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1. Introduction

A diophantine equation is a polynomial equation with integer coefficients
where we wish to find solutions in the integers, or rational numbers. Some
very simply examples are

(1) x = y,

(2) 2x + 2y = 1.

Note that (1) has infinitely many solutions in the integers, but (2) has no
solutions in the integers, since the left hand side is even but the right hand
side is odd.

In my talk today, I hope to give you an idea of some problems in diophan-
tine geometry. This way of thinking arose in the past hundred or so years
(although some ideas can be traced back to the ancient Greeks), and it tries
to solve Diophantine problems using methods and ideas from geometry. If
I have enough time, I will also briefly highlight some aspects of my own
research.

We shall see some examples of diophantine equations given by curves, and
then show how these relate to the general theory. To highlight the geometric
aspects we use the term rational point to refer to a solution in the rational
numbers, and similarly with regard to integral solutions.

2. Examples

Consider the equation of the circle

C : x2 + y2 = 1,

which has only four integer solutions, but infinitely many rational solutions.
To see this, note that P = (1, 0) is one solution. If we choose a line through
P with a rational gradient, this will interest the circle at one unique point,
which is a point with rational coordinates. Thus we have found infinitely
many solutions! And in fact, we have shown that the set of solutions is
somehow naturally identified with ℚ ∪ {P}.

Now we shall look at equations of higher degree, consider the following
curve

E : y2 = x3 − x + 1.

This is an example of an elliptic curve, which are well-known for their beauty.
There are a few obvious rational points on this curve, for example P1 =
(1, 1). However, if we try to do the previous trick of drawing a line through
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this point, we get stuck, since in general it will intersect the curve in two more
points not one, and there is no guarantee these will be rational solutions.

But there is hope yet! Taking a tangent to the point P1, this intersects the
curve at another point P2 = (−1,−1). Then we can reflect this in the x−axis
to get the point P3 = (−1, 1). Now, drawing a line through P1 and P3 gives
us another point P4 = (0, 1), and reflecting in the x−axis gives P5 = (0,−1).
Now drawing a line through P1 and P5 gives P6 = (3, 5), etc... You can see
that we can carry on this process to generate more points, however it is
not clear whether or not this will eventually give us every solution, or even
infinitely many solutions.

More generally, given any cubic curve, and two rational points P and Q
on it, we can draw a line through them to get a third rational point P ∗Q.
This is some kind of binary operation, and it would be nice if it had cool
properties (such as giving a group law). Unfortunately it doesn’t, however
as a minor technical point if we reflect P ∗ Q in the x−axis, we get a new
point P + Q. And it is this operation which gives us an abelian group
law. Returning to the previous example, one can check in fact the point
P1 = (1, 1) does in fact generate every solution to the equation, and so as
abstract groups we have

E(ℚ) ∼= ℤ.

3. General Theory

We have seen a few examples now of different kinds of diophantine equa-
tions, however, is there any method to this madness? It turns out, yes!

We shall consider diophantine equations of the form

f(x, y) = 0

where f is a polynomial with integer coefficients and degree d, which is non-
singular over ℂ, that is - the solutions over ℂ don’t do anything silly like
intersect them-self (this is to simplify our presentation, singularities are not
that bad really).

Naively, for large degree, you would not expect not many solutions, since
the d−th root of a rational number is not in general rational. This vague
heuristic is in fact in some respects true as the following table shows.

Degree Name # rational solutions Structure
1, 2 Rational Curves 0 or ∞ Parametrised by ℚ
3 Elliptic Curves ≤ ∞ Finitely generated

abelian group [Mor1922]
≥ 4 General Type <∞ [Fal1983] ?!

4. My Research

Every talk that you give in academia should give some reference to your
own work, and this talk is no exception. Given that curves are so well
understood, how does the theory stand for higher-dimensions i.e. when
you have more variables? It turns out that there is not such a satisfactory
picture.

For surfaces for example, even though there is a geometric classification,
there are still many un-answered diophantine questions. By a surface I mean
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the solution set to an equation of the form

f(x, y, z) = 0

where f ∈ ℤ[x, y, z]. The case of degree 1 and 2 is well understood and
similar to that of curves. The case of degree 3 is less well understood. For
example consider the surface

x3 + y3 = z3 + 1.

This has a whole family of solutions given by x = z, y = 1. This corresponds
to a line in the surface. A general cubic surface contains 27 lines, and since
these can be thought of as “trivial” solutions, it is natural to “remove”
them and see what is left over. It turns out that in general there will still
be infinitely many solutions left over, and I have been studying a way to
somehow quantify the “density” of these solutions, on cubic surfaces and
their generalizations, del Pezzo surfaces.

The conjecture is that after removing the lines, the density of solutions
left over should be less than the density of solutions on the lines. This is
known for a few specific (singular) surfaces, however a proof in general is
currently out of reach. I am working on proving results for specific examples,
to increase the wealth of information available.
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