PROOF THAT $\sqrt{2}$ IS IRRATIONAL \#768

LEE A. BUTLER

Dedicated to Professor Trevor D. Wooley on the occasion of his nth birthday

Abstract. Using the same methods as a new proof that $\zeta(3)$ is irrational we show that $\sqrt{2}$ is irrational. Again.

1. Prolegomenous lemmata

Theorem 1 (Brun's irrationality criterion, [Bru10]). Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be strictly increasing sequences of natural numbers such that $\left(x_{n} / y_{n}\right)$ is a strictly increasing sequence and tends to some limit L. If the sequence $\left(\delta_{n}\right)$ given by

$$
\delta_{n}=\frac{x_{n+1}-x_{n}}{y_{n+1}-y_{n}}
$$

is strictly decreasing then L is irrational.
Let

$$
x_{n}=\sum_{k=0}^{\infty}\binom{2 n-1}{2 k} 2^{k},
$$

and

$$
y_{n}=\sum_{k=0}^{\infty}\binom{2 n-1}{2 k+1} 2^{k}
$$

Lemma 2. For all $n \geq 1$,

$$
x_{n+1}>x_{n}, \quad y_{n+1}>y_{n}
$$

Proof. Exercise.
Lemma 3. Both sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ satisfy the recurrence

$$
u_{n+2}=6 u_{n+1}-u_{n}
$$

for $n \geq 1$.
Proof. First define

$$
\lambda_{n, k}=\binom{2 n-1}{2 k} 2^{k}
$$

so that

$$
x_{n}=\sum_{k=0}^{n} \lambda_{n, k} .
$$

Date: October 4, 2013.

Now let

$$
L_{n, k}=\frac{2\left(2 k^{2}-k-2+6 n-4 n^{2}\right)}{(n-1)(2 n-1)} \lambda_{n, k}
$$

It can be verified that

$$
\lambda_{n+1, k}-6 \lambda_{n, k}+\lambda_{n-1, k}=L_{n, k}-L_{n, k-1}
$$

Summing over k we thus have

$$
\sum_{k=0}^{n+1}\left(\lambda_{n+1, k}-6 \lambda_{n, k}+\lambda_{n-1, k}\right)=L_{n, n+1}-L_{n,-1}=0 .
$$

Hence $x_{n+1}-6 x_{n}+x_{n-1}=0$ as required.
Exercise. Let

$$
\mu_{n, k}=\binom{2 n-1}{2 k+1} 2^{k}
$$

and pull out of your hat a function $M_{n, k}$ with the properties that $M_{n, n+1}=$ $M_{n,-1}=0$ and

$$
\mu_{n+1, k}-6 \mu_{n, k}+\mu_{n-1, k}=M_{n, k}-M_{n, k-1}
$$

and thus complete the proof.
Lemma 4. For all $n \geq 1$,

$$
x_{n+1} y_{n}-x_{n} y_{n+1}=2 .
$$

Proof. By the previous lemma we have the identities

$$
\begin{aligned}
x_{n+1}-6 x_{n}+x_{n-1} & =0 \\
y_{n+1}-6 y_{n}+y_{n-1} & =0 .
\end{aligned}
$$

Multiplying the first by y_{n}, the second by x_{n}, and then taking the difference we deduce

$$
x_{n+1} y_{n}-x_{n} y_{n+1}=x_{n} y_{n-1}-x_{n-1} y_{n}
$$

And so, by induction,

$$
x_{n+1} y_{n}-x_{n} y_{n+1}=x_{2} y_{1}-x_{1} y_{2}=7-5=2
$$

Corollary 5. For all $n \geq 1$,

$$
\frac{x_{n+1}}{y_{n+1}}>\frac{x_{n}}{y_{n}}
$$

Lemma 6.

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\sqrt{2}
$$

Proof. We prove by staggered inductions the claims:

$$
P(n): 2 y_{n}^{2}-x_{n}^{2}=1
$$

and

$$
Q(n): 2 y_{n+1} y_{n}-x_{n+1} x_{n}=3
$$

The basis cases $P(1), P(2), Q(1)$ are easily checked numerically. We have the following implications,

$$
\begin{aligned}
P(n) \wedge P(n-1) & \wedge Q(n-1)
\end{aligned} \Rightarrow P(n+1) ~ 子 \begin{aligned}
P(n) & \wedge Q(n-1)
\end{aligned} \Rightarrow Q(n) .
$$

And so the above cases together with the upcoming inductive steps will prove the claims for all n.

First assume we know $P(n-1), P(n)$, and $Q(n-1)$. By lemma 3 we know

$$
2 y_{n+1}^{2}-x_{n+1}^{2}=2\left(6 y_{n}-y_{n-1}\right)^{2}-\left(6 x_{n}-x_{n-1}\right)^{2} .
$$

Multiplying this out gives us

$$
2 y_{n+1}^{2}-x_{n+1}^{2}=36\left(2 y_{n}^{2}-x_{n}^{2}\right)+\left(2 y_{n-1}^{2}-x_{n-1}^{2}\right)-12\left(2 y_{n} y_{n-1}-x_{n} x_{n-1}\right) .
$$

Whence, by the inductive hypotheses,

$$
2 y_{n+1}^{2}-x_{n+1}^{2}=36+1-36=1
$$

Now suppose we know that $P(n)$ and $Q(n-1)$ are true. To prove $Q(n)$ we take the two recurrence relations

$$
\begin{array}{r}
x_{n+1}-6 x_{n}+x_{n-1}=0 \\
y_{n+1}-6 y_{n}+y_{n-1}=0
\end{array}
$$

and multiply the first by x_{n}, the second by y_{n}, then take the difference. This gives us

$$
2 y_{n+1} y_{n}-x_{n+1} x_{n}=6\left(2 y_{n}^{2}-x_{n}^{2}\right)-\left(2 y_{n} y_{n-1}-x_{n} x_{n-1}\right)
$$

and by the inductive hypotheses this is

$$
2 y_{n+1} y_{n}-x_{n+1} x_{n}=6-3=3 .
$$

To prove the lemma we now divide the identity $P(n)$ by y_{n}^{2} to get

$$
\frac{x_{n}^{2}}{y_{n}^{2}}=2-\frac{1}{y_{n}^{2}}
$$

But $y_{n} \rightarrow \infty$, so we have the result.

2. Finding A subsequence

Let

$$
\delta(m, n):=\frac{x_{n}-x_{m}}{y_{n}-y_{m}}
$$

for $1 \leq m<n$.
Think of δ as a function from the following array to \mathbb{Q} :

1,2	1,3	1,4	1,5	1,6	\ldots
	2,3	2,4	2,5	2,6	\ldots
	3,4	3,5	3,6	\ldots	
		4,5	4,6	\ldots	

We want an increasing sequence n_{k} such that $\delta\left(n_{k}, n_{k+1}\right)>\delta\left(n_{k+1}, n_{k+2}\right)$. Do this in two steps;
Step $1 \lim _{n \rightarrow \infty} \delta(m, n)=\sqrt{2}$, so after applying δ to the table each row tends to $\sqrt{2}$.
Step 2 For each m, eventually $\delta(m, n)>\sqrt{2}$.
Together these imply a way of stepping down the table finding the requisite sequence $\left(n_{k}\right)$.
Lemma 7. For any $m \in \mathbb{N}^{+}$,

$$
\lim _{n \rightarrow \infty} \delta(m, n)=\sqrt{2}
$$

Proof. Exercise.
Lemma 8. For all $m \in \mathbb{N}^{+}$there is some $N_{m} \in \mathbb{N}^{+}$such that if $n>N_{m}$ then $\delta(m, n)>\sqrt{2}$.

Proof. After some rearrangement the lemma is equivalent to showing that for any m there is N_{m} such that for $n \geq N_{m}$ we have

$$
0<y_{n} \sqrt{2}-x_{n}<y_{m} \sqrt{2}-x_{m}
$$

In particular, if the sequence $y_{n} \sqrt{2}-x_{n} \rightarrow 0$ then we will have the result.
During the proof of lemma 6 we proved the identity

$$
2 y_{n}^{2}-x_{n}^{2}=1
$$

We can factor the left hand side and divide by one of the factors to uncover the identity

$$
\sqrt{2} y_{n}-x_{n}=\frac{1}{\sqrt{2} y_{n}+x_{n}} \rightarrow 0
$$

And so we're done.
Theorem 9. $\sqrt{2}$ is irrational.
Proof. Start by picking values $n_{1}<n_{2}$ such that $\delta\left(n_{1}, n_{2}\right)>\sqrt{2}$. The values $n_{1}=1, n_{2}=2$ will suffice since then $\delta\left(n_{1}, n_{2}\right)=3 / 2>\sqrt{2}$. We now need to find $n_{3}>n_{2}$ such that $\delta\left(n_{2}, n_{3}\right)<\delta\left(n_{1}, n_{2}\right)$. By lemma 7 we know

$$
\lim _{n \rightarrow \infty} \delta\left(n_{2}, n\right)=\sqrt{2}
$$

and by lemma 8 , for all sufficiently large n we also have

$$
\delta\left(n_{2}, n\right)>\sqrt{2}
$$

These two facts mean that for all sufficiently large n we will have

$$
\sqrt{2}<\delta\left(n_{2}, n\right)<\delta\left(n_{1}, n_{2}\right)
$$

and so we can take one of these values of n as n_{3} and then repeat the whole process to find n_{4} and so on.

References

[Bru10] V. Brun, 'Ein Satz über Irrationalität,' Archiv for Mathematik og Naturvidenskab (Kristiania), 31, (1910), p. 6.

