The Riemann zeta function and its moments

Sandro Bettin
MINGLE 2009
University of Bristol

Bristol, $7^{\text {th }}$ October 2009

Prime numbers

Definition

A prime number is a natural number which has exactly two distinct natural number divisors: 1 and itself.

Examples: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, $59,61,67,71,73,79,83,89,97,101 \ldots$

Important problems

Let $\pi(x):=\#\{p \leq x$ prime $\}$.

- Is $\pi(x) \sim \operatorname{Li} x:=\int_{2}^{x} \frac{1}{\log y} \mathrm{~d} y$? [Yes, Prime Number Theorem]
- Is $\pi(x)-\operatorname{Li}(x)=O\left(x^{\frac{1}{2}+\varepsilon}\right)$?
[Open]
- Is $p_{n+1}-p_{n}=O\left(p_{n}^{\frac{1}{2}+\varepsilon}\right)$?
[Open]

The Riemann zeta function

Definition

The Riemann zeta function is the function of a complex variable s, defined for $\Re(s)>1$ by
$\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots$.
It can be shown that $\zeta(s)$ can be extended to a meromorphic function defined over all complex values $s \neq 1$ in a unique way.

Important problems

- Is $\zeta(1+i t) \neq 0$ for all real t ?

■ Do all the "non trivial" zeros of $\zeta(s)$ lie on the line $\Re(s)=\frac{1}{2}$?
[Riemann hypothesis, open]

- Is $\zeta\left(\frac{1}{2}+i t\right)=O\left(t^{\varepsilon}\right)$?
[Lindelöf hypothesis, open]

The connection between primes and $\zeta(s)$ I

Euler product:
$\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1}=\prod_{p \text { prime }}\left(\sum_{m=0}^{\infty} p^{-m s}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\zeta(s), \quad \Re(s)>1$.

Infinitely many primes $\Longleftarrow \lim _{y \rightarrow 1^{+}} \zeta(y)=+\infty$
Prime Number Theorem $\Longleftrightarrow \zeta(1+i t) \neq 0 \forall t \in \mathbb{R}$

$$
\begin{aligned}
\pi(x)-\operatorname{Li}(x)=O\left(x^{\frac{1}{2}+\varepsilon}\right) & \Longleftrightarrow \text { Riemann hypothesis } \\
p_{n+1}-p_{n}=O\left(p_{n}^{\frac{1}{2}+\varepsilon}\right) & \Longleftrightarrow \text { Lindelöf hypothesis }
\end{aligned}
$$

The connection between primes and $\zeta(s)$ II

Chebyshev ψ function:

$$
\psi(x):=\sum_{p^{m} \leq x} \log p=\sum_{n \leq x} \Lambda(n),
$$

where

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{m} \\ 0 & \text { otherwise }\end{cases}
$$

is the von Mangoldt function.
From the Euler product it's very easy to see that

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s}}
$$

which implies

$$
\int_{1}^{x} \psi(u) \mathrm{d} u=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s+1}}{s(s+1)}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) \mathrm{d} s \quad(x>0, c>1)
$$

Some properties of $\zeta(s)$

Functional equation:

$$
\zeta(1-s):=\chi(1-s) \zeta(s),
$$

where

$$
\chi(s):=2(2 \pi)^{-s} \Gamma(s) \cos \frac{\pi s}{2} .
$$

Zero free region:

$$
\zeta(\sigma+i t) \neq 0 \quad \text { if } \quad \sigma>1-\frac{a}{\log (|t|+2)}, t \in \mathbb{R}
$$

for some constant $a>0$.

Moments of $\zeta(s)$

The $2 k^{\text {th }}$ moment of the Riemann zeta function:

$$
M_{2 k}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

Why are they important?

- $M_{2 k}(T)=O\left(T^{1+\varepsilon}\right) \Longleftrightarrow$ Lindelöf hypothesis.
- Jensen's Formula and Littlewood's Lemma relate the number of zeros of a holomorphic function with moments.
Example:
At least two fifths of the zeros of $\zeta(s)$ are on the critical line.

Some results on moments

The asymptotic behaviour of $M_{2 k}(T)$ is known just for $k=1,2$:

$$
M_{2 k}(T):=\int_{1}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim \begin{cases}T \log T & \text { if } k=1, \\ \frac{T}{2 \pi^{2}}(\log T)^{4} & \text { if } k=2 .\end{cases}
$$

For $k>2$ we don't have theorems, but just the conjecture

$$
M_{2 k}(T) \sim f_{k} a_{k} T \log ^{k^{2}} T
$$

where a_{k} is a factor defined as an infinite product over primes and f_{k} is a rational number that can be predicted using Random Matrix Theory.

Shifted moments

The second shifted moment of $\zeta(s)$ is

$$
I_{a, b}(T):=\int_{0}^{T} \zeta\left(\frac{1}{2}+a+i t\right) \zeta\left(\frac{1}{2}-b-i t\right) d t
$$

For bounded complex shifts a, b, we have

$$
I_{a, b}(T) \sim \int_{1}^{T}\left(\zeta(1+a-b)+\left(\frac{t}{2 \pi}\right)^{-a+b} \zeta(1-a+b)\right) d t
$$

Theorem

Let $|\Re(a)|,|\Re(b)|=O\left(\frac{1}{\log T}\right)$ and $|\Im(a)|,|\Im(b)|=O\left(T^{2-\varepsilon}\right)$.
Then

$$
I_{a, b} \sim \int_{0}^{T} \zeta(1+a-b)+\chi\left(\frac{1}{2}+a+i t\right) \chi\left(\frac{1}{2}-b-i t\right) \zeta(1-a+b) d t
$$

