidy proof
involving integrals over the Legendre polynomials,

Pn(x) =
1
n!

dn

dxn
(xn(1− x)n) .

While it looks different to Apéry’s proof, it is in fact much the same, simply finding
integral expressions analogous to the sums in the original proof.

Much as Apéry’s proof readily simplifies to prove the irrationality of ζ(2), so
too does Beukers’ proof. And the same problems that prevent one from extend-
ing Apéry’s approach to cover ζ(5) or any higher zeta value also afflicts Beukers’
method. In fact these hold true for all known proofs that ζ(3) is irrational.

The idea behind Beukers’ proof is not to find an infinite sequence that satisfies
the irrationality criterion of Lemma 3.1, but rather to use the assumption that ζ(3)
is rational to construct a sequence that is bounded below by some strictly positive
number, but which tends to zero, much as we did when proving the Lindemann-
Weierstrass theorem. Beukers managed to prove the following identity:∫ 1

0

∫ 1

0

− log(xy)
1− xy

Pn(x)Pn(y)dxdy =
An +Bnζ(3)
lcm [1, . . . , n]3

for some integers An and Bn.10

Using some cunning partial integration, and assuming that ζ(3) is rational and
equal to a

b , Beukers eventually arrived at the inequality

0 <
1
b
≤ |An +Bnζ(3)| ≤ 4

(
4
5

)n
,

which is clearly a contradiction since the right hand side tends to zero, so will
eventually become less than 1

b .

Beukers’ proof is generally considered the neatest proof of Apéry’s result, if not
the most elementary. Certainly if one can manage the tricky integrations then
the result follows far more quickly this way. A third proof of the result, due to
Wadim Zudilin in 2002[17] is far more reminiscent of Apéry’s approach, using many
series and some creative telescoping of sums to finally construct an integer I in the
range 0 < I < 1. His method is similar to an earlier proof of the result by Yuri
Nesterenko[9], its starting point is the rational function

Rn(t) =
(

(t− 1)(t− 2) · · · (t− n)
t(t+ 1)(t+ 2) · · · (t+ n)

)2

.

From this function he formed a number Fn from the hypergeometric series given
by

Fn = −
∞∑
t=1

R′n(t)

and showed that Fn = unζ(3)− vn where un and lcm [1, . . . , n]3 vn were integers.

10This is in fact closely related to Hadjicostas’s formula∫ 1

0

∫ 1

0

1− x

1− xy
[− log(xy)]s dxdy = Γ(s+ 2)

[
ζ(s+ 2)−

1

s+ 1

]
though this formula was not conjectured nor proved until 2004[7].
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Next he defined the rational function

Rn(t) = n!2(2t+ n)
(t− 1) · · · (t− n) · (t+ n+ 1) · · · (t+ 2n)

(t(t+ 1) · · · (t+ n))4

and the corresponding hypergeometric series

Fn =
∞∑
t=1

Rn(t).

With some clever use of recursion relationships Zudilin proved that Fn = Fn
for all n, and then used bounds found with Fn to deduce that if ζ(3) = a

b then
b lcm [1, . . . , n]3 Fn is an integer, since it equals lcm [1, . . . , n]3 una−lcm [1, . . . , n]3 vnb,
and it satisfies the inequality

0 < b lcm [1, . . . , n]3 Fn < 20b(n+ 1)481n(
√

2− 1)4n.

But 81(
√

2 − 1)4 ≈ 0.795 < 1 so the right hand side tends to zero, contradicting
the left hand side being an integer. And so ζ(3) must be irrational.

Most mathematicians are of the opinion that ζ(n) will be at least irrational, and
most probably transcendental for all positive integers n > 1. It has been known
for over a hundred years that ζ(2n) is transcendental, but it was only after Apéry’s
proof that any kind of progress was made on the arithmetic nature of the odd zeta
constants.

Some authorities believe that a general result in this field is imminent, or at
least a proof that some other zeta constant is irrational11, and such optimism is not
misplaced. In recent years using wholly different techniques to Apéry some new
results have come to light.

In 2000 Tanguy Rivoal published a brief but extraordinary paper which proved
that infinitely many of the numbers ζ(2n + 1) are irrational[12]. The proof uses
linear forms in values of the zeta function and estimates upon them to bound the
dimension of a vector space spanned by values of the zeta function at odd integers.
A direct consequence of this bound is the aforementioned result.

A year later, and with only a little more work, Rivoal12 improved upon his pre-
vious bounds to show that in fact one of the nine numbers ζ(5), ζ(7), ζ(9), . . . , ζ(21)
has to be irrational[13]. Using the same method Wadim Zudilin managed to remove
ζ(21) from this list, and then reduce the statement even further to prove that one
of the numbers ζ(5), ζ(7), ζ(9), or ζ(11) must be irrational[15][16].

Work on the problem did not stop there, of course, but hopes that Zudilin’s
approach would keep reducing the list until only one number remained did not come
true, and five years on this is as far as anyone has got on proving the irrationality
of the odd zeta values.

A seemingly related but frustratingly trickier problem than proving the irra-
tionality of the odd zeta constants is doing the same for the Euler-Mascheroni

11[14] in particular is hopeful of such a result.
12And, independently, Zudilin.
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constant γ, defined by

γ = lim
N→∞

(
N∑
n=1

1
n
− logN

)
.

Euler first mentioned the number as being worthy of note in the 1730s. Two
centuries later David Hilbert - who was not averse to setting challenging problems
to his contemporaries - mentioned the irrationality of γ as an “unapproachable”
problem, in the face of which mathematicians stood helpless. Even the eminent
number theorist G. H. Hardy is said to have offered his Savilian Chair at Oxford
to anyone who could prove the number was irrational. And more recently sev-
eral mathematicians have been willing to make bets that the number is in fact
transcendental, Conway and Guy among them.

Despite all this, very little progress has been made on proving the result, and
those same mathematicians who would make bets on the number being irrational
would also wager that a proof will not surface any time soon. Several technical
criteria have been found that would imply the irrationality of γ, but perhaps the
most solid result known so far on this subject is that if γ is rational then its
denominator exceeds 10242080.

The Euler-Mascheroni constant is not the only open problem in this area of
mathematics. As was mentioned at the start of this essay, it is one of number
theory’s great paradoxes that while almost all real numbers are transcendental
proving that any particularly number does not satisfy any polynomial equation is
a most challenging problem. The Lindemann-Weierstrass and Gelfond-Schneider
theorems may have dealt with large classes of numbers, but even they are powerless
in the face of such deceptively simple numbers as eπ and e + π. Finding a way to
deal with these, and similar, numbers almost certainly would, in the words of David
Hilbert, “lead us to entirely new methods and to a new insight into the nature of
special irrational and transcendental numbers.”
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