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ABSTRACT. Using the same methods as a new proof that ¢(3) is irrational we
show that /2 is irrational. Again.

1. PROLEGOMENOUS LEMMATA

Theorem 1 (Brun’s irrationality criterion, [Brul0]). Let (x,) and (y,) be strictly
increasing sequences of natural numbers such that (x,/y,) is a strictly increasing
sequence and tends to some limit L. If the sequence (6,) given by

5 = Tny1 — T
Yn+1 — Yn
is strictly decreasing then L is irrational.

Let

(20— 1\,
xn—z< ok )2,

k=0
= <2n 1>2k.
—\2k+1

Tn+1 > T, yn+1 > Yn.

Proof. Exercise. ([l

and

Yn

Lemma 2. For alln > 1,

Lemma 3. Both sequences (x,,) and (y,) satisfy the recurrence

Un42 = 6un+1 — Un
forn > 1.

Proof. First define

2n —1
Ak = 2k,
* ( 2k )

n
Ty = E /\”JC'
k=0

so that
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Now let
I ~ 2(2k* — k — 2+ 6n — 4n?)
ke (n—1)(2n—1)

An k-
It can be verified that
)\n+1,k - 6)\n,k: + )\nfl,k: = Lmk - Ln k—1-

Summing over k we thus have

n+1

Z()\n—i-l,k - 6>\n,k + /\n—l,k) = L7L,n+1 - Ln,—l =0.
k=0

Hence z,,41 — 6z, + 2,1 = 0 as required.

2n—1
= ok
Him e (2k + 1)
and pull out of your hat a function M, j with the properties that M, ,4+1 =
Mn7_1 =0 and

Exercise. Let

Hn+1,k — 6,un,k + Hn—1k = Mn,k - Mn,k—la
and thus complete the proof. O

Lemma 4. For alln > 1,
Tp+1Yn — TnYnt+1 = 2.
Proof. By the previous lemma we have the identities
Tpg1 — 62y +25p—1 =0
Ynt1 = 6Yyn +yn—1 = 0.

Multiplying the first by y,, the second by z,, and then taking the difference we
deduce

Tn+1¥Yn — TnlYnt+l = TnlYn—1 — Tn—1Yn-

And so, by induction,

Tnt1Yn — Tn¥nt+l = T2Y1 — T1y2 = 7—5 = 2.

Corollary 5. For alln > 1,
anrl > Tn

Yn+1 yn'

Lemma 6.
lim 2° = V2.
n— 00 yn
Proof. We prove by staggered inductions the claims:
P(n):2y2 —22 =1
and
Q1) : 2Ynt1Yn — Tny1ZTn = 3.
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The basis cases P(1), P(2),Q(1) are easily checked numerically. We have the fol-
lowing implications,
Pin) ANPn—1) A Q(n—1) = P(n+1)
P(n) A Q(n—1) = Q(n).

And so the above cases together with the upcoming inductive steps will prove the
claims for all n.

First assume we know P(n — 1), P(n), and Q(n — 1). By lemma 3 we know

2y2+1 - x%z+1 = 2(6yn — Y1) — (62, — 1)
Multiplying this out gives us
2yp i1 — Thpr = 36(2y — ah) + (2yp_y — Th_1) = 12(2YnYn—1 — TaTn-1).
Whence, by the inductive hypotheses,
Y2 — a2, =36+1-36=1.

Now suppose we know that P(n) and Q(n — 1) are true. To prove Q(n) we take
the two recurrence relations

Tnt1 — 62y +2p—1 =0
Ynt1 — 6Yn +yn—1 =0

and multiply the first by x,,, the second by y,,, then take the difference. This gives
us

2yn+1yn — Tp4+1Tn = 6(2,%% - xi) - (2ynyn71 - (Enxnfl)
and by the inductive hypotheses this is
2UYn+1Yn — Tni1Tn =6 — 3 = 3.

To prove the lemma we now divide the identity P(n) by y2 to get

z2 _ 1
vn vn
But y,, — 0o, so we have the result. ]

2. FINDING A SUBSEQUENCE

Let
Tp — T
R R —
Yn — Ym
for 1 <m < n.
Think of § as a function from the following array to Q:

1,2 1,3 1,4 1,5 1,6
2,3 2,4 2,5 2,6
3,4 3,5 3,6

4,5 4,6
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We want an increasing sequence ny such that §(ng, ngr1) > d(ng+1, ngr2). Do this
in two steps;
Step 1 lim,, .o, 6(m,n) = /2, so after applying § to the table each row tends to

V2.
Step 2 For each m, eventually §(m,n) > v/2.

Together these imply a way of stepping down the table finding the requisite
sequence (ng).

Lemma 7. For any m € NT,

lim &(m,n) = V2.

n—oo

Proof. Exercise. 0
Lemma 8. For all m € NT there is some N,, € NV such that if n > N,, then

§(m,n) > V2.

Proof. After some rearrangement the lemma is equivalent to showing that for any
m there is N, such that for n > N,, we have

0<yn\/§—zn <ym\[2—xm.
In particular, if the sequence y,,v/2 — x,, — 0 then we will have the result.
During the proof of lemma 6 we proved the identity
2yi — xi =1.

We can factor the left hand side and divide by one of the factors to uncover the
identity
1

Vg =
\/iyn +xy
And so we’re done. O

— 0.

Theorem 9. /2 is irrational.

Proof. Start by picking values n; < ny such that §(ni,n2) > /2. The values
ny = 1, np = 2 will suffice since then 6(ni,n2) = 3/2 > /2. We now need to find
ng > ng such that d(ng,n3) < §(n1,n2). By lemma 7 we know

nll)rr;o 5(ng,n) = V2
and by lemma 8, for all sufficiently large n we also have
5(ng,m) > V2.
These two facts mean that for all sufficiently large n we will have
V2 < 8(ng,n) < 6(ni,ny),

and so we can take one of these values of n as nz and then repeat the whole process
to find n4 and so on. O
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