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Abstract. Using the same methods as a new proof that ζ(3) is irrational we

show that
√
2 is irrational. Again.

1. Prolegomenous lemmata

Theorem 1 (Brun’s irrationality criterion, [Bru10]). Let (xn) and (yn) be strictly
increasing sequences of natural numbers such that (xn/yn) is a strictly increasing
sequence and tends to some limit L. If the sequence (δn) given by

δn =
xn+1 − xn
yn+1 − yn

is strictly decreasing then L is irrational.

Let

xn =

∞∑
k=0

(
2n− 1

2k

)
2k,

and

yn =

∞∑
k=0

(
2n− 1

2k + 1

)
2k.

Lemma 2. For all n ≥ 1,

xn+1 > xn, yn+1 > yn.

Proof. Exercise. �

Lemma 3. Both sequences (xn) and (yn) satisfy the recurrence

un+2 = 6un+1 − un
for n ≥ 1.

Proof. First define

λn,k =

(
2n− 1

2k

)
2k,

so that

xn =

n∑
k=0

λn,k.
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Now let

Ln,k =
2(2k2 − k − 2 + 6n− 4n2)

(n− 1)(2n− 1)
λn,k.

It can be verified that

λn+1,k − 6λn,k + λn−1,k = Ln,k − Ln,k−1.

Summing over k we thus have

n+1∑
k=0

(λn+1,k − 6λn,k + λn−1,k) = Ln,n+1 − Ln,−1 = 0.

Hence xn+1 − 6xn + xn−1 = 0 as required.

Exercise. Let

µn,k =

(
2n− 1

2k + 1

)
2k

and pull out of your hat a function Mn,k with the properties that Mn,n+1 =
Mn,−1 = 0 and

µn+1,k − 6µn,k + µn−1,k = Mn,k −Mn,k−1,

and thus complete the proof. �

Lemma 4. For all n ≥ 1,

xn+1yn − xnyn+1 = 2.

Proof. By the previous lemma we have the identities

xn+1 − 6xn + xn−1 = 0

yn+1 − 6yn + yn−1 = 0.

Multiplying the first by yn, the second by xn, and then taking the difference we
deduce

xn+1yn − xnyn+1 = xnyn−1 − xn−1yn.
And so, by induction,

xn+1yn − xnyn+1 = x2y1 − x1y2 = 7− 5 = 2.

�

Corollary 5. For all n ≥ 1,
xn+1

yn+1
>
xn
yn
.

Lemma 6.

lim
n→∞

xn
yn

=
√

2.

Proof. We prove by staggered inductions the claims:

P (n) : 2y2n − x2n = 1

and

Q(n) : 2yn+1yn − xn+1xn = 3.
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The basis cases P (1), P (2), Q(1) are easily checked numerically. We have the fol-
lowing implications,

P (n) ∧ P (n− 1) ∧ Q(n− 1) ⇒ P (n+ 1)

P (n) ∧ Q(n− 1) ⇒ Q(n).

And so the above cases together with the upcoming inductive steps will prove the
claims for all n.

First assume we know P (n− 1), P (n), and Q(n− 1). By lemma 3 we know

2y2n+1 − x2n+1 = 2(6yn − yn−1)2 − (6xn − xn−1)2.

Multiplying this out gives us

2y2n+1 − x2n+1 = 36(2y2n − x2n) + (2y2n−1 − x2n−1)− 12(2ynyn−1 − xnxn−1).

Whence, by the inductive hypotheses,

2y2n+1 − x2n+1 = 36 + 1− 36 = 1.

Now suppose we know that P (n) and Q(n− 1) are true. To prove Q(n) we take
the two recurrence relations

xn+1 − 6xn + xn−1 = 0

yn+1 − 6yn + yn−1 = 0

and multiply the first by xn, the second by yn, then take the difference. This gives
us

2yn+1yn − xn+1xn = 6(2y2n − x2n)− (2ynyn−1 − xnxn−1)

and by the inductive hypotheses this is

2yn+1yn − xn+1xn = 6− 3 = 3.

To prove the lemma we now divide the identity P (n) by y2n to get

x2n
y2n

= 2− 1

y2n
.

But yn →∞, so we have the result. �

2. Finding a subsequence

Let

δ(m,n) :=
xn − xm
yn − ym

for 1 ≤ m < n.
Think of δ as a function from the following array to Q:

1, 2 1, 3 1, 4 1, 5 1, 6 . . .

2, 3 2, 4 2, 5 2, 6 . . .

3, 4 3, 5 3, 6 . . .

4, 5 4, 6 . . .

. . .
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We want an increasing sequence nk such that δ(nk, nk+1) > δ(nk+1, nk+2). Do this
in two steps;
Step 1 limn→∞ δ(m,n) =

√
2, so after applying δ to the table each row tends to√

2.
Step 2 For each m, eventually δ(m,n) >

√
2.

Together these imply a way of stepping down the table finding the requisite
sequence (nk).

Lemma 7. For any m ∈ N+,

lim
n→∞

δ(m,n) =
√

2.

Proof. Exercise. �

Lemma 8. For all m ∈ N+ there is some Nm ∈ N+ such that if n > Nm then
δ(m,n) >

√
2.

Proof. After some rearrangement the lemma is equivalent to showing that for any
m there is Nm such that for n ≥ Nm we have

0 < yn
√

2− xn < ym
√

2− xm.
In particular, if the sequence yn

√
2− xn → 0 then we will have the result.

During the proof of lemma 6 we proved the identity

2y2n − x2n = 1.

We can factor the left hand side and divide by one of the factors to uncover the
identity

√
2yn − xn =

1√
2yn + xn

→ 0.

And so we’re done. �

Theorem 9.
√

2 is irrational.

Proof. Start by picking values n1 < n2 such that δ(n1, n2) >
√

2. The values

n1 = 1, n2 = 2 will suffice since then δ(n1, n2) = 3/2 >
√

2. We now need to find
n3 > n2 such that δ(n2, n3) < δ(n1, n2). By lemma 7 we know

lim
n→∞

δ(n2, n) =
√

2

and by lemma 8, for all sufficiently large n we also have

δ(n2, n) >
√

2.

These two facts mean that for all sufficiently large n we will have
√

2 < δ(n2, n) < δ(n1, n2),

and so we can take one of these values of n as n3 and then repeat the whole process
to find n4 and so on. �
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