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Prime numbers

Definition

A prime number is a natural number which has exactly two
distinct natural number divisors: 1 and itself.

Examples: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97, 101. . .

Important problems

Let π(x) := #{p ≤ x prime}.
Is π(x) ∼ Li x :=

∫ x
2

1
log y dy? [Yes, Prime Number Theorem]

Is π(x)− Li (x) = O
(
x

1
2
+ε
)

? [Open]

Is pn+1− pn = O

(
p

1
2
+ε

n

)
? [Open]
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The Riemann zeta function

Definition

The Riemann zeta function is the function of a complex
variable s, defined for <(s) > 1 by
ζ(s) =

∑∞
n=1

1
ns = 1

1s + 1
2s + 1

3s + · · · .

It can be shown that ζ(s) can be extended to a meromorphic
function defined over all complex values s 6= 1 in a unique way.

Important problems

Is ζ(1 + it) 6= 0 for all real t? [Yes]
Do all the “non trivial” zeros of ζ(s) lie on the line
<(s) = 1

2? [Riemann hypothesis, open]
Is ζ(1

2 + it) = O (tε)? [Lindelöf hypothesis, open]
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The connection between primes and ζ(s) I

Euler product:

∏
p prime

(1−p−s)−1 =
∏

p prime

( ∞∑
m=0

p−ms

)
=
∞∑

n=1

1

ns
= ζ(s), <(s) > 1.

Infinitely many primes ⇐= lim
y→1+

ζ(y) = +∞

Prime Number Theorem ⇐⇒ ζ(1 + it) 6= 0 ∀t ∈ R

π(x)− Li (x) = O
(
x

1
2
+ε
)

⇐⇒ Riemann hypothesis

pn+1 − pn = O

(
p

1
2
+ε

n

)
⇐= Lindelöf hypothesis
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The connection between primes and ζ(s) II

Chebyshev ψ function:

ψ(x) :=
∑

pm≤x

log p =
∑
n≤x

Λ(n),

where

Λ(n) =

{
log p if n = pm,

0 otherwise

is the von Mangoldt function.
From the Euler product it’s very easy to see that

−ζ
′(s)

ζ(s)
=
∞∑

n=1

Λ(n)

ns
,

which implies∫ x

1
ψ(u) du =

1

2πi

∫ c+i∞

c−i∞

x s+1

s(s + 1)

(
−ζ
′(s)

ζ(s)

)
ds (x > 0, c > 1).
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Some properties of ζ(s)

Functional equation:

ζ(1− s) := χ(1− s)ζ(s),

where
χ(s) := 2(2π)−sΓ(s) cos

πs

2
.

Zero free region:

ζ(σ + it) 6= 0 if σ > 1− a

log(|t|+ 2)
, t ∈ R,

for some constant a > 0.
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Moments of ζ(s)

The 2kth moment of the Riemann zeta function:

M2k(T ) :=

∫ T

0

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k

dt

Why are they important?

M2k(T ) = O(T 1+ε)⇐⇒ Lindelöf hypothesis.

Jensen’s Formula and Littlewood’s Lemma relate the number
of zeros of a holomorphic function with moments.

Example:
At least two fifths of the zeros of ζ(s) are on the critical line.
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Some results on moments

The asymptotic behaviour of M2k(T ) is known just for k = 1, 2:

M2k(T ) :=

∫ T

1

∣∣∣∣ζ (1

2
+ it

)∣∣∣∣2k

dt ∼

{
T log T if k = 1,
T

2π2 (log T )4 if k = 2.

For k > 2 we don’t have theorems, but just the conjecture

M2k(T ) ∼ fkakT logk2
T ,

where ak is a factor defined as an infinite product over primes and
fk is a rational number that can be predicted using Random Matrix
Theory.
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Shifted moments

The second shifted moment of ζ(s) is

Ia,b(T ) :=

∫ T

0
ζ

(
1

2
+ a + it

)
ζ

(
1

2
− b − it

)
dt.

For bounded complex shifts a, b, we have

Ia,b(T ) ∼
∫ T

1

(
ζ(1 + a− b) +

( t

2π

)−a+b

ζ(1− a + b)

)
dt.

Theorem

Let |<(a)|, |<(b)| = O
(

1
log T

)
and |=(a)|, |=(b)| = O

(
T 2−ε).

Then

Ia,b ∼
∫ T

0
ζ(1 + a− b) +χ(

1

2
+ a + it)χ(

1

2
− b− it)ζ(1− a + b) dt.
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