
On Holey Kitchen Devices and their uses in Number Theory

This notelet is a virtually unedited version of the mini-essay I wrote in December
2007 for Tim Browning’s TCC Analytic Number Theory course assignment, which
asked for:

An overview of the well-known topic: the Selberg sieve method and the inequality

π(x+ y)− π(x) 6
2y

log y
(1 +O(1/ log y)) .

Ever since the first baker tried to bake the first cake using slightly clumpy flour,
sieves have fascinated mankind. But they have fascinated mathematicians too. And
not just mathematicians who bake cakes. Mathematical sieves have their origin in
antiquity. These sieves deal with the mathematical equivalent of clumpy flour - the
prime numbers.

The general idea of sieves is to estimate the number of elements in a set A ⊂ N
that are not divisible by any element of a set P of primes. This is done by “sifting
out” certain residue classes of primes p that are in P . The sieve of Eratosthenes is
perhaps the most well known example of such a sieve. At its simplest it gives an
algorithm for finding all the prime numbers in the interval [N,N2), by crossing off
the multiples of all primes up to and including N , then whatever remains uncrossed
on the list must be prime, since any composite number 6 N2 must have a prime
factor 6 N . Thus, simply by knowing the primes up to N we can ‘sift’ the interval
[N,N2) and be left with only prime numbers1.

The sieve of Eratosthenes is over two thousand years old, so it is not surprising
that newer, better sieves have been invented in the mean time. The science of sieves
is notoriously heavy going. A lot of notation and hard work is required to achieve
results that are relatively simple to verify using other techniques. Sieves do give
results that other techniques cannot attain, though, including approximations to
notoriously tricky problems like the twin primes and Golbach conjectures.

As previously mentioned they require a veritable kitchenful of notation, so we’ll
get that out of the way now. We’ll let A and P be the sets mentioned at the
beginning, we then set

Ad = {a ∈ A : a ≡ 0 (mod d)}.
So in particular A1 = A. Since we are estimating the sizes of these sets we introduce
X > 1 which approximates |A|, and let r1 be the remainder

r1 = |A| −X.

1Another simple but jolly nice example is to take a set A of positive square-free integers and

sift out all the zero residue classes (i.e. multiples) of primes p such that p ≡ 3 (mod 4). What is
left is the set of all integers in S that can be written as the sum of two squares.
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We also introduce a multiplicative function ω0 where ω0(p) > 0 is chosen so that
ω0(p)

p X approximates |Ap|, and we go on to define more remainder terms

rp = |Ap| −
ω0(p)
p

X.

Since ω0 is a positive multiplicative function we have that ω0(1) = 1, and that

ω0(d) =
∏
p|d

ω0(p)

for square-free d. Imaginatively we define the remainder terms

rd = |Ad| −
ω0(d)
d

X.

We finally characterise all the primes we’re interested in sifting out – the ones in P
– with the number

P (z) =
∏
p<z
p∈P

p.

The so called Sieve problem, then, is to estimate the value of the sifting function

S(A;P, z) = |{a ∈ A : (a, P (z)) = 1}|,

or, more generally,

S(Aq;P, z) = |{a ∈ Aq : (a, P (z)) = 1}|,

where q is a square-free integer and (q, P (z)) =
(
q, PC

)
= 1, where

(
q, PC

)
= 1

means that q is coprime with every prime number not in P . To achieve this we
need to fiddle with ω0 slightly so that it better reflects the set P . We define the
multiplicative function ω by

ω(p) =
{
ω0(p) if p ∈ P
0 if p ∈ PC .

and ω(1) = 1. Then ω(d) =
∏

p|d ω(p) for square-free d, and we can define our
ultimate remainder

Rd = |Ad| −
ω(d)
d

X.

There will be more notation later, but this suffices for now.

Sieves with all the above trimmings were slowly brought into the modern world
by Legendre and, more recently, Viggo Brun. It was Atle Selberg who came up
with one of the better sieves of the twentieth century, though. His work, as with
many of the other twentieth century sieves, relied on the following seemingly simple
observation.

Let λd a sequence of real numbers satisfying λ1 = 1, then

S(A;P, z) 6
∑
a∈A

( ∑
d|a

d|P (z)

λd

)2

,
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for if a ∈ A and (a, Pz) = 1 then the sum in parentheses is simply 1, and there
will be exactly S(A;P, z) such values of a. All the other cases add non-negative
terms to the sum, hence the inequality follows. Eratostheses’ sieve corresponds to
a choice of λd using the µ-function, but we can no better estimate the resulting
sum than we can estimate S(A;P, z). The above series can be easily rewritten as

∑
a∈A

( ∑
d|a

d|P (z)

λd

)2

=
∑

d1,d2|P (z)

λd1λd2

∑
a∈A

a≡0 (mod D)

1,

where D = lcm(d1, d2) = [d1, d2]. But clearly∑
a∈A

a≡0 (mod D)

1 = |AD| =
ω(D)
D

X +RD.

And so

S(A;P, z) 6 X
∑

d1,d2|P (z)

λd1λd2

ω(D)
D

+
∑

d1,d2|P (z)

|λd1λd2RD| =: XΣ1 + Σ2.

Selberg’s masterplan was to minimise the right hand side above by choosing the
right sequence λd.2 Alack and alas! Minimising the series proved to be far too hard
in any generality, so to simplify matters Selberg threw away many of the λd, in
particular he chose to set λd = 0 for any d > z. That left him with [z] − 2 values
to choose in order to minimise the quadratic form Σ1.

Minimising Σ1 is all well and good, but it is done at the risk of ignoring Σ2.
This is okay though, since the condition that λd = 0 for d > z ensures that the
sum Σ2 doesn’t have too many terms, moreover the sum is made up of remainder
terms and as Selberg (might have) put it himself: “a remainder term is just for
Christmas, not for life.”

Using Lagrangian multipliers, Selberg managed to minimise Σ1 and found that
the best values to take for the λd was

λd =
µ(d)∏

p|d

(
1− ω(p)

p

) Gd(z/d)
G(z)

where
Gk(x) =

∑
d<x

(d,k)=1

µ2(d)g(d)

for a certain multiplicative function g. Plugging d = 1 into the above expression
does indeed give λ1 = 1, and moreover if d > z then Gd(z/d) is an empty sum

2If you prefer cooking analogies then the prime numbers can be thought of as the clumpier
lumps of flour, while composite numbers are finer particles. Eratosthenes’ sieve has perfectly sized

holes so that only the lumpy prime numbers are left in the sieve. But Eratosthenes’ sieve is also
sitting over an active volcano, so after sifting we can’t get a good idea of just how many prime

numbers we have left. (Unless we count the flour particles one by one, not a fun job, especially

over a volcano.) Selberg’s sieve allows us to see better what gets left in the sieve, but at the cost
of having slightly smaller holes that don’t sift out all the composite numbers.
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and hence we get λd = 0. Plugging these values of λd into our expression for Σ1

may seem like an utterly terrifying task, but with a few pages of algebraic jiggery
pokery we arrive at the very simple

Σ1 =
1

G(z)
.

It’s relatively straightforward to show that

Gd(z/d) 6
∏
p|d

(
1− ω(p)

p

)
G(z)

so that |λd| 6 1. Thence

Σ2 6
∑

d1,d2<z
d1,d2|P (z)

|R[d1,d2]|.

If we now ask ourselves how many different values of d1, d2 will proffer the same
value of d = [d1, d2] then after a few minutes of thought we should answer ourselves
“why, it’s 3Ω(d), where Ω(d) is the number of prime divisors of d, self.” This is
because if our desired value of d has prime factorisation p1 · · · pn, say, then each pi

must appear as a factor of either d1, or of d2, or of both. So our estimate on Σ2

becomes

Σ2 6
∑
d<z2

(d,P C)=1

µ2(d)3Ω(d)|Rd|.

Putting everything together we get Selberg’s upper bound for the sieve function:

S(A;P, z) 6
X

G(z)
+

∑
d<z2

(d,P C)=1

µ2(d)3Ω(d)|Rd|.

If we choose our X and ω0 correctly then this inequality can give powerful results.
One of these results is known as the Brun-Titchmarsh inequality, named by Yu V.
Linnik in 1961 after the pioneering sieve-meister Brun, as well as the mathematician,
Fellow of the Royal Society, and everyone’s favourite horticulturist, Titchmarsh3.
If we write

π(x; k, `) = #{p 6 x : p ≡ ` (mod k)}

then, first of all, we can note that π(x; 1, 0) = π(x). Using Selberg’s work it is
possible to show that

π(x+ y; k, `)− π(x; k, `) 6
y

φ(k) log
√

y
k

(
1 +

4
log
√

y
k

)
.

3Apologies to Edward C. Titchmarsh.
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Setting k = 1, ` = 0 we get

π(x+ y)− π(x) 6
y

log
√
y

(
1 +

4
log
√
y

)

=
2y

log y

(
1 +

8
log y

)

=
2y

log y

(
1 +O

(
1

log y

))
.


