
Strassmann’s theorem

Strassmann’s theorem really highlights the differences between real and p-adic anal-
ysis. It also has applications in scenarios you really wouldn’t expect such a result
to come in useful. Its proof is fairly simple, but needs the following lemma.

Lemma. Let k be a field which is complete with respect to the non-archimedean
valuation | · |. Let bij ∈ k for i, j = 0, 1, 2, . . .. Suppose that for every ε > 0 there is
a J(ε) such that |bij | < ε whenever max(i, j) > J(ε). Then the series

∑
i

∑
j

bij

 and
∑

j

(∑
i

bij

)

both converge, and are equal.

Proof. Remember that in the non-archimedean case a series converges if and only
if the terms being summed tend to zero. We have that bij → 0 so∑

j

bij and
∑

i

bij

both converge. And using the ultrametric inequality we have∣∣∣∣∣∣
∑

j

bij

∣∣∣∣∣∣ 6 max
j
|bij |

i→∞−−−→ 0,

so that the first double sum converges, and similarly for the second one.

We now note that for finite sums the rearrangement of i and j does not matter,
in particular we have

J(ε)∑
i=0

J(ε)∑
j=0

bij

 =
J(ε)∑
j=0

J(ε)∑
i=0

bij

 .

Again using the ultrametric inequality we have∣∣∣∣∣∣
J(ε)∑
i=0

J(ε)∑
j=0

bij

− ∞∑
i=0

 ∞∑
j=0

bij

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

i

∑
j

max(i,j)>J(ε)

bij

∣∣∣∣∣∣∣∣
6 max

i,j, s.t.
max(i,j)>J(ε)

|bij |

< ε.

And similarly with the i and j exchanged. Hence
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∣∣∣∣∣∣
∑

i

∑
j

bij

−∑
j

(∑
i

bij

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

i

∑
j

bij

− J(ε)∑
i=0

J(ε)∑
j=0

bij

+
J(ε)∑
j=0

J(ε)∑
i=0

bij

−∑
j

(∑
i

bij

)∣∣∣∣∣∣
6 max

{∣∣∣∣∣∣
J(ε)∑
i=0

J(ε)∑
j=0

bij

− ∞∑
i=0

 ∞∑
j=0

bij

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
J(ε)∑
j=0

J(ε)∑
i=0

bij

− ∞∑
j=0

( ∞∑
i=0

bij

)∣∣∣∣∣∣
}

< ε.

Hence the two series are equal. �

So not only is it much easier to tell if a single series converges p-adically, it’s
also much easier to deal with double sums. Which is nice. Now we have the above
result we can prove Strassmann’s theorem.

Strassmann’s theorem. Let the field k be complete with respect to the non-
archimedean valuation | · |, and let

f(X) =
∞∑

n=0

fnX
n.

Suppose that fn → 0 but that not all the fn are zero. Then there are at most a
finite number of b ∈ Ok such that f(b) = 0. More precisely, there are at most N
such b where N is defined by

• |fN | = max |fn|,
• |fn| < |fN | for all n > N .

That is, N is the index of the last maximal coefficient.

So in particular we’re concerned with the case k = Qp, Ok = Zp, | · | = | · |p.
Compare the above situation with the power series for sine and cosine, say, which
satisfy all the hypotheses over R but which have infinitely many zeroes. This can’t
happen in Qp. The proof of Strassmann’s theorem is by induction on N .

Proof. Suppose N = 0. If the theorem is true there will be no zeros of f in the ring
of integers, so assume that there is a b ∈ Ok with f(b) = 0. So we have

f0 = −
∑
n>1

fnb
n.
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But using the ultrametric inequality and the fact that |fn| < |f0| for all n > 0 we
have ∣∣∣∣∣∣

∑
n>1

fnb
n

∣∣∣∣∣∣ 6 max
n>1
|fnb

n| 6 max
n>1
|fn| < |f0|

which is a contradiction. So no such b exists.

Now consider the situation for some N > 0. Suppose f(b) = 0 for some b ∈ Ok,
and let c ∈ Ok. Then

f(c) = f(c)− f(b) =
∑
n>1

fn (cn − bn)

= (c− b)
∑
n>1

n−1∑
j=1

fnc
jbn−1−j .

By the lemma we may rearrange this double sum as

f(c) = (c− b)
∞∑

j=1

∑
n>j

fnb
n−1−jcj

= (c− b)
∞∑

j=1

cj
∑
r>0

fj+1+rb
r.

Let

g(X) =
∑
j>1

gjX
j

where

gj =
∑
r>0

fj+1+rb
r,

then

f(c) = (c− b)g(c).

Now, for all j we have

|gj | =

∣∣∣∣∣∣
∑
r>0

fj+1+rb
r

∣∣∣∣∣∣
6 max

r>0
|fj+1+rb

r|

6 max
r>0
|fj+1+r|

6 |fN |.
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We also have

|gN−1| =

∣∣∣∣∣∣
∑
r>0

fN+rb
r

∣∣∣∣∣∣
=
∣∣fN + fN+1b+ fN+2b

2 + . . .
∣∣

= |fN |.

Finally for j > N − 1 we have

|gj | 6 max
r>0
|fj+1+r|

< |fN |.

So g(X) satisfies the hypotheses of the theorem but with N−1 instead of N , so by
the inductive hypothesis g(X) has at most N−1 zeros c ∈ Ok. But f(c) = 0 implies
that either c = b or g(c) = 0, so that f(X) has at most N zeros, as required. �

Strassmann’s theorem has several surprising corollaries, including the following
two results.

Corollary. Suppose that f(X) and g(X) both converge in Ok and that f(b) = g(b)
for infinitely many b ∈ Ok. Then f(X) and g(X) have the same coefficients.

Proof. We have f(b) − g(b) = 0 for infinitely many b ∈ Ok, so the power series of
f − g must have all zero coefficients, so f and g have the same coefficients. �

Corollary. Suppose that k has characteristic 0. Let f(X) be a power series that
converges in Ok, and suppose further that f(X+d) = f(X) for some d ∈ Ok. Then
f(X) is constant.

Proof. The function f(X)− f(0) has infinitely many zeros in Ok at md for m ∈ Z.
So f(X) and f(0) have the same coefficients, i.e. f(X) = f0. �

This second corollary tells us that a non-constant periodic function cannot be
represented by a power series in the p-adic world.

Whilst Strassmann’s theorem seems useful if we want to count the zeros of a
given power series, it doesn’t have immediately obvious applications beyond that.
However it can have powerful applications to Diophantine equations, but to use it
we need the following lemma which allows us to convert the expression (1 + x)n

into a power series in n.
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Lemma. Let b ∈ Qp and suppose that

|b|p 6 2−2 if p = 2;
|b|p 6 p−1 otherwise.

Then there is a power series

Φb(x) =
∞∑

n=0

γnx
n,

where
γn ∈ Qp, γn → 0

such that
(1 + b)r = Φb(r)

for all r ∈ Z.

Provided b 6= −1 the power series Φb is vulnerable to attack by Strassmann’s
theorem, which means we can now also count the number of zeros of expressions
like f(x) = (1 + a)x. This will be fully exploited in the following lemma.

Lemma (Nagell). Let un be defined by u0 = 0, u1 = 1, and

un = un−1 − 2un−2 (n > 2).

Then un = ±1 only for n = 1, 2, 3, 5, and 13.

Proof. Let U(z) be the generating function of this sequence, so

U(z) =
∞∑

n=0

unz
n.

We can write the recurrence relation for all n as

un = un−1 − 2un−2 + [n = 1]

where

[P (n)] =

{
1 if P (n) is true
0 if P (n) is false

for any proposition P . Multiplying the recurrence by zn and summing over n gives

∑
n

unz
n =

∑
n

un−1z
n − 2

∑
n

un−2z
n + z,

which can be written as

U(z) = zU(z)− 2z2U(z) + z.

So we have
U(z) =

z

1− z + 2z2
.
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Writing U(z) with partial fractions and then differentiating we have

dn

dzn
U(z) =

n!
2(α− β)

(
(−1)nα

(z − α)n+1
− (−1)nβ

(z − β)n+1

)
,

where α and β are the roots of 2z2 − z + 1 = 0. Since U is the generating function
of un we have

un =
1
n!

dn

dzn
U(z)

∣∣∣∣∣
z=0

=
an − bn

a− b
,

where a, b are the roots of x2 − x+ 2 = 0., i.e.

a =
1
2

(1 + i
√

7) b =
1
2

(1− i
√

7).

However, there is no reason to work in C. We may also work in any p-adic field
Qp for which the polynomial

f(x) = x2 − x+ 2

splits. Note that f ′(x) = 2x− 1. If we work in Q11 then we find that

f(5) ≡ 0 (mod 11)

f ′(5) ≡ 9 6≡ 0 (mod 11)

f(7) ≡ 0 (mod 11)

f ′(7) ≡ 2 6≡ 0 (mod 11).

So by Hensel’s lemma we get two solutions a, b in Z11, which we can work out
satisfy

α ≡ 16 (mod 112)

β ≡ 106 (mod 112).

We are essentially trying to count the number of zeros of the function un ± 1,
and we now have a p-adic expression for un with n appearing as an exponent, so
it looks as though we’re ready to apply the previous lemma. But alack and alas
the hypotheses of that lemma aren’t satisfied yet, we still need to massage our
numbers into the right form. So we first consider the numbers A and B which,
using Fermat’s little theorem, satisfy

A = α10 ≡ 1 (mod 11)

B = β10 ≡ 1 (mod 11).

Then A − 1 and B − 1 both satisfy the hypotheses of the previous lemma, so we
can expand An and Bn as power series in n. To simplify matters for ourselves we
first write

n = r + 10s 0 6 r 6 9,
so that

un = ur+10s =
αr+10s − βr+10s

α− β
=
αrAs − βrBs

α− β
.
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And since A ≡ B ≡ 1 (mod 11) we can see from this that

ur+10s ≡ ur (mod 11).

Looking at the first ten values of the sequence we have:

n 0 1 2 3 4 5 6 7 8 9
un 0 1 1 -1 -3 -1 5 7 -3 -17

So the only r we have to consider are r = 1, 2, 3, 5. For these values of r we have

r αr (mod 112) βr (mod 112)
1 16 106
2 14 104
3 103 13
5 111 21
10 100 78

The final row is for reference so we know what A and B are mod 121. If we now
write

α10 = A = 1 + a β10 = B = 1 + b,

so we have
a ≡ 99 (mod 112) b ≡ 77 (mod 112)

and then we can use the previous lemma to develop the expression

(α− β)(ur+10s ∓ 1) = αr(1 + a)s − βr(1 + b)s ∓ (α− β)

as a power series in s, say

(α− β)(ur+10s ∓ 1) = c0 + c1s+ c2s
2 + . . .

For the “∓” we take the upper sign for r = 1, 2 and the lower one for r = 3, 5.
Plugging in s = 0 and the correct sign for each r we find that c0 = 0 in all four
cases. Since

(1 + x)n =
∞∑

k=0

(
n

k

)
xk

and both a ≡ b ≡ 0 (mod 11) we will have

cj ≡ 0 (mod 112)

for every j > 2. Whereas for r = 1, 2, 5 we can use the table above to see that

c1 ≡ αra− βrb (mod 112)

6≡ 0 (mod 112).

Thus, by Strassmann’s theorem the above series has at most one zero when
r = 1, 2, 5, and since we know it has a zero at s = 0 there can be no others.
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For r = 3 we have c1 ≡ 0 (mod 112) so we can’t immediately apply Strassmann’s
theorem. But if estimate the cj more carefully we see that

2 · 11−2c2 ≡ α3(a/11)2 − β3(b/11)2 ≡ 6 (mod 11),

so that
c2 6≡ 0 (mod 113).

But cj ≡ 0 (mod 113) for every j > 3, so Strassmann’s theorem tells us that our
series can vanish for at most two values of s. But we know that it vanishes at
s = 0 and s = 1, so we have all the zeros. Thus un ± 1 vanishes only at the values
n = 1, 2, 3, 5, 13. �

The fact we can calculate explicitly how many times the above recurrence hits
±1 is pretty impressive, though perhaps not immediately useful. Nagell didn’t
investigate this recurrence just for fun though, he used it to solve a particular
Diophantine equation:

Corollary. The only solutions of

x2 + 7 = 2m

in integers x and m have m = 3, 4, 5, 7, 15.

Proof. Clearly x must be odd, say x = 2y − 1 with y ∈ Z. Then the equation
becomes

y2 − y + 2 = 2m−2.

If we let α be a root of z2 − z + 2 then the ring Z[α] is a UFD1. If we let the
conjugate root be β then we have αβ = 2, so splitting the above equation over Z[α]
and using the fact it’s a UFD gives

(y − α)(y − β) = αm−2βm−2

so that
y − α = αm−2 y − β = βm−2

or
y − α = βm−2 y − β = αm−2

Either way we have
α− β = ±(αm−2 − βm−2)

and so solutions to our original equation can only come about for values of n = m−2
for which

αn − βn

a− b
= ±1.

But by the previous lemma this can only occur when n = 1, 2, 3, 5, 13, and hence
the result follows. �

1It has a Euclidean algorithm, hence is a PID, and hence is a UFD.
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So the complete set of solutions to

x2 + 7 = 2m

is
(x,m) = (±1, 3), (±3, 4), (±5, 5), (±11, 7), (±181, 15).

Hopefully this result shows the hidden power of Strassmann’s theorem. The
following exercises are in the vein of Nagell’s lemma.

1. Define the sequence un by u0 = 1, u1 = 2, and

un = 3un−1 − 5un−2.

Show that un = 1 only for n = 0, 2, 6. (Hint: Work in Q3.)

2. Let u0 = 0, u1 = 1, and

un = 3un−1 − 7un−2.

Find the smallest m > 0 such that

um ≡ 0 (mod 54).

Exposition and exercises mostly follow Cassels’ Local Fields.


