Regression on a Graph

Andrew Smith

www.maths.bris.ac.uk/~as1637

MINGLE, 7 October 2009

Regression on a Graph

Regression

- Example: Scatterplot Smoothing
- Example: Image Analysis
- Example: UK House Prices

2 Graphs

- Regression on a Graph
 Signal + Noise Model
 - Graphs in Statistics
 - Regression Tradeoff

Regression: Scatterplot Smoothing

Davies and Kovac, 2001, Ann. Stat. 29, p1-65.

Regression: Image Analysis

Regression: Image Analysis

Polzehl and Spokoiny, 2000, JRSSB 62, p355-54.

Regression: Kernel Smoothing

Regression: UK House Prices

Graphs

 $(\mathcal{V},\mathcal{E})$

Graphical structures can be found in ...

- Scatterplot smoothing
- Image analysis
- Disease risk mapping
- Discrete spatial variation
- Longitudinal data
- . . .

$\mathsf{Data} = \mathsf{Signal} + \mathsf{Noise}$

Suppose the observations come from a graph $(\mathcal{V}, \mathcal{E})$. Given response observations y we estimate the signal function f that best approximates the data, according to

$$\begin{array}{rcl} \mathsf{Data} &=& \mathsf{Signal} &+& \mathsf{Noise} \\ y_i &=& f_i &+& \sigma z_i, \quad i \in \mathcal{V} \end{array}$$

- An observation at every vertex
- Edges tell us which observations are close together

Scatterplot Smoothing Graph

$$\mathcal{V} = \{1, \ldots, n\}$$
 $\mathcal{E} = \{\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}\}$

Image Analysis Graph

 $\mathcal{V} = \mathsf{pixels} \quad \mathcal{E} = \mathsf{borders} \ \mathsf{between} \ \mathsf{pixels}$

UK House Price Graph

- $\mathcal{V} = \text{ post towns}$
- $\mathcal{E} =$ neighbouring towns

Regression Tradeoff

Too far from data

Too rough

 \Leftrightarrow

Too far from data \Leftrightarrow Too rough

- Measure distance from data at the vertices
- Measure roughness at the edges of the graph

Scatterplot Smoothing

- Measure distance from data at the vertices
- Measure roughness at the edges of the graph

Minimise

 $\mathsf{Distance} + \lambda \times \mathsf{Roughness}$

• Might have to use a new algorithm

Image Analysis

Image Analysis

Kernel smoothing

Penalised regression

Image Analysis

Kernel smoothing

Penalised regression

UK House Prices

Summary

- Many problems in regression have a graphical interpretation.
- Measure distance from data and roughness on the graph. This is called penalised regression.
- We have developed a fast algorithm for producing these fits.