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Abstract. We construct a basis for the space of half-integral weight
Siegel Eisenstein series of level 4N where N is odd and square-free.
Then we restrict our attention to those Eisenstein series generated from
elements of Γ0(4), commenting on why this restriction is necessary for
our methods. We directly apply to these forms all Hecke operators
attached to odd primes, and we realize the images explicitly as linear
combinations of Siegel Eisenstein series. Using this information, we
diagonalize the subspace of Eisenstein series generated from elements of
Γ0(4), obtaining a multiplicity-one result.

1. Introduction

In a seminal paper [5], Shimura established a beautiful correspondence
between (Siegel degree 1) cusp forms of half-integral weight k/2, level 4N
and character χ, and elliptic modular forms of integral weight k − 1, level
2N and character χ2. Essentially the correspondence is established by com-
paring Hecke-eigenvalues (and using Weil’s Converse Theorem to show that
the integral weight forms constructed are indeed a modular forms).

In recent work [7] we constructed a basis for the space of degree n, integral
weight k, arbitrary level N and character χ Siegel Eisenstein series, and
through direct computations we produced a basis of simultaneous eigenforms
for the Hecke operators

{T (p), Tj(p
2) : 1 ≤ j ≤ n, p prime, p - N };

when N is square-free, the elements of this basis are also eigenforms for

{T (q), Tj(q
2) : 1 ≤ j ≤ n, q prime, q|N }

and these basis elements are distinguished by their eigenvalues.
Here we extend this work to consider half-integral weight Siegel Eisen-

stein series. There are several difficulties that arise, since we need to work
with automorphy factors. In principle we could work in a cover of the
symplectic group, but following Shimura, for any matrix in the congruence
subgroup Γ0(4) (defined below) we make a specific choice for an automorphy
factor given by a quotient of Siegel theta series (also defined below). Our
computations take advantage of nice properties of these theta series and of
generalized Gauss sums (Proposition 2.2). Unfortunately, this also limits
our detailed evaluation of Hecke operators to those Siegel Eisenstein series
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generated from elements in Γ0(4), and we are unable to give a satisfactory
evaluation of the action of Tj(4).

Like Shimura, we only consider levels 4N , and here we especially focus
on the case of N odd and square-free. In degree 1 this is fully justified as
there is no one-fold covering group of a subgroup of SL2(Z) that properly
contains

{[γ, θ(γτ)/θ(τ)] : γ ∈ Γ0(4) }

(see, for example, Corollary 3.7). However, we are not able to prove this
for degree n > 1, although (also in Corollary 3.7) we prove a partial result
toward this. The reasoning used to prove Corollary 3.7 is also used to
show that, regardless of the choice of automorphy factor for certain γ ∈
Spn(Z) with γ 6∈ Γ0(4), the Siegel Eisenstein series generated from γ is 0
(Proposition 3.6). (In Proposition 3.5 we give necessary conditions on χ to
have a nonzero Eisenstein series.)

For N odd and square-free, we show that the subspace of Eisenstein series
generated from elements of Γ0(4) has a basis of simultaneous eigenforms for
the Hecke operators

{Tj(q2) : q prime, q|N },

and these basis elements are distinguished by their eigenvalues. (As in the
case degree 1, the half-integral weight Hecke operator T (p) is 0 for any prime
p; see, for example, Proposition 2.1 [6]).

When the degree n is 1, we recover Shimura’s correspondence [5]: With
σ = (N0,N1) varying over all multiplicative partitions of N (meaning that

N0N1 = N ), we have a basis {Ẽσ} for the space of weight k/2, level 4N
and character χ Eisenstein series generated from elements of Γ0(4), and a
basis {E′σ} for the space of weight k−1, level N and character χ2 Eisenstein

series, so that for every odd prime p, the T1(p
2)-eigenvalue of Ẽσ is the T (p)-

eigenvalue of E′σ. For n > 1, such a correspondence is unclear; below we
exhibit the eigenvalues for half-integral weight and integral weight Eisenstein
series.

We still assume that N is odd and square-free. Take k′, k ∈ Z+ with
k odd, χ′ a character modulo N , and χ a character modulo 4N . For
σ = (N0, . . . ,Nn) a multiplicative partition of N , we have corresponding

Eisenstein series E′σ and Ẽσ of weights k′ and k/2, levels N and 4N , char-
acters χ′ and χ (respectively). (Note that by Proposition 3.6 [7] and Propo-

sition 4.1, when E′σ 6= 0 we have
(
χ′N/N0Nn

)2
= 1 and when Ẽσ 6= 0 we

have
(
χ4N/N0Nn

)2
= 1.) For a prime q|N and 0 ≤ d ≤ n so that q|Nd, by

Corollary 4.3 [7] we have

E′σ|T (q) = qk
′d−d(d+1)/2χ′N/q(qXdMσ, Xd)E′σ

where, for each prime q′|N/q and 0 ≤ d′ ≤ n so that q′|Nd′ ,

χ′q′(qXdMσ, Xd) =

{
χ′q′(q

d−d′) if d′ ≤ d,

χ′q′(q
d′−d) if d′ > d.
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Also, by Corollary 4.5 [7], we have

E′σ|Tj(q2) = qjd
j∑
s=0

qs(2k
′−2d+s−j−1)χ′N ′0

(q2s)χ′N ′n(q2(j−s))

· βq(d, s)βq(n− d, j − s)E′σ
where βq(m, r) is the number of r-dimensional subspaces of anm-dimensional
space over Z/qZ and N ′i = Ni/(q,Ni). In contrast, by Corollary 4.4 we have

Ẽσ|Tj(q2) = qjd
j∑
s=0

qs(k−2d+s−j−1)χN ′0(q2s)χN ′n(q2(j−s))

· βq(d, s)βq(n− d, j − s)Ẽσ.
In particular,

Ẽσ|Tn(q2) = qd(k−d−1)χN ′0(q2d)χN ′n(q2(n−d)).

For an odd prime p - N , by Corollaries 5.3 and 5.5 [7] we have

E′σ|T (p) =

 ∏
0<d≤n

χ′Nd(p
d)

 n∏
i=1

(
χ′(p)χ′Nn(p2)pk

′−i + 1
)
E′σ,

E′σ|Tj(p2) = βp(n, j)
∑
r+s≤j

pk
′(j−r+s)−(j−r)(n+1)χ′(pj−r+s)χ′Nn(p2(r−s))

· βp(j, r)βp(j − r, s) symp(j − r − s)E′σ
where symp(`) is the number of symmetric, ` × `, invertible matrices over
F = Z/pZ. In contrast, by Theorem 4.5 we have

Ẽσ|Tj(p2) = βp(n, j)
∑
r+s≤j

pk(j−r+s)/2−(j−r)(n+1)χ(pj−r+s)χNn(p2(r−s))

· βp(j, r)βp(j − r, s)
(
G1(p)√

p

)j−r−s
symψ

p (j − r − s)Ẽσ

where G1(p) is the classical Gauss sum modulo p, ψ(∗) =
(
∗
p

)
, and symψ

p (`) =∑
U∈F`,`sym

ψ(detU).

Since these eigenvalue of Ẽσ under Tj(p
2) are not so attractive, in Corol-

lary 4.6 we introduce an alternate set of generators for the local Hecke
algebra, obtaining more attractive eigenvalues (similar to what we did in
Corollary 5.5 [7]).

As much as possible, we borrow results from [7]. Here the construction
of the Siegel Eisenstein series is a bit different because of the automor-
phy factors involved. As the automorphy factors contain Gauss sums, for
the evaluation of the action of the Hecke operators we establish some nice
identities between generalized Gauss sums (Propositions 5.1, 5.2, 5.3). Al-
though these identities can surely be established by other methods, we rely
on changes of variables to provide elementary arguments.

The author thanks Andrew Booker and Fredrik Stromberg for helpful
conversations.
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2. Preliminaries

For n ∈ Z, n > 1, Siegel’s degree n upper half-space is defined as

h(n) = {X + iY : X,Y ∈ Rn,nsym, Y > 0 }

where Y > 0 means that, as a quadratic form, Y is positive definite. The
symplectic group Spn(Z) acts on h(n), where

Spn(Z)

=

{(
A B
C D

)
∈ SL2n(Z) : A tB = B tA, C tD = D tC, A tD −B tD = I

}
(here tB is the transpose of B). For γ =

(
A B
C D

)
∈ Spn(Z) and τ ∈ h(n),

the action of γ on τ is given by

γτ = (Aτ +B)(Cτ +D)−1.

Note that for

(
A B
C D

)
∈ Spn(Z), (C D) is a coprime symmetric pair,

meaning that C tD is symmetric and for all primes p, rankp(C D) = n (here
rankp(C D) denotes the rank of the matrix (C D) modulo p, meaning we
view (C D) as a matrix over Z/pZ). Conversely, given C,D ∈ Zn,n so that

(C D) is a coprime symmetric pair, there is a matrix

(
A B
C D

)
in Spn(Z).

When (C D) is a pair of integral n × n matrices, we write (C,D) = 1 to
mean that C and D are coprime.

To construct Siegel Eisenstein series of half-integral weight k/2, we need

to make sense of (det(Cτ +D))−k/2. Thus we have the following definitions.

Definition. An automorphy factor for γ =

(
A B
C D

)
∈ Spn(Z) is an ana-

lytic function ϕγ (τ) on h(n) so that |ϕγ (τ)|2 = |det(Cτ + D)|. (Note that
it is known that det(Cτ +D) 6= 0; see Proposition 1.2.1 [1].) When we also
have γ′ ∈ Spn(Z) and ϕ

γ′ (τ) an automorphy factor for γ′, we have

[γ, ϕγ (τ)][γ, ϕ
γ′ (τ)] = [γγ′, ϕγ (γ′τ)ϕ

γ′ (τ)].

When detD 6= 0, we define SC,D(τ) by taking

lim
λ→0+

SC,D(iλI) =
√

detD ∈ R+ ∪ iR+

and extending analytically to τ ∈ h(n). Thus with γ =

(
∗ ∗
C D

)
∈ Spn(Z),

detD 6= 0, and ϕγ (τ) an automorphy factor for γ, we have that

ϕγ (τ)

SC,D(τ)

is analytic with absolute value 1, so ϕγ (τ) = v(γ)SC,D(τ) for some v(γ) with
|v(γ)| = 1. We define the basic degree n Siegel theta series by

θ(τ) =
∑

U∈Z1,n

e{2 tUUτ} where e{∗} = exp(πiTr(∗)),
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and for (C D) a coprime symmetric pair with detD 6= 0, we define a gener-
alized Gauss sum by

GC(D) =
∑

U∈Z1,n/Z1,nD

e{2 tUUD−1C}.

The following result is a special case of Theorem 1.3.13 and Proposition
1.4.5 [1].

Proposition 2.1. (Transformation Formula) Set

Γ0(4) =

{(
A B
C D

)
∈ Spn(Z) : 4|C

}
.

For γ =

(
A B
C D

)
∈ Γ0(4), we have

θ(γτ)

θ(τ)
=
GC(D)√

detD
SC,D(τ).

Because of this result, we make the following definition.

Definition. For γ ∈ Γ0(4), we set

γ̃ = [γ, θ(γτ)/θ(τ)].

Note that with γ, δ ∈ Γ0(4), we have γ̃δ̃ = (̃γδ).

The following identities will be useful.

Proposition 2.2. Take δ =

(
A B
C D

)
∈ Γ0(4).

(a) For α ∈ Γ∞, we have θ(ατ) = θ(τ), and for Y ∈ Zn,nsym, we have

GC(D + CY )√
detD + CY

SC,D+CY (τ) =
GC(D)√

detD
SC,D(τ + Y ).

(b) For E ∈ SLn(Z), we have SC,D(τ) = SEC,ED(τ).
(c) For E ∈ GLn(Z), we have

GEC(ED) = GC(D) = GCE(D tE−1).

Proof. (a) For α ∈ Γ∞, we have α =

(
G GY
0 tG−1

)
for some G ∈ GLn(Z) and

Y ∈ Zn,nsym. Thus for U ∈ Z1,n, tUUGY tG is integral, and UG varies over
Z1,n as U does. Hence

θ(ατ) =
∑

U∈Z1,n

e{2 tUUG(τ + Y ) tG}

=
∑

U∈Z1,n

e{2 t(UG)(UG)τ}

= θ(τ).
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So with G = I and noting that δα ∈ Γ0(4), by Proposition 2.1 we have

GC(D + CY )√
det(D + CY )

SC,D+CY (τ) =
θ(δατ)

θ(τ)

=
θ(δατ)

θ(ατ)

=
θ(δ(τ + Y ))

θ(τ + Y )

=
GC(D)√

detD
SC,D(τ + Y ).

(b) We know that
SC,D(τ)

SEC,ED(τ)

is an analytic function whose square is 1, and whose limit as τ → 0 is also
1. Hence SC,D(τ) = SEC,ED(τ).

(c) Since (ED)−1 (EC) = D−1C and Z1,nE = Z1,n, we have GEC(ED) =
GC(D). Also, we have

GCE(D tE−1) =
∑

U∈Z1,n/Z1,nD tE−1

e{2 tUU tED−1CE}

=
∑

U∈Z1,n/Z1,nD tE−1

e{2(E tU)(U tE)D−1C}

(recall that Tr(AB) = Tr(BA).) Take U ′ = U tE. Thus U ′ varies over
Z1,n tE/Z1,nD = Z1,n/Z1,nD as U varies over Z1,n/Z1,nD tE−1. So GCE(D tE−1) =
GC(D). �

We will make use of the following terminology and notation from the
theory of quadratic forms. With F a field, V an m-dimensional F-vector
space equipped with a quadratic form Q, and A ∈ Fm,msym , we write V ' A
when A represents the quadratic form Q on V relative to some basis for V .
With V ' A, we say V is regular if detA 6= 0. For a vector v ∈ V , we
say v is isotropic if Q(v) = 0, and anisotropic otherwise. For A,A′ square,
symmetric matrices, we sometimes write A ⊥ A′ for the matrix diag{A,A′}.
With a1, . . . , ar ∈ F, we write

〈
a1, . . . , ar

〉
for diag{a1, . . . , ar}. We write〈

a
〉`

to denote the `× ` matrix diag{a, . . . , a}.
For a prime q, our formulas for the action of the Hecke operators on

Eisenstein series will involve the functions we now define. For b, c ∈ Z with
0 ≤ c ≤ b, set

µq(b, c) =
c−1∏
i=0

(qb−i − 1), δq(b, c) =
c−1∏
i=0

(qb−i + 1),

and set

βq(b, c) =
µq(b, c)

µq(c, c)
.

(So βq(b, c) is the number of c-dimensional subspaces of a b-dimensional
space over Z/qZ.) We agree that βq(0, 0) = 1 and with 0 ≤ b < c, βq(b, c) =
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0. Now fix a character χ whose conductor is exactly divisible by q. Then
define

symχ
q (b, c) =

∑
U

χq

(
det

(
µ ν
tν 0

))
where F = Z/qZ and

(
µ ν
tν 0

)
∈ Fb+c,b+csym with µ of size b× b. We agree that

symχ
q (0, 0) = 1, and we set symχ

q (b) = symχ
q (b, 0).

Lemma 2.3. Let q be an odd prime, and suppose that χ is a character
whose conductor is exactly divisible by q. Then

symχ
q (b, c) =



qm
2+m−cµ(b,b)

µδ(m−c,m−c) if b+ c = 2m and χq = 1,

εmqm
2
µ(b,b)

µδ(m−c,m−c) if b+ c = 2m, χ2
q = 1, and χq 6= 1,

qm
2+mµ(b,b)

µδ(m−c,m−c) if b+ c = 2m+ 1 and χq = 1,

0 otherwise.

In particular, symχ
q (b, c) = 0 unless χ2

q = 1.

Proof. To help us compute symχ
q (b, c), for α ∈ F× we let symq(b, c;α) denote

the number of U =

(
µ ν
tν 0

)
∈ Fb+c,b+csym with µ b× b and detU = α.

Set r = b+ c. With V an r-dimensional vector space over F, an invertible
matrix A ∈ Fr,rsym defines a regular quadratic form Q on V . Since q is odd,
by Theorem 2.11 [2] V has a diagonal basis (relative to the quadratic form
Q). Then by Proposition 2.51 and Theorem 2.52 of [2], we have that V ' I
or V ' I ⊥

〈
ω
〉

where ω is a fixed, non-square element of F×. If we

change the basis for V by a matrix G ∈ GLm(F), we get V ' tGIG or
V ' tG(I ⊥

〈
ω
〉
)G. Thus when V ' I, any matrix for the quadratic form

on V has determinant α2 for some α ∈ F×, and when V ' I ⊥
〈
ω
〉
, any

matrix for the quadratic form on V has determinant α2ω for some α ∈ F×.
Also, note that for α ∈ F×,(

µ ν
tν 0

)
7→
(
I

α

)(
µ ν
tν 0

)(
I

α

)
gives us a bijection between the matrices counted by sym(b, c; 1) and those
counted by sym(b, c;α2), and between the matrices counted by sym(b, c;ω)
and those counted by sym(b, c;ωα2). Thus

symχ
q (b, c) =

1

2

(
symq(b, c; 1) + χq(ω) symq(b, c;ω)

) ∑
α∈F×

χq(α
2).

(The factor of 1/2 is to account for the value α2 appearing twice as α varies
over F×.) Thus symχ

q (b, c) = 0 if χ2
q 6= 1.

On the other hand, we can compute∑
α2 6=0

symq(b, c;α
2) and

∑
α2 6=0

symq(b, c;ωα
2)

as follows. First we choose a basis yb+1, . . . , yb+c for a dimension c subspace
of V that is totally isotropic (meaning that the quadratic form on Fyb+1 ⊕
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· · · ⊕ Fyb+c is identically 0). Then we extend this to a basis y1, . . . , yb+c for

V . In this way we construct all bases for V relative to which V '
(
µ ν
tν 0

)
where µ is b × b. There are o(V ) bases that yield the same matrix, where
o(V ) denotes the order of the orthogonal group of V . Using Theorems 2.19,
2.59, 2.60 from [2] we compute these quantities to obtain the formulas for
symχ

q (b, c). �

3. Defining Eisenstein series

Fix N ∈ Z+. The (degree zero) cusps of the Siegel half-space h(n) under
the action of the congruence subgroup Γ0(4N ) correspond to the elements
of the double quotient Γ∞\Spn(Z)/Γ0(4N ) where

Γ∞ =

{(
G GY
0 tG−1

)
: G ∈ GLn(Z), Y ∈ Zn,nsym

}
,

Γ0(4N ) =

{(
A B
C D

)
∈ Spn(Z) : 4N|C

}
.

Given γ ∈ Spn(Z), we want to construct a half-integral weight Eisenstein
series generated by the Γ0(4N )-orbit of Γ∞γ and transforming with some
character χ. We begin by defining an Eisenstein series for the group

Γ(4N ) = {β ∈ Spn(Z) : β ≡ I (mod 4N ) },

as follows. With δ ∈ Spn(Z) and ϕδ(τ) an automorphy factor for δ (assuming
ϕδ(τ) = θ(δτ)/θ(τ) when δ ∈ Γ0(4)), we set

1(τ)|[δ, ϕδ(τ)] = (ϕδ(τ))−k.

Then with

Γ∞Γ(4N ) = ∪δ∗Γ∞δ∗ (disjoint),

we set

E∗(τ) =
∑
δ∗

1(τ)|δ̃∗.

Since 1(τ)|β̃ = 1 for any β ∈ Γ∞, the (formal) sum for E∗(τ) is well-defined,
and provided n > (k + 1)/2, the sum on δ∗ is absolutely convergent and in
fact is analytic (in all the variables of τ). Also, E∗ 6= 0 as limτ→i∞ E∗(τ) = 1

since limτ→i∞ 1(τ)|δ̃∗ = 0 unless δ∗ ∈ Γ∞. For any α ∈ Γ(4N ), we have

Γ∞Γ(4N ) = ∪δ∗Γ∞δ∗α (disjoint) and δ̃∗α̃ = δ̃∗α, so

E∗(τ)|α̃ =
∑
δ∗

1(τ)|δ̃∗α = E∗(τ).

Thus E∗ is a (nonzero) Eisenstein series for Γ(4N ) with weight k/2.
Now take γ ∈ Spn(Z) with automorphy factor ϕγ(τ), and fix a character

χ modulo 4N . Assume that n > (k + 1)/2. We would like to define an
Eisentstein series supported on the Γ0(4N )-orbit of Γ∞γ by∑

δ

χ(δ)E∗(τ)|γ̃δ̃
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where

Γ∞γΓ0(4N ) = ∪δΓ∞Γ(4N )γδ (disjoint) and χ(δ) = χ(detDδ).

However, this sum is not well-defined unless, for all α ∈ Γ0(4N ) so that
Γ∞Γ(4N )γα = Γ∞Γ(4N )γ, we have

χ(α)E∗(τ)|γ̃α̃ = E∗(τ)|γ̃.
With this in mind, we have the following definitions and lemma.

Definition. Fix a level 4N , a character χ module 4N , γ ∈ Spn(Z), and
automorphy factor ϕγ(τ) for γ (with ϕγ(τ) = θ(γτ)/θ(τ) if γ ∈ Γ0(4)). Set

Γγ = {α ∈ Γ0(4N ) : Γ∞Γ(4N )γα = Γ∞Γ(4N )γ } ,
and set

Γ′γ,χ = {α ∈ Γγ : χ(α)E∗(τ)|γ̃α̃ = E∗(τ)|γ̃ } .
(Note that Γγ is a group.) We give an alternative definition of Γ′γ,χ as follows.

For α ∈ Γγ , we have γαγ−1 ∈ Γ∞Γ(4N ) and hence E∗(τ)|γ̃αγ−1 = E∗(τ).
Thus for α ∈ Γγ , we have α ∈ Γ′γ,χ if and only if

χ(α)E∗(τ)|γ̃α̃γ̃−1 = E∗(τ)|γ̃αγ−1.

Here ϕγ−1(τ) = 1
ϕγ(γ−1τ)

so that γ̃γ̃−1 = Ĩ . So defining ζγ(α) : Γγ → C× by

the relation

γ̃α̃γ̃−1( ˜γα−1γ−1) = [I, ζγ(α)]

we have
Γ′γ,χ =

{
α ∈ Γγ : χζkγ (α) = 1

}
.

We now establish some basic properties about ζγ .

Lemma 3.1. Fix a level 4N , γ ∈ Spn(Z), and ϕγ (τ) an automorphy factor
for γ, with ϕγ (τ) = θ(γτ)/θ(τ) if γ ∈ Γ0(4). The map ζγ : Γγ → C× is
a homomorphism taking values in the multiplicative group {±1,±i}. Thus
χζkγ : Γγ → C× is a homomorphism with finite image and kernel Γ′γ,χ. If
γ ∈ Γ0(4) and α ∈ Γγ, we have ζγ(α) = 1.

Proof. Take α ∈ Γγ ; note that we have α, γαγ−1 ∈ Γ0(4). When γ ∈ Γ0(4),
we have

γ̃α̃γ̃−1 = ˜(γαγ−1)

and hence ζγ(α) = 1.

Now suppose that γ 6∈ Γ0(4). For δ =

(
A B
C D

)
∈ Spn(Z), let ψδ(τ) =

det(Cτ+D). One easily checks that for δ′ ∈ Spn(Z), we have ψδ(δ
′τ)ψδ′(τ) =

ψδδ′(τ). Also, for any δ ∈ Spn(Z) with automorphy factor ϕ
δ
(τ)the function

(ϕ
δ
(τ))2/ψδ(τ) is analytic with absolute value 1, thus for some w(δ) with

|w(δ)| = 1, we have (ϕ
δ
(τ))2/ψδ(τ) = w(δ). Then we have

w(γ−1)ψγ−1(τ) =
1

w(γ)ψγ(γ−1τ)

and so
1

w(γ)
= w(γ−1)ψγ(γ−1τ)ψγ−1(τ) = w(γ−1).
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So

ζγ(α)2 = w(γ)ψγ(αγ−1 · γα−1γ−1τ)w(α)ψα(γ−1 · γα−1γ−1τ)

·
ψγ−1(γα−1γ−1τ)

w(γ)
w(γα−1γ−1)ψγα−1γ−1(τ)

= w(α)w(γα−1γ−1).

Since α ∈ Γγ ⊆ Γ0(4N ), we have γα−1γ−1 ∈ Γ∞Γ(4N ) ⊆ Γ0(4N ), and
hence by the Transformation Formula we know that w(α), w(γα−1γ−1) are
squares of normalised Gauss sums. Thus we have ζγ(α) ∈ {±1,±i}.

To see that ζγ is a homomorphism, take α, δ ∈ Γγ . Then, since we have
α, δ, γα−1γ−1, γδ−1γ−1 ∈ Γ0(4),

[I, ζγ(αδ)] = γ̃α̃δγ̃−1 ˜(γδ−1α−1γ−1)

= (γ̃α̃γ̃−1)(γ̃δ̃γ̃−1)( ˜γδ−1γ−1)( ˜γα−1γ−1)

= (γ̃α̃γ̃−1)[I, ζγ(δ)]( ˜γα−1γ−1)

= (γ̃α̃γ̃−1)( ˜γα−1γ−1)[I, ζγ(δ)]

= [I, ζα(δ)][I, ζγ(δ)]

= [I, ζγ(α)ζγ(δ)].

Hence ζγ is a homomorphism and χζk : Γγ → C× is a homomorphism with
finite image. So Γ′γ,χ is a normal subgroup of finite index in Γγ . �

Now fix γ ∈ Spn(Z) and fix an automorphy factor ϕγ (τ) for γ; assume
that n > (k + 1)/2. Set

Eγ =
1

[Γγ : Γ′γ,χ]

∑
χ(δ′δ)E∗|γ̃δ̃′δ̃

where
Γ0(4N ) = ∪δΓγδ (disjoint), Γγ = ∪δ′Γ′γ,χδ′ (disjoint).

Hence
Γ0(4N ) = ∪δ′,δΓ′γ,χδ′δ (disjoint).

Since Γ′γ,χ has finite index in Γγ , Γ(4N ) ⊆ Γγ , and Γ(4N ) has finite index in
Γ0(4N ), we have Eγ defined as a finite sum. To see that Eγ is well-defined,
take β ∈ Γ′γ,χ. Thus

χ(β)E∗|γ̃β̃ = χ(β)E∗|[I, ζγ(β)]γ̃βγ−1|γ̃

= E∗|γ̃βγ−1|γ̃
= E∗|γ̃

since γβγ−1 ∈ Γ∞Γ(4N ). Thus Eγ is well-defined. With δ, δ′ varying as
above, by Lemma 3.1 we have

[Γγ : Γ′γ,χ]Eγ =
∑
δ′δ

χ(δ′δ)E∗|γ̃δ̃′δ

=
∑
δ

χ(δ)

(∑
δ′

χζ−kγ (δ′)

)
E∗|γ̃δ̃.
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Since χζkγ is a homomorphism on Γγ , we have that Eγ = 0 unless χζkγ is
trivial on Γγ (meaning that Γ′γ,χ = Γγ). Note that for any α ∈ Γ0(4N ), we
have

Γ∞γΓ0(4N ) = ∪δΓ∞Γ(4N )γδα (disjoint),

and since δ̃α̃ = δ̃α for any δ as above, we get

Eγ |α̃ =
∑
δ

χ(δ)E∗|γ̃δ̃α = χ(α)Eγ .

Hence Eγ is a weight k/2, level 4N Eisenstein series with character χ.
Henceforth, we assume that n, k,N ∈ Z+ are fixed with k odd and n >

(k + 1)/2, and we fix a character χ modulo 4N .

Proposition 3.2. Take γ =

(
∗ ∗
M0 N0

)
∈ Spn(Z), ϕγ (τ) an automorphy

factor for γ, and χ a character modulo 4N . Suppose that Γ′γ,χ = Γγ. Then
Eγ 6= 0 and

Eγ(τ) =
∑
β

χ(β)1(τ)|γ̃β̃

where Γ∞γΓ0(4N ) = ∪βΓ∞γβ (disjoint). If γ ∈ Γ0(4) then

Eγ(τ) =
∑

(M N)

χ(M,N)

(
GM (N)√

detN
SM,N (τ)

)−k
where GLn(Z)(M N) varies over GLn(Z)(M0 N0)Γ0(4N ) and χ(M,N) =
χ(β) where β ∈ Γ0(4N ) so that GLn(Z)(M N) = GLn(Z)(M0 N0)β.

Proof. With δ∗ ∈ Γ(4N ) and δ ∈ Γ0(4N ) so that Γ∞Γ(4N ) = ∪δ∗Γ∞δ∗
(disjoint), Γ0(4N ) = ∪δΓγδ (disjoint), one easily sees that Γ∞γΓ0(4N ) =
∪δ∗,δΓ∞δ∗γδ (disjoint). Also, γ−1δ∗γ ∈ Γ(4N ), so

Γ∞γΓ0(4N ) = ∪δ∗,δΓ∞γ(γ−1δ∗γ)δ (disjoint).

Since γ−1δ∗γ ∈ Γγ = Γ′γ,χ, we have

1(τ)|δ̃∗γ̃ = 1(τ)|γ̃|γ̃−1δ̃∗γ̃ = 1(τ)|γ̃|γ̃−1δ∗γ.
Hence

Eγ(τ) =
∑
β

χ(β)1(τ)|γ̃β̃

where Γ∞γΓ0(4N ) = ∪βΓ∞γβ (disjoint). Also, for δ∗ ∈ Γ∞Γ(4N ) and
δ ∈ Γ0(4N ), we have

lim
τ→i∞

1(τ)|δ̃∗γ̃δ̃γ̃−1 = 0

unless δ∗γδγ−1 ∈ Γ∞, in which case γδγ−1 ∈ Γ∞Γ(4N ) and so δ ∈ Γγ . Thus

lim
τ→i∞

Eγ(τ)|γ̃−1 = lim
τ→i∞

E∗(τ) = 1,

so Eγ 6= 0.

Now suppose that γ ∈ Γ0(4). If β ∈
(
∗ ∗
M N

)
∈ Γ∞γΓ0(4N ) then

(M N) ∈ GLn(Z)(M0 N0)Γ0(4N ). On the other hand, suppose (M N) is a

coprime symmetric pair. Thus there is some α =

(
∗ ∗
M N

)
∈ Γ∞γΓ0(4N ),
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and if (M N) ∈ GLn(Z)(M0 N0)δ for some δ ∈ Γ0(4N ), then one easily

checks that α ∈ Γ∞γδ. Further, with α′ =

(
∗ ∗
M ′ N ′

)
, we have

GLn(Z)(M N) = GLn(Z)(M ′ N ′) = GLn(Z)(M0 N0)δ

if and only if Γ∞α = Γ∞α
′ = Γ∞γδ. Thus

Eγ(τ) =
∑

(M N)

χ(M,N)

(
GM (N)√

detN
SM,N (τ)

)−k
where GL(Z)(M N) varies (once) over GLn(Z)(M0 N0)Γ0(4N ). �

Next we describe a basis for the space of Eisenstein series.

Proposition 3.3. Let γ vary over elements of Spn(Z) so that

Spn(Z) = ∪γΓ∞γΓ0(4N ).

Then the corresponding nonzero weight k/2, level 4N Eisenstein series with
character χ are linearly independent. Further, suppose that γ ∈ Spn(Z),

β ∈ Γ0(4N ), β∗ ∈ Γ∞Γ(4N ) so that α = β∗γβ; set α̃ = β̃∗γ̃β̃. Then
Eα = χ(β)Eγ .

Proof. Suppose γ, β ∈ Spn(Z) so that β 6∈ Γ∞γΓ0(4N ) and Eγ ,Eβ 6= 0. As
shown in the proof of Proposition 3.2,

lim
τ→i∞

Eγ |γ̃−1 = 1,

but as

lim
τ→i∞

1(τ)|δ̃∗β̃δ̃γ̃−1 = 0

for all δ∗ ∈ Γ∞Γ(4N ) and δ ∈ Γ0(4N ), we have

lim
τ→i∞

Eβ(τ)|γ̃−1 = 0.

Consequently Eγ is linearly independent of the set

{Eβ : β ∈ Spn(Z), β 6∈ Γ∞γΓ0(4N ) }.

Now take γ ∈ Spn(Z), β∗ ∈ Γ∞, β ∈ Γ0(4N ). Set α̃ = β̃∗γ̃β̃. With δ′

verying so that

Γ∞αΓ0(4N ) = ∪δ′Γ∞αδ′ (disjoint),

we have

Γ∞γΓ0(4N ) = ∪δ′Γ∞γ(βδ′) (disjoint).

Hence

Eα =
∑
δ′

χ(δ′)E∗|α̃δ̃′ =
∑
δ′

χ(δ′)E∗|γ̃(̃βδ′) = χ(β)Eγ

(recall that for β, δ′ ∈ Γ0(4), we have β̃δ̃′ = β̃δ′). �

In this paper we are particularly interested in Eisenstein series of level
4N where N is odd and square-free. Below we introduce some terminology
and then exhibit a set of representatives for the degree zero cusps.

Definition. Suppose N ∈ Z+ is odd and square-free. We say

σ = ((N0, . . . ,Nn), (d, d′, ε))



HALF-INTEGRAL WEIGHT SIEGEL EISENSTEIN SERIES 13

is an admissible type for level 4N if (N0, . . . ,Nn) is a multiplicative partition
of N , d, d′ ∈ Z≥0 so that d + d′ ≤ n, and ε = + or − if 2|d′ with d′ 6= 0,
ε = + otherwise. We say M ∈ Zn,nsym is of σ-type if

M ≡ Is ⊥
〈
0
〉n−s

(Ns)

for all s, 0 ≤ s ≤ n, and

M ≡


Id ⊥ 2Id′ ⊥

〈
0
〉n−d−d′

(4) if ε = +,

Id ⊥ 2

(
0 1

1 0

)d′/2
⊥
〈
0
〉n−d−d′

(4) if ε = −.

Proposition 3.4. Suppose N ∈ Z+ is odd and square-free. For each ad-
missible type σ for level 4N , fix Mσ of σ-type. Then then with σ varying
over all admissible types, {(

I 0
Mσ I

)}
σ

is a set of representatives for Γ∞\Spn(Z)/Γ0(4N ).

Proof. Fix γ =

(
∗ ∗
M N

)
∈ Spn(Z). By Proposition 35 [7] we know there

is some M ′ ∈ Zn,nsym so that for all primes q|4N ,

M ′ ≡ Ir(q) ⊥
〈
0
〉n−r(q)

(q)

where r(q) = rankqM . Let (N0, . . . ,Nn) be the multiplicative partition of
N so that for each prime q|N , q|Ns if and only if r(q) = s.

Set d = r(2). By §63 [4], we know there is some E′ ∈ SLn(Z2) so that

E′M ′ tE′ = J0 ⊥ 2J1 ⊥ 4J

where J0, J1 are unimodular over Z2, J0 is d× d, and

J1 = Id′′ ⊥
(
a1 b1
b1 c1

)
⊥ · · · ⊥

(
ar br
br cr

)
with aici − b2i 6≡ 0 (2) (1 ≤ i ≤ r). Note that(

1 1
0 1

)(
0 1
1 1

)(
1 0
1 1

)
≡ I ≡

(
1 0
1 1

)(
1 1
1 0

)(
1 1
0 1

)
(2).

So adjusting E′, we can assume that J1 ≡ I` ⊥
(

0 1
1 0

)m
(2) for some

`,m ∈ Z≥0. We also have1 1 1
1 0 1
1 1 0

1 0 0
0 0 1
0 1 0

1 1 1
1 0 1
1 1 0

 ≡ I (2).

Hence, further adjusting E′, we can assume that

J1 ≡ Id′ or

(
0 1
1 0

)d′/2
(2)

where J1 is d′ × d′.
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Now (using Lemma 6.1 [7]) choose E ∈ SLn(Z) so that E ≡ I (N ) and
E ≡ E′ (4). Thus(

I 0
M ′′ I

)
=

(
tE−1

E

)(
I 0
M ′ I

)(
tE

E−1

)
∈ Γ∞γΓ0(4N )

with M ′′ ≡ M ′ (N ), M ′′ ≡ J0 ⊥ 2J1 ⊥
〈
0
〉n−d−d′

(4) where J0, J1 are

symmetric and invertible modulo 2, and J1 ≡ Id′ or

(
0 1
1 0

)d′/2
(2). Now

take J0 ∈ Zn,nsym so that J0J0 ≡ I (4). Take δ ∈ Γ0(4N ) so that δ ≡ I (N )
and

δ ≡


J0 J0 − I

In−d 0
J0

In−d

 (4).

Set ε = + if J1 ≡ Id′ (2), and set ε = − otherwise. Then(
I 0
M ′′ I

)
δ ≡

(
I 0
Mσ I

)
(4N )

where σ = ((N0, . . . ,Nn), (d, d′, ε)). Hence by Proposition 3.3 [7],

γ ∈ Γ∞

(
I 0
Mσ I

)
Γ0(4N ).

Thus ∪σΓ∞

(
I 0
Mσ I

)
= Spn(Z).

Now we want to show the above union is disjoint. So suppose that Mσ

and Mσ′ are σ- and σ′-type (respectively) where σ((N0, . . . ,Nn), (d, d′, ε))
and σ′ = ((N ′0, . . . ,N ′n), (r, r′, ε′)), and suppose that(

I 0
Mσ′ I

)
∈ Γ∞

(
I 0
Mσ I

)
Γ0(4N ).

Thus (
I 0
Mσ′ I

)
=

(
tE−1 ∗

0 E

)(
I 0
Mσ I

)(
A B
C D

)
for some E ∈ GLn(Z) and

(
A B
C D

)
∈ Γ0(4N ). So for all primes q|4N ,

rankqMσ′ = rankqMσ. This means that N ′i = Ni for 0 ≤ i ≤ n and r = d.
Write

E =

(
E1 E2

E3 E4

)
, A =

(
A1 A2

A3 A4

)
where E1, A1 are d× d. We have

Mσ ≡ Id ⊥ 2J (4) and Mσ′ ≡ Id ⊥ 2J ′ (4)

where J = J1 ⊥
〈
0
〉n−d−d′

, J ′ = J ′1 ⊥
〈
0
〉n−d−r′

, J1 is d′ × d′, J ′1 is r′ × r′,
and J1, J

′
1 are invertible modulo 2. We have Mσ′ ≡ EMσA (4), so E1, A1

are invertible modulo 2, E3, A2 ≡ 0 (2), E4, A4 are invertible modulo 2, and
J ′ ≡ E4JA4 (2). Hence rank2 J

′ = rank2 J , meaning that r′ = d′. Writing

D =

(
D1 D2

D3 D4

)
where D1 is d × d, and knowing that E(MσB + D) = I,

we see that we must have D3 ≡ 0 (2) and E4D4 ≡ I (2). We also know
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that A tD ≡ I (4N ), so A4
tD4 ≡ I (2). Thus E4 ≡ tA4 (2). Hence J ′ ≡

tA4JA4 (2). Now suppose that d′ ≥ 1 and write A4 =

(
α1 α2

α3 α4

)
where α1

is d′ × d′. So (
J ′1

0

)
≡
(
tα1J1α1

tα1J1α2
tα2J1α1

tα2J1α2

)
(2),

and hence α1 is invertible modulo 2, α2 ≡ 0 (2). Thus over Z/2Z, J1 and
J ′1 represent the same quadratic form. Noting that Id′ has an anisotropic

vector modulo 2 and for any ` ≥ 1,

(
0 1
1 0

)`
does not, we must have ε′ = ε.

Thus σ′ = σ whenever

(
I 0
Mσ′ I

)
∈ Γ∞

(
I 0
Mσ I

)
Γ0(4N ). �

Next, for γ ∈ Γ0(4), we determine necessary conditions on χ to have
Eγ 6= 0. Then for certain γ 6∈ Γ0(4), we show that Eγ = 0 regardless of
choices for χ and ϕγ(τ).

Proposition 3.5. Suppose that N ∈ Z+ is odd and square-free, and suppose
that σ = ((N0, . . . ,Nn), (0, 0,+)) is an admissible type for level 4N . Take

Mσ of σ-type, and set γ =

(
I 0
Mσ I

)
. Thus γ ∈ Γ0(4) and Eγ = 0 unless

χ2
q = 1 for all primes q dividing N1 · · · Nn−1. (Note that we necessarily have

χ2
4 = 1.)

Proof. Take q to be a prime dividing N1 · · · Nn−1. Hence Mσ ≡
(
Id

0

)
(q)

where 0 < d < n. Let u ∈ Z be a unit modulo q, with u ∈ Z so that
uu ≡ 1 (q). By Lemma 6.1 [7], we can take E ∈ SLn(Z) and δ ∈ Spn(Z) so

that E ≡ I (4N/q), E ≡

u I
u

 (q), δ ≡ I (4N/q),

δ ≡


u w

In−2 0
u 0

u
In−2

u

 (q)

where w = u− u. Thus δ ∈ Γ0(4N ), β =

(
tE−1

E

)
∈ Γ∞, and βγδγ−1 ∈

Γ∞Γ(4N ). Hence δ ∈ Γγ . Since γ ∈ Γ0(4), we have that ζγ(δ) = 1. So
by Lemma 3.1, if Eγ 6= 0 then 1 = χ(δ) = χ2

q(u). This argument holds for
all units modulo q, and for all primes q dividing N1 · · · Nn−1, proving the
proposition. �

Proposition 3.6. Suppose N ∈ Z+ is odd and square-free, and

σ = ((N0, . . . ,Nn), (d, d′,+))
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is an admissible type for level 4N with d′ > 0. Then with χ a character

modulo 4N , Mσ of σ-type, and γ =

(
1 0
Mσ 1

)
, we have Eγ = 0, regardless

of the choice of automorphy factor for γ.

Proof. Fix a choice of character χ modulo 4N and an automorphy factor
ϕγ(τ) for γ. We have Mσ ≡

〈
m1, . . . ,mn

〉
(4N ) where

md+1 ≡


0 (N0 · · · Nd),
1 (Nd+1 · · · Nn),

2 (4).

So (using Proposition 3.3) we can assume that Mσ =
〈
m1, . . . ,mn

〉
.

Now set m = md+1,

A =

Id 1 + 2N
In−d−1

 , B =

0d
2N/m

0n−d−1

 ,

C =

0d
−2Nm

0n−d−1

 , D =

Id 1− 2N
In−d−1

 .

One easily checks that with

α =

(
A B
C D

)
,

we have (Mσ I)α = (Mσ I) and consequently α ∈ Γγ . As we saw in our
construction of Eisenstein series, we have Eγ = 0 unless Γ′γ,χ = Γγ . Then as
in the proof of Lemma 3.1, we have

(ζγ(α))2 =
(G−2Nm(1− 2N ))2

1− 2N
=

(G2Nm(2N − 1))2

1− 2N
.

SinceN is odd, we have 2N−1 ≡ 1 (4) and hence (G2Nm(2N−1))2 = 2N−1.
Therefore (ζγ(α))2 = −1 and so ζγ(α) = ±i. We also have χ(α) = χ(1 −
2N ) = χ4(−1) = ±1. Consequently, χζkγ (α) = ±i. Hence Γ′γ,χ 6= Γγ , and so
Eγ = 0. �

Using elements of the above proof, we prove the following.

Corollary 3.7. Let Γ̃0(4) = {γ̃ = [γ, θ(γτ)/θ(τ)] : γ ∈ Γ0(4) } . Suppose

that Γ is a subgroup of Spn(Z) containing Γ0(4), and that Γ̃ is a cover of Γ,

meaning that Γ̃ is a group whose elements are of the form [γ, ϕγ(τ)], γ ∈ Γ

and ϕγ(τ) an automorphy factor for γ. Suppose further that Γ̃0(4) ⊆ Γ̃ and

that

(
I 0
M I

)
∈ Γ with M ≡ Id ⊥ 2Id′ ⊥

〈
0
〉n−d−d′

(4) where d + d′ > 0,

or M ≡ Id ⊥
(

0 2
2 0

)d′/2
⊥
〈
0
〉n−d−d′

(4) where d > 0. Then Γ̃ is not a

one-fold cover of Γ. In particular, when n = 1, there is no group Γ so that

Γ0(4) ( Γ ⊆ SL2(Z) and Γ̃ is a one-fold cover of Γ.
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Proof. With M as above, we have(
I 0
M I

)
,

(
I 0
M I

)2

∈ Γ;

consequently Γ contains a matrix γ =

(
I 0
M ′ I

)
whereM ′ ≡ 2Ir ⊥

〈
0
〉n−r

(4)

for some r > 0. Take an automorphy factor ϕγ(τ) for γ so that [γ, ϕγ(τ)] ∈
Γ̃. Then since Γ̃ is a group with identity [I, 1], we have

γ̃−1 = [γ−1, 1/ϕγ(γ−1τ)] ∈ Γ̃.

Then from the proof of Proposition 3.7, there is some α ∈ Γγ ⊆ Γ0(4) so
that

γ̃α̃γ̃−1 = [I, ζγ(α)] ˜(γαγ−1) 6= γ̃αγ−1.

Thus there are (at least) two distinct elements in Γ̃ of the form [γαγ−1, ∗].
Hence Γ̃ is not a one-fold cover of Γ. �

Remark. It would be interesting to know whether there is a group Γ with

Γ0(4) ( Γ ⊆ Spn(Z) so that Γ̃ is a one-fold cover of Γ. Note that by the
above result and Proposition 3.5, such a group Γ would necessarily have an
element of the form (

I 0
M ′ I

)
where M ′ ≡

(
0 2
2 0

)r
⊥
〈
0
〉n−r/2

(4) where r > 0.

4. The action of Hecke operators attached to odd primes
where the level is 4N with N odd and square-free

Throughout, we fix n, k,N ∈ Z+ with k odd, n > (k + 1)/2, N odd and
square-free, and χ a character modulo 4N .

Here we look at the action on Siegel Eisenstein series of Hecke operators.
However, because of the constraints reflected in Proposition 2.2, we are only
able to do this satisfactorily for Hecke operators attached to odd primes,
and for Eisenstein series supported on the Γ0(4N )-orbit of a matrix γ ∈
Γ0(4). (In the process of our evaluation, we point out where we find these
restrictions necessary.) We restrict our attention to level 4N with N odd
and square-free so that we can evaluate the action of the Hecke operators
attached to primes dividing N .

In Proposition 3.4 we presented a set of representatives for the double quo-
tient Γ∞\Spn(Z)/Γ0(4N ). From that we can see that a representatives for
Γ∞\Γ0(4)/Γ0(4N ) are associated to admissible types ((N0, . . . ,Nn), (0, 0,+))
where (N0, . . . ,Nn) is a (multiplicative) partition of N . Hence to ease our
notation, for σ = (N0, . . . ,Nn) a partition of N , we fix a diagonal matrix

Mσ ∈ 4Zn,n with Mσ ≡ Is ⊥
〈
0
〉n−s

(Ns) for all s, 0 ≤ s ≤ n. Then we set

γσ =

(
I 0
Mσ I

)
, and we often write Eσ for Eγσ . Note that with such σ and

Mσ, we have that

GLn(Z)(Mσ I)Γ0(4N ) = SLn(Z)(Mσ I)Γ0(4N ),
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so we can write Eσ as a sum over representatives

SLn(Z)(M N) ∈ SLn(Z)(Mσ I)Γ0(4N ).

This observation is useful in allowing us to more easily adapt results from
[7], as with the following result.

Proposition 4.1. Fix a multiplicative partition σ of N , and suppose Eγσ 6=
0. Take (M N) ∈ SLn(Z)(Mσ I)γ where γ ∈ Γ0(N ), and fix a prime q|N .
There are E0, E1 ∈ SLn(Z) so that

E0ME1 ≡
(
M1 0
0 0

)
(q)

with M1 invertible modulo q; for any such E0, E1 we have

E0N
tE−11 ≡

(
N1 N2

0 N4

)
(q)

and χq(γ) = χq(detM1 · detN4). Also, χ4(M,N) = χ4(detN). Further, for
any G ∈ GLn(Z), we have

χ(GM,GN) = χ(detG)χ(M,N) = χ(MG,N tG−1).

Proof. Essentially, this is Proposition 3.7 from [7], although for that propo-
sition the level is N with N square-free. So here the difference is that our
level is 4N with N odd and square-free. Hence for γ ∈ Γ0(4N ) so that
(M N) ∈ GLn(Z)(Mσ I)γ, we have χ4(γ) = χ4(detN). �

We begin by evaluating Eσ|Tj(q2) (1 ≤ j ≤ n) for σ a partition of N and
q a prime dividing N . We show that the span of these Eσ has a basis

{Ẽσ : σ a partition of N }

so that each Ẽσ is a simultaneous eigenform for {Tn(q2) : prime q|N }.
Further, we show that for σ, ρ distinct partitions of N , there is some prime

q|N so that the Tn(q2)-eigenvalues of Ẽσ and Ẽρ differ. Then, since the

Hecke operators commute, we can show that each Ẽσ is an eigenform for all
Hecke operators associated to odd primes, and we explicitly compute the
eigenvalues of all Tj(p

2) where 1 ≤ j ≤ n and p an odd primes.
From Proposition 1.3 and Theorem 2.3 of [6], and Proposition 2.1 of [7], we

have the following. Note that here we have normalized the Hecke operator
presented in [6]; also, we have simplified a Gauss sum that appeared there.

Proposition 4.2. Suppose F is a modular form of degree n, weight k/2,
level 4N and character χ.

(a) For q a prime dividing 4N and 1 ≤ j ≤ n,we have

F |Tj(q2) = qj(k/2−n−1)
∑
G,Y

F |
[(
X−1j G−1 X−1j Y tG

Xj
tG

)
, qj/2

]
where G varies over Kj(q), and Y varies over Yj(q2), meaning that

Y =

(
U V
tV 0

)
so that U varies over integral symmetric j× j matri-

ces modulo q2, and V varies over integral j×(n−j) matrices modulo
q.
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(b) For p a prime not dividing 4N and 1 ≤ j ≤ n, we have

F |Tj(p2)

= pj(k/2−n−1)
∑
n0,n2
G,Y

F |χ(pj−n0+n2)

·
[(
X−1n0,n2

G−1 X−1n0,n2
Y tG

0 Xn0,n2
tG

)
, p−j/2+n0GY1(pIj−n0−n2)

]
.

Here, n0, n2 ∈ Z≥0 vary so that n0 + n2 ≤ j. For each pair n0, n2,
we have G = G1G2, where G1 varies over SLn(Z)/Kn0,n2(p),

G2 =

In0

G′

In2


with G′ varying over SLn′(Z)/ tK′j′(p) where n′ = n− n0 − n2, j′ =
j − n0 − n2,

K′j′ =

(
pIj′

I

)
SLn′(Z)

(1
pIj′

I

)
∩ SLn′(Z),

and Y varies over Yn0,n2(p2), the set of all integral, symmetric n×n
matrices 

Y0 Y2 Y3 0
tY2 Y1/p 0
tY3 0
0


with Y0 n0 × n0, varying modulo p2, Y1 j

′ × j′, varying modulo p
provided p - detY1, and Y2, Y3 varying modulo p with Y3 n0 × n2.
Note that we can assume G ≡ I (4N ) and Y ≡ 0 (4N ). Also,

GY1(pIj−n0−n2) =

(
detY1
p

)
G1(p)j−n0−n2 .

Theorem 4.3. Suppose that N ∈ Z+ is odd and square-free, χ is a char-
acter modulo 4N so that χ(−1) = 1. Fix a prime q|N and a multiplicative
partition σ′ = (N ′0, . . . ,N ′n) of N/q. For 0 ≤ d ≤ n, let σd = (N0, . . . ,Nn)
where

Ni =

{
N ′i if i 6= d,

qN ′d if i = d.

Then when Eσd 6= 0 for 0 ≤ j ≤ n, we have

Eσd |Tj(q
2) =

n−d∑
t=0

Aj(d, t)Eσd+t
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where

Aj(d, t) = q(j−t)d−t(t+1)/2βq(d+ t, t)

·
j∑
s=0

j−s∑
d5=0

d5∑
d8=0

qaj(d;s,d5,d8)χN/q(X
−1
s,rMσdXj , X

−1
s,rX

−1
j )

· βq(d, s)βq(t, d5)βq(n− d− t, j − s+ d8 − t)

· βq(t− d5, d8) symχ
q (t− d5 − d8) symχ′

q (d5, d8)

· q−k(d5−d8)/2G1(q)k(d5−d8),
r = j − s− d5 + d8,

aj(d; s, d5, d8) = (k/2− d)(2s+ d5 − d8) + s(s− d8 − j − 1)

+ d8(j − d5)− d5(d5 + 1)/2 + d8(d8 + 1)/2,

and χ′q(∗) = χq(∗)
(
∗
q

)
. (Here symχ

q (b, c) is as defined in section 2.) Thus

Ẽσd |Tj(q2) = Aj(d, 0)Ẽσd .

Proof. Here we make use of results derived in the proof of Theorem 4.4 [7],
where we evaluated the action of Tj(q

2) on integral weight Eisenstein series.
The difference is that here we need to compare automorphy factors Gauss
sums.

To ease notation, temporarily write Ed′ for Eσd′ , Md′ for Mσd′ , Xs,r for

Xs,r(q), Ks,r for Ks,r(q), and Yj for Yj(q2).
By Proposition 4.2, we have

Ed(τ)|Tj(q2) = q−j(n+1)
∑

(M N),G,Y

χ(M,N)

(
GM (N)√

detN

)−k
· SM,N (X−1j G−1(τ +GY tG) tG−1X−1j )−k

where SLn(Z)(M N) varies over the Γ0(4N )-orbit of SLn(Z)(Md I), and
G, Y vary as in Proposition 4.2. By Proposition 2.2 we know that for E ∈
SLn(Z), we have χ(EM,EN) = χ(M,N), GEM (EN) = GM (N),

√
EN =√

N , and SEM,EN (τ) = SM,N (τ) for all τ ∈ h(n). Thus for each G, Y , we
follow [7] to adjust the pair (M N) by left multiplication from SLn(Z) so
that, with appropriate choices of s, r, we have that

(Xs,rMX−1j G−1, Xs,rNXj
tG) = 1.

We set M ′ = Xs,rMX−1j G−1, N ′′ = Xs,rNXj
tG, and N ′ = M ′GY tG+N ′′.

Then
SM,N (X−1j G−1(τ +GY tG) tG−1X−1j )

SM ′,N ′′(τ +GY tG)

is an analytic function whose square is qr−s−j and whose limit as τ 7→ 0
is q(r−s−j)/2; thus the quotient above is equal to q(r−s−j)/2. Further, since
q 6= 2, from Proposition 2.2 we know that

GM ′(N ′′)√
detN ′′

SM ′,N ′′(τ +GY tG) =
GM ′(N ′)√

detN ′
SM ′,N ′(τ).
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Hence

Ed(τ)|Tj(q2) = qj(k/2−n−1)
∑

(M N),G,Y

χ(M,N)

(
GM ′(N ′)√

detN ′

)−k

· qk(s−r)/2
(
GM (N) ·

√
detN ′′√

detN · GM ′(N ′′)

)−k
SM ′,N ′(τ)−k

where SLn(Z)(M N) varies over SLn(Z)(Md I)Γ0(4N ), G, Y vary as in
Proposition 4.2, and r, s,M ′, N ′′, N ′ are as defined above. Note that we
necessarily have rankqM

′ ≥ rankqM = d.
Given a coprime symmetric pair (M ′ N ′), we want to count how often

SLn(Z)(M ′ N ′) = SLn(Z)Xs,r(MX−1j G−1 MX−1j Y tG+NXj
tG)

for some (M N) ∈ SLn(Z)(Md I)Γ0(4N ). Equivalently, we want to count
how often

(∗) X−1s,rE(M ′GXj −M ′GYX−1j +N ′ tG−1X−1j )

∈ SLn(Z)(Md I)Γ0(4N )

for some E ∈ SLn(Z). Since X−1s,rEXs,r ∈ SLn(Z) for E ∈ SLn(Z) if and
only if E ∈ Ks,r, we only need to consider E ∈ Ks,r\SLn(Z). Thus

Ed(τ)|Tj(q2) =
∑

(M ′N ′)

cd(M
′, N ′)χ(M ′, N ′)

(
GM ′(N ′)√

detN ′
SM ′,N ′(τ)

)−k
where

cd(M
′, N ′) = qj(k/2−n−1)χ(M ′, N ′)

∑
s,r,E,G,Y

χ(M,N)qk(s−r)/2

·

GM (N)√
detN

√
detXs,rNXj

GXs,rMX−1
j

(Xs,rNXj)

−k ,
s, r ∈ Z≥0, E ∈ Ks,r\SLn(Z), G ∈ SLn(Z)/Kj , Y ∈ Yj such that

(M N) = X−1s,rE(M ′GXj M
′GYX−1j +N ′ tG−1X−1j )

∈ SLn(Z)(Md I)Γ0(4N ).

(Here we have used that forG ∈ SLn(Z) we have GM ′(N ′) = GM ′G(N ′ tG−1).)
We also know that Ed|Tj(q2) is a modular form, and hence is a linear com-
bination of Ed′ for d′ ≥ d. Thus Ed|Tj(q2) =

∑
d′≥d cd(Md′ , I)Ed′ .

As shown in the proof of Theorem 4.4 [7], given s, r, each solution E,G, Y
to (*) corresponds to choices for s, d5, d7, d8 so that s ≤ d, d′ = d+d5+d7+d8
and M,N have the following forms.

M =


A′1 qA1 qA′2 qA2

qA′3 qA3 A′4 qA4

qA′5 qA5 qA′6 qA6

q2A′7 q2A7 qA′8 qA8

 , N =


D′1 D1 D′2 D2

D′3 D3 D′4 D4

qD′5 D5 qD′6 D6

qD′7 D7 qD′8 qD8


where A′1, D

′
1 are s × s, A′4, D′4 are (d − s) × (d − s), A7, D7 are r × (j −

s), A′1, A
′
4 are invertible modulo q. Since (M,N) = 1, we must have
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(row) rankq

(
D5 D6

D7 0

)
= n − d, and since (Xs,rMX−1j Xs,rNXj) = 1,

we must have (row) rankq

(
A5 0 0 D6

A7 A8 D7 0

)
= n − d. So rankqD7 = r

and rankq(A5 D6) = n − d − r. Further, adjusting E by left multiplication
from Ks,r and G by right multiplication from Kj , we can assume that modulo
q,

A5 ≡
(
α5 0 0
0 0 0

)
,

A7 ≡

0 0 0
0 0 α7

0 0 0

 , A8 ≡

 0 0
0 0
α8 0


where α5 is d5× d5, α7 is d7× d7, α8 is d8× d8, and α5, α7, α8 are invertible
modulo q. (So we necessarily have d5 + d7 ≤ j − s and d8 ≤ n− j − d+ s.)
Also, as (M N) is a coprime symmetric pair, modulo q we have

D5 ≡
(
β′1 ∗ ∗
0 ∗ ∗

)
, D6 ≡

(
γ′1 ∗
0 γ4

)
,

D7 ≡

 0 δ2 0
0 ∗ δ′6
δ′7 ∗ ∗


where β′1 is d5× d5, γ′1 is d5× d8, γ4 is (n− d− r− d5)× (n− j− d+ s− d8),
δ2 is (r − d7 − d8) × (j − s − d5 − d7), δ

′
6 is d7 × d7, and δ′7 is d8 × d5.

Then a careful analysis in the proof of Theorem 4.4 [7] tells us that d5 ≥ d8,

r = j−s−d5+d8, and γ4, δ2, δ
′
6,

(
β′1 γ′1
δ′7 0

)
are square and invertible modulo

q.
From the above descriptions of M,N , we can see that

(X0,rMX−1j Xs X0,rNXjX
−1
s )

is an integral, coprime pair (which is necessarily symmetric). Thus by Propo-
sitions 2.2(c) and 5.1, we have

GXs,rMX−1
j

(Xs,rNXj) = qsGX0,rMX−1
j Xs

(X0,rNXjX
−1
s ).

Let

P1 =

 0 Is 0
Ij−s 0 0

0 0 In−j

 .

So using Propostion 2.2(c) and recalling that P−11 = tP1, we have

GX0,rMX−1
j Xs

(X0,rNXjX
−1
s ) = GX0,rMX−1

j XsP1
(X0,rNXjX

−1
s P1)

= GX0,rMP1X
−1
j−s

(X0,rNP1Xj−s).

To prepare to use Proposition 5.2, choose E0, G0 ∈ SLd5(Z) so that

E0γ
′
1 ≡

(
0
γ′′1

)
(q), δ′7G0 ≡

(
0 δ′′7

)
(q)
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where γ′′1 , δ
′′
7 are d8 × d8. Write

E0β
′
1G0 =

(
β′′1 ρ2
ρ3 ρ4

)
where β′′1 is (d5 − d8)× (d5 − d8). So(

E0

Id8

)(
β′1 γ′1
δ′7 0

)(
G0

Id8

)
≡

β′′1 ρ2 0
ρ3 ρ4 γ′′1
0 δ′′7 0

 (q),

and since this matrix is invertible modulo q, we must have rankq δ
′′
7 = d8 =

rankq γ
′′
1 , and rankq β

′′
1 = d5 − d8. (So β′′1 , γ

′′
1 , δ
′′
7 are invertible modulo q.)

Write

E0α5
tG−10 =

(
α′5 ω2

ω3 ω4

)
where α′5 is (d5 − d8)× (d5 − d8). By the symmetry of M tN , we have that(

E0

Id8

)(
β′1 γ′1
δ′7 0

)(
tα5

tα8

)(
tE0

Id8

)
is symmetric modulo q; consequently ω2 ≡ 0 (q) and so α′5, ω4 are invertible
modulo q. Now set

E =

Id E0

In−d−d5

 , G =

(
G0

In−d5

)
, P2 =

 0 Id5−d8 0
Ir 0 0
0 0 In−j−s

 .

Then E commutes with X0,r (since d8 ≤ n − j − d + s and hence r =
j − s− d5 + d8 ≤ n− d− d5). Somewhat similarly, G and P2 commute with
Xj−s (since d5 ≤ j− s and r+ d5− d8 = j− s). Thus by Proposition 2.2(c),

GX0,rMP1X
−1
j−s

(X0,rNP1Xj−s)

= GX0,rEMP1
tG−1P2X

−1
j−s

(X0,rENP1GP2Xj−s).

Hence with M̃ = EMP1
tG−1 and Ñ = ENP1G, we know that

(M̃P2X
−1
j−sXr ÑP2Xj−sX

−1
r ) is an integral coprime pair

⇐⇒ (M̃P2X
−1
j−sXr

tP2 ÑP2Xj−sX
−1
r

tP2) is an integral coprime pair

⇐⇒ (M̃X−1j−s−r ÑXj−s−r) is an integral coprime pair.

Recall that P1 has permuted the 1st j − s columns of M with the next s
columns of M , and similarly for N . (So, for instance, the top row of blocks

of MP1 is (qA1 A
′
1 qA

′
2 qA2) and hence M̃X−1j−s−r is integral.) Using our

block decompositions of M and N in terms of subscripted As and Ds, we

have the following. In M̃X−1j−s−r, the (1, 2) block is A′1 which is s × s and

invertible modulo q, and the (2, 3) block is A′4 which is (d − s) × (d − s)
and invertible modulo q. Let Ã5 denote the (3, 1) block of M̃X−1j−s−r, and

D̃5, D̃6 and D̃y the (3, 1), (3, 4) and (4, 1) blocks of ÑXj−s−r. Then modulo
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q, we have

Ã5 ≡

α′5 0 0 0
ω3 0 0 0
0 0 0 0

 , D̃5 ≡

qβ′′1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

 , D̃6 ≡

 0 ∗
γ′′1 ∗
0 γ4

 ,

D̃7 ≡

0 0 δ2 0
0 0 ∗ δ′6
0 δ′′7 ∗ ∗

 ,

where (as we’ve previously noted) α′5, β
′′
1 , γ
′′
1 , γ4, δ2, δ

′
6, δ
′′
7 are square and in-

vertible modulo q. Hence (M̃X−1j−s−r ÑXj−s−r) has q-rank n, and thus is a
coprime symmetric pair. So by Proposition 5.2 we have

G
X0,rM̃P2X

−1
j−s

(X0,rÑP2Xj−s) = G
M̃P2X

−1
j−sXr

(ÑP2Xj−sX
−1
r )

= G
M̃X−1

j−s−r
(ÑXj−s−r)

since P2Xj−sX
−1
r

tP2 = Xj−s−r. If j = s + r then with Proposition 2.2(c)
we have

G
X0,rM̃P2X

−1
j−s

(X0,rÑP2Xj−s) = G
M̃

(Ñ) = GM (N).

Suppose j > s+ r. Then we modify G in our previous step to prepare to
apply Proposition 5.3. Take G0 as before, and choose an integral (d5−d8)×r
matrix W so that(

E0

In−d−r−d5

)
D5

(
G0

Ij−s−d5

)(
Id5−d8 W

Ir

)
≡
(
β′′1 0
∗ ∗

)
(q).

Then with

G1 =

(
G0

Ij−s−d5

)(
Id5−d8 W

Ir

)
,

we have (
E0

In−d−r−d5

)
A5

tG−11 ≡
(
α′5 0
∗ ∗

)
(q)

(recall that ω2 ≡ 0 (q)). Set G =

(
G1

In−j+s

)
; so G commutes with Xj−s.

Hence we again have

G
X0,rM̃P2X

−1
j−s

(X0,rÑP2Xj−s) = G
M̃X−1

j−s−r
(ÑXj−s−r).

But now, with

P3 =

Id 0 0
0 0 In−d−d5+d8
0 Id5−d8 0

 ,

by Proposition 5.3 we have

G
M̃X−1

j−s−r
(ÑXj−s−r) = G

P3M̃X−1
j−s−r

(P3ÑXj−s−r)

=

(
detα′5β

′′
1

q

)
(G1(q))d5−d8 GM̃ (Ñ)
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and we know by Proposition 2.2(c) that G
M̃

(Ñ) = GM (N). Recall that
r = j − s − d5 + d8 and d5 ≥ d8. Hence we have j = s + r if and only if
d5 = d8. Hence for all choices of s, r, the above computations give us

GXs,rMX−1
j

(Xs,rNXj) = qs
(

detα′5β
′′
1

q

)
(G1(q))d5−d8 GM (N).

Now, by the symmetry of M tN , we know that

(
β′1 γ′1
δ′7 0

)(
tα5

tα8

)
is

symmetric modulo q, and hencedet

(
β′1 γ′1
δ′7 0

)(
tα5

tα8

)
q

 =

(
−1

q

)d5−d8 (detα′5β
′′
1

q

)
.

Also, G1(q) = G−1(q) =
(
−1
q

)
G1(q). Thus

GM (N)
√

detN ′′√
detN GM ′(N ′′)

=
q(d5−d8)/2

(G1(q))d5−d8

det

(
β′1

tα5 γ′1
tα8

δ′7
tα5 0

)
q

 .

To evaluate cd(Md′ , I), we also need to evaluate

χ(M,N) = χ(X−1s,rEMd′GXj , Xs,rE
tG−1X−1j ).

We note that by Lemma 6.1 [7] we can choose E,G ≡ I (4N/q), and we can
choose Y ≡ 0 (4N/q). Thus M ≡Md′ (4N/q) so

χ4N/q(M,N) = χ4N/q(X
−1
s,rMd′Xj , X

−1
s,rX

−1
j ).

As shown in the proof of Theorem 4.4 [7], with (M N) as above we have

χq(M,N) = χq

(
det

(
β′1

tα5 γ′1
tα8

δ′7
tα5 0

)
det(δ′6

tα7)

)
.

Now we need to consider what happens when we fix s, r, d′ and let E,G, Y
vary so that X−1s,rE(Md′GXj −Md′GYX

−1
j + tG−1X−1j ) ∈ SLn(Z)(Md′ I).

As proved in Theorem 4.4 [7], there are

βq(d, s)βq(d
′ − d, d5)βq(n− d′, j − s+ d8 − d′ + d)βq(d

′ + d− d5, d8)

· q(d+d5)(r+d+d5−d′)+s(n−d−d5)+(d4+d8)(j−s−d5)−d7d8

permissible choices for (E,G), and for each choice of (E,G), as Y varies
over permissible choices, the matrixβ′1 tα5 γ′1

tα8 0
δ′7

tα5 0 0
0 0 δ′6

tα7


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varies q(j−s)(n−d+1)−d5(j−s+d8+1)−d7(d7+1)/2 times over all symmetric, invert-
ible matrices modulo q. As β′1, γ

′
1, δ
′
6, δ
′
7 vary as such,

∑
χq

(
det

(
β′1

tα5 γ′1
tα8

δ′7
tα5 0

)
det(δ′6

tα7)

)det

(
β′1

tα5 γ′1
tα8

δ′7
tα5 0

)
q


= symχ′

q (d5, d8) symχ
q (d7),

and by Lemma 2.3, this is symχ′
q (d5, d8) symχ

q (d7). Now combining the above
results yields the theorem. �

From this theorem we can deduce a “multiplicity-one” result. To ease our
description, we introduce the following.

Definition. Let σ, α be multiplicative partitions of N , and let q be a prime
dividing N . We write σ < α (q) if rankqMσ < rankqMα, σ = α (q) if
rankqMσ = rankqMα, and σ ≤ α (q) if rankqMσ ≤ rankqMα. For Q|N , we
write σ < α (Q) if rankqMσ < rankqMα for all primes q|Q, σ = α (Q) if
rankqMσ = rankqMα for all primes q|Q, σ ≤ α (Q) if rankqMσ ≤ rankqMα

for all primes q|Q.

Corollary 4.4. Let σ be a partition of N so that Eσ 6= 0 and let q a prime
dividing N ; set d = rankqMσ. For any partition β of N with β ≥ σ (N ),
there are constants aσ,β(N ) so that aσ,σ(N ) = 1, and with

Ẽσ =
∑

β≥σ (N )

aσ,β(N )Eβ,

we have Ẽσ|Tj(q2) = λσ;j(q
2)Ẽσ where

λσ;j(q
2) =qjd

j∑
s=0

qs(k−2d+s−j−1)χN ′0(q2s)χN ′n(q2(j−2))

and N ′i = Ni/(q,Ni). For σ, ρ distinct multiplicative partitions of N , there

is some prime q|N so that λσ;n(q2) 6= λρ;n(q2). Further, Ẽσ = 0 if and only
if Eσ = 0, and

span{Ẽσ : σ is a multiplicative partition of N }
= span{Eσ : σ is a multiplicative partition of N }.

Proof. This proof follows the lines of reasoning used to prove Corollaries 4.2
and 4.3 in [7].

First, fix a multiplicative partition σ = (N0, . . . ,Nn) of N and a prime
q|N . Let d = rankqMσ. We temporarily use the notaion of Theorem 4.3;
so we write σd for σ, and for t > 0, we write σd+t for ρ where ρ = σ (N/q)
and rankqMρ = d+ t. Then by Theorem 4.3, we have

Eσd |Tn(q2) =
∑
t≥0

An(d, t)Eσd+t ;

if Ed+t = 0 for some t then we can replace An(d, t) by 0 in this formula. The
formula for An(d, 0) is a sum on s with 0 ≤ s ≤ n, and the corresponding
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summand has a term βq(d, s)βq(n− d, n− s). Consequently

An(d, 0) = qd(k−d−1)χN/q

(
qX−1d,n−d(q),

1

q
X−1d,n−d(q)

)
since βq(d, s) = 0 if s > d and βq(n − d, n − s) = 0 if s < d. So we can

represent Tn(q2) on t(Eσ0 . . . Eσn) by an upper triangular matrix, whose dth

diagonal entry has absolute value qd(k−d−1) when Eσd 6= 0; when Eσd = 0, we
can take the dth column of this matrix to be zeros. Hence we can diagonalize
this matrix; correspondingly, for each ρ with ρ = σ (N/q) and Eρ =6= 0,
there are values aρ,α(q) with aρ,ρ(q) = 1 so that∑

α≥ρ (q)
α=ρ (N/q)

aρ,α(q)Eα

is an eigenform for Tn(q2) with eigenvalue λσ;n(q2) (as defined in the state-
ment of the corollary). Further, for α > ρ (q), α = ρ (N/q), by Proposition
2.3 and Theorem 4.3, we have aρ,α(q) = 0 unless χ2

q = 1.
Now, for any prime q|N and σ, α multiplicative partitions of N with

α ≥ σ (q), set

aσ,α(q) = aρ,α(q)

where ρ = σ (q) and ρ = α (N/q). Then for any Q|N and α ≥ σ (Q), set

aσ,α(Q) =
∏
q|Q

q prime

aσ,α(q).

Set

Ẽσ =
∑

α≥σ (N )

aσ,α(N )Eα.

So

Ẽσ|Tn(q2) =
∑

β=σ (q)
β≥σ (N/q)

aσ,β(N/q)
∑

α≥β (q)
α=β (N/q)

aβ,α(q)Eα|Tn(q2)

=
∑

β=σ (q)
β≥σ (N/q)

λβ;n(q2)aσ,β(N/q)
∑

α≥β (q)
α=β (N/q)

aβ,α(q)Eα.

We claim that for any β so that β = σ (q), β ≥ σ (N/q), and aσ,β(N/q) 6= 0,
we have λβ;n(q2) = λσ;n(q2). To see this, first note that since β = σ (q), we
have

λβ;n(q2) = qd(k−d−1)χN/q

(
qX−1d,n−d(q)Mβ,

1

q
X−1d,n−d

)
.

Using Proposition 4.1, we see that for a prime q′|N/q and d′ = rankq′Mβ,
we have

χq′

(
qX−1d,n−d(q)Mβ,

1

q
X−1d,n−d

)
= χ2

q′(q
d−d′)

and by Proposition 3.5, χ2
q′ = 1 when q′|N/N0Nn (and necessarily χ2

4 = 1).

As noted above, for β > σ (q′) and β ≥ σ (N/q), we know that aσ,β(q′) = 0
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unless χ2
q′ = 1. Thus when aσ,β(N/q) 6= 0, we have χ2

q′ = 1 for all primes

q′|N/q. Hence

λβ;n(q2) = qd(k−d−1) = λσ;n(q2).

Consequently Ẽσ|Tn(q2) = λσ;n(q2)Ẽσ.
Regardless of whether χ2

N/q = 1, we have |λσ;n(q2)| = qd(k−d−1) for every

prime q|N and d = rankqMσ. Hence for ρ 6= σ (N ), there is some prime q|N
so that rankqMρ 6= rankqMσ, and hence λρ;n(q2) 6= λσ;n(q2). This gives us
the multiplicity-one result claimed in the statement of the corollary.

Finally, since the Hecke operators commute, we must have that Ẽσ is an
eigenform for Tj(q

2) for all primes q|N and 1 ≤ j < n. Thus using Theorem
4.3, we must have

Ẽσ|Tj(q2) = λσ;j(q
2)Ẽσ,

as claimed. �

Since the Hecke operators commute, we know that for every odd prime

p - N we must have that Ẽσ is an eigenform for Tj(p
2); below we compute

the eigenvalues. These are not so attractive, so in the corollary that follows
we use an alternate set of generators for the local Hecke algebra, producing
much more attractive eigenvalues.

Note that in Corollary 4.4 we have only diagonalized the space of Eisen-
stein series corresponding to Γ∞\Γ0(4)/Γ0(4N ), relative to the Hecke op-
erators Tj(q

2) for primes q|N . Following the proof of Theorem 4.3, we can

see that the Ẽσ will not all be eigenforms for Tj(4) (unless all the Eisenstein
series corresponding to cusps outside Γ∞\Γ0(4)/Γ0(4N ) are all 0, which is
certainly not the case for Siegel degree n = 1).

Theorem 4.5. Let σ = (N0, . . . ,Nn) be a multiplicative partition of N , and
suppose that Eσ 6= 0. Let p be a prime not dividing 4N , and take j so that
1 ≤ j ≤ n. Then Eσ|Tj(p2) = λj(p

2)Eσ where

λσ;j(p
2) = βp(n, j)

∑
r+s≤j

pk(j−r+s)/2−(j−r)(n+1)χ(pj−r+s)χNn(p2(r−s))

· βp(j, r)βp(j − r, s)
(
G1(p)√

p

)j−r−s
symψ

p (j − r − s)

where the sum is over all non-negative integers r, s with r + s ≤ j, and

ψ(∗) =
(
∗
p

)
. Further, Ẽσ|Tj(p2) = λσ;j(p

2)Ẽσ.

Proof. To a large extent we follow the reasoning of Theorem 5.4 [7].
For any n0, n2 ∈ Z≥0 with n0 + n2 ≤ j, G ∈ SLn(Z), Y ∈ Yn0,n2 ,

and SLn(Z)(M N) ∈ SLn(Z)(Mσ I)Γ0(4N ), we adjust the representative
(M,N) and choose r, s ∈ Z≥0 so that

(M ′ N ′′) = X−1r,s (MX−1n0,n2
G−1 NXn0,n2

tG)

is an integral coprime pair (which is automatically symmetric). Note that
M ′ ≡ 0 (4), and for all primes q|N , we have rankqM

′ = rankqMσ. It follows
from Proposition 3.5 that (M ′ N ′′) ∈ SLn(Z)(Mσ I)Γ0(4N ). Then as in
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the proof of Theorem 4.3, we have

SM,N (X−1n0,n2
G−1(τ +GY tG) tG−1X−1n0,n2

)

= p(r−s−n0+n2)/2SM ′,N ′′(τ +GY tG)

= p(r−s−n0+n2)/2

√
detN ′′

GM ′(N ′′)
GM ′(N ′)√

detN ′
SM ′,N ′(τ)

where N ′ = M ′Y + N ′′ (and (M ′ N ′) ∈ SLn(Z)(Mσ I)Γ0(4N )). Setting

ε =
(
−1
p

)
, we have

Eσ|Tj(p2) =
∑

(M ′ N ′)

cσ(M ′, N ′)χ(M ′, N ′)

(
GM ′(N ′)√

detN ′
SM ′,N ′(τ)

)−k
with

cσ(M ′, N ′) = pj(k/2−n−1)χ(M ′, N ′)
∑

χ(pj−n0+n2)χ(M,N)

·

(
GM (N)√

detN

√
detN ′′

GM ′(N ′′)

)−k
pk(s−r)/2

· ε(k+1)(j−n0−n2)/2

(
detY1
p

)
(p−1/2G1(p))j−n0−n2 ,

where the sum is over all r, s, n0, n2 ∈ Z≥0 with n0 + n2 ≤ j, G, Y as in
Proposition 4.1(b), and E ∈ Ks,r\SLn(Z) so that

(M N) = Xr,sE(M ′GXn0,n2 −M ′GYX−1n0,n2
+N ′ tG−1X−1n0,n2

)

∈ SLn(Z)(Mσ′ I).

Now fix a partition σ′ of N . As noted in §5 of [7], we can choose the
representative Mσ′ to be divisible by p3; then with (M N) as above, we
have that p|M and N is invertible modulo p. We also have that N ′′ =
X−1r,sNXn0,n2

tG is invertible modulo p; consequently (as proved in Theorem
5.4 [7]), we must have r = n0 and s = n2. From this we find that

N =

N1 pN2 p2N3

N4 N5 pN6

N7 N8 N9


with N1 r×r, N9 s×s, and N1, N5, N9 invertible modulo p. Hence X−1r NXr

is also integral and invertible modulo p. Set

P =

 0 0 Is
0 I 0
Ir 0 0

 (n× n).

Then X−1r N tPX−10,r = X−1r NXrP is invertible modulo p, and using Propo-

sition 2.2(c) and Proposition 5.2, we have
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GMσ′ (N
′′) = GX−1

r,sMX−1
r,s

(X−1r,sNXr,s)

= GX−1
0,s (X

−1
r M tPX0,r)Xs

(X−10,s (X−1r N tPX−10,r )X−1s )

= GX−1
r M tPX0,r

(X−1r N tPX−10,r )

= GX0,rPMX−1
r

(X0,rPNXr)

= GM (N).

As shown in the proof of Theorem 4.5 [7], given r, s, for all choices of Y and
for

prsβp(n, j)βp(j, r)βp(j − r, s)
choices of (E,G) we have

(M N) = Xr,sE(Mσ′GXr,s −Mσ′GYX
−1
r,s + tG−1X−1r,s )

∈ SLn(Z)(Mσ I)Γ0(4N ).

Writing Y as in Proposition 4.2, we have∑
Y

(
detY1
p

)
= pr(n−s+1) symψ

p (j − r − s)

where ψp(∗) =
(
∗
p

)
. Note that symψ

p (j − r − s) = 0 when j − r − s is odd,

and when j − r− s is even we have ε(k+1)(j−r−s)/2 = 1. Also, we can always
choose E,G ≡ I (p) and Y ≡ 0 (p); hence χ(M,N) = χ(Xr,sMσ′Xr,s, I), and

by Proposition 4.1, if Eσ′ 6= 0, we have χ(M,N) = χNn(p2(r−s)). Combining
these computations yields the value of λσ;j(p

2).
Since the Hecke operators commute, by our multiplicity one result (Corol-

lary 4.4), Ẽσ =
∑

α≥σ (N ) aσ,αEα must be a Tj(p
2) eigenform. Since each Eα

is a Tj(p
2) eigenform, we must have λα;j(p

2) = λσ;j(p
2) whenever aσ,α 6= 0

(which can be corroborated by direct computation), so we have Ẽσ|Tj(p2) =

λσ;j(p
2)Ẽσ. �

Corollary 4.6. Let p be a prime not dividing 4N , and set ε =
(
−1
p

)
. Set

T̃j(p
2) =

j∑
`=0

χ(pj−`)ε(k+1)(j−`)/2p(j−`)(k/2−n−1/2)βp(n− `, j − `)T`(p2)

and

T ′j(p
2) =

j∑
i=0

(−1)ipi(i−1)/2βp(n− j + i, i)χNn(p2i)T̃j−i(p
2).

With σ = (N0, . . . ,Nn) a multiplicative partition of N , we have

Eσ|T ′j(p2) = λ′j(p
2)Eσ and Ẽσ|T ′j(p2) = λ′σ;j(p

2)Ẽσ
where

λ′σ;j(p
2) = βp(n, j)p

j(k/2−n−1/2)+j(j−1)/2χ′(pj)

j∏
i=1

(χ′χ2
Nn(p)p(k+1)/2−i + 1),

and χ′(ps) = χ(ps)εs(k+1)/2.
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Proof. To take advantage of a result proved in [6], we set

G̃(
〈
0
〉`

) = p−`(G1(p))` symψ
p (`)

where ψ(∗) =
(
∗
p

)
. Then (with t = `− r− s) we have Eσ|T̃j(p2) = λ̃j(p

2)Eσ
where

λ̃σ;j(p
2) =

∑
0≤`≤j

χ(pj−`)ε(k+1)(j−`)/2p(j−`)(k/2−n−1/2)

· β(n− `, j − `)λσ;`(p2)

=
∑

χ(pj−r+s)χNn(p2(r−s))ε(k+1)(j−r−s)

· p(j−r)(k/2−n−1/2)+s(k−1)/2

· β(n− `, j − `)β(n, `)β(`, r)β(`− r, s) G̃(
〈
0
〉`−r−s

)

where 0 ≤ ` ≤ j and 0 ≤ r + s ≤ `, or equivalently, 0 ≤ r + s ≤ j and
r + s ≤ ` ≤ j. We have

β(n− `, j − `)β(n, `)β(`, r)β(`− r, s)µ(j, `)

µ(j, `)

= β(n, j)β(j, r)β(j − r, s)β(j − r − s, `− r − s).

Now we make the change of variables ` 7→ `− r − s. So

λ̃σ;j(p
2) =

∑
χ(pj−r+s)χNn(p2(r−s))ε(k+1)(j−r−s)/2

· p(j−r)(k/2−n−1/2)+s(k−1)/2

· β(n, j)β(j, r)β(j − r, s)β(j − r − s, `)G̃(
〈
0
〉`

)

where 0 ≤ r + s ≤ j, 0 ≤ ` ≤ j − r − s. Taking W =
〈
0
〉j−r−s

in Lemma
3.2(b) [6], we have that

j−r−s∑
`=0

β(j − r − s, `)G̃(
〈
0
〉`

) = p(j−r−s)(j−r−s−1)/2

(as the form W ⊥
〈
2
〉

primitively represents
〈
0
〉j−r−s

only once). Hence

λ′σ;j(p
2) =

∑
(−1)ipi(i−1)/2χNn(p2(i+r−s))χ′(pj−i−r+s)

· p(j−i−r)(k/2−n−1/2)+s(k−1)/2+(j−i−r−s)(j−i−r−s−1)/2

· β(n− j + i, i)β(n, j − i)β(j − i, r)β(j − i− r, s)

where 0 ≤ i ≤ j and 0 ≤ r+s ≤ j−i, or equivalently, 0 ≤ i ≤ j, 0 ≤ r ≤ j−i,
0 ≤ s ≤ j − i − r. Making the change of variables r 7→ j − i − r, we get
λ′j(p

2) as a sum over 0 ≤ i ≤ j, 0 ≤ r ≤ j − i, 0 ≤ s ≤ r, or equivalently,

0 ≤ r ≤ j, 0 ≤ i ≤ j − r, 0 ≤ s ≤ r. We have β(j − i, j − i− r) = β(j − i, r)
and

β(n− j + i, i)β(n, j − i)β(j − i, r)µ(j, i)

µ(j, i)
= β(n, j)β(j, r)β(j − r, i).
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Using that β(m, r) = prβ(m− 1, r) + β(m− 1, r − 1), we find that

j−r∑
i=0

(−1)ipi(i−1)/2β(j − r, i) =

{
1 if r = j,

0 otherwise.

Thus

λ′σ;j(p
2) = β(n, j)χ′(pj)pj(k/2−n−1/2)+j(j−1)/2A(j, (k + 1)/2− j)

where

A(j, y) =

j∑
s=0

φ(ps)pys+s(s−1)/2β(j, s)

and φ(ps) = χ(ps)ε(k+1)s/2χNn(p2s). Again using the relation β(j, s) =
psβ(j − 1, s) + β(j − 1, s− 1), we find that

A(j, y) = (φ(p)py + 1)A(j − 1, y + 1) =

j−1∏
i=0

(χ′(p)χNn(p2)py+i + 1).

Taking y = (k + 1)/2− j shows that Eσ|T ′j(p2) = λ′σ;j(p
2)Eσ.

Now recall that Ẽσ =
∑

β≥σ (N ) aσ,β(N )Eβ. Suppose that β ≥ σ (N )

so that aσ,β(N ) 6= 0. Write σ = (N0, . . . ,Nn), β = (N ′0, . . . ,N ′n). For
any prime q|Nn, we know that rankqMβ ≥ rankqMσ = n. Consequently
Nn|N ′n. Now suppose that q is a prime so that q|N ′n but q - Nn. Thus
n = rankqMβ > rankqMσ, as thus as discussed in the proof of Corollary
4.4, we have χ2

q = 1. Hence χ2
Nn = χ2

N ′n . Therefore λ′β;j(p
2) = λ′σ;j(p

2) for

all β ≥ σ (σ). Hence Ẽσ|T ′j(p2) = λ′σ;j(p
2)Ẽσ. �

5. Relations on Gauss sums

To prove the following identities, we frequently use that with n × n ma-
trices A,B, we have Tr(AB) = Tr(BA).

Proposition 5.1. Suppose (M N), (XsMX−1s XsNXs) are coprime sym-
metric pairs. Then

GXsMX−1
s

(XsNXs) = qs · GM (N).

Proof. We let U0 vary over Z1,n/Z1,nNXs, U1 over Z1,n/Z1,nXs. Then
U1NXs varies over Z1,nNXs/Z1,nXsNXs; hence U = U0 + U1NXs varies
over Z1,n/Z1,nXsNXs and, recalling that M tN = N tM , we have

e{2 tUUX−1s N−1MX−1s } = e{2 tU0U0X
−1
s N−1MX−1s } · e{4 tU0U1MX−1s }.

For fixed U0, ∑
U1

e{4 tU0U1MX−1s } =
∑
U1

{4U1MX−1s
tU0}

is a character sum, so the sum is 0 unless MX−1s
tU0 is integral. Since

XsMX−1s is integral, M =

(
A1 A2

qA3 A4

)
with A1 of size s× s. Since

(XsMX−1s , XsNXs) = 1,
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we must have that A1 is invertible modulo q. MX−1s
tU0 is integral if and

only if U0 ∈ Z1,nXs, from which the proposition follows. �

Proposition 5.2. Suppose (M N) and (X0,rMX−1r X0,rNXr) are integral,
coprime symmetric pairs. Then

GX0,rMX−1
r

(X0,rNXr) = GM (N).

Proof. First, note that since (X0,rMX−1r X0,rNXr) is an integral coprime

pair, we have M =

(
qA1 A2

q2A3 qA4

)
, N =

(
B1 B2

B3 qB4

)
with A3, B3 of size r×r

and B3 invertible modulo q.
We obtain the desired identity by evaluating in two ways the sum∑

U∈Q1,n/Z1,nNXr

e{2 tUUX−1r N−1MX−1r }.

We now show that as U0 varies over Z1,n/Z1,nN and U1 varies over
Z1,n/Z1,nX−10,r , U0Xr + U1X0,rNXr varies over Z1,n/Z1,nNXr. Define the

additive homomorphism ψ : Z1,n × Z1,n → Z1,n/Z1,nNXr by

ψ((U0, U1)) = U0Xr + U1X0,rNXr + Z1,nNXr.

Suppose (U0, U1) ∈ kerψ. Thus

U0 + U1X0,rN ∈ Z1,nN ⊆ Z1,n.

Writing U1 = (W1 W
′
1) where W ′1 is 1 × r, we must have W ′1 ≡ 0 (q) since

B3 is invertible modulo q and U1X0,rN is integral. Hence U1X0,r is integral,
and thus U0 ∈ Z1,nN . Thus

kerψ = Z1,nN × Z1,nX−10,r .

Since

|ψ(Z1,n × Z1,n)/ kerψ| = qr detN = |Z1,n/Z1,nNXr|,

ψ is an isomorphism.
Thus with U0 varying over Z1,n/Z1,nN and U1 over Z1,n/Z1,nX−10,r , we

have ∑
U∈Z1,n/Z1,nNXr

e{2 2UUX−1r N−1MX−1r }

=
∑
U0, U1

e{2 t(U0Xr + U1X0,rNXr)(U0Xr + U1X0,rNXr)X
−1
r N−1MX−1r }

=
∑
U0, U1

e{2 tU0U0N
−1M} e{4 tU0U1X0,rM} e{2 tNX0,r

tU1U1X0,rM}

= qrGM (N)

since X0,rM , MX0,r, and X0,rM
tNX0,r are integral.

On the other hand, as V0 varies over Z1,n/Z1,nX0,rNXr and V1 varies over

Z1,n/Z1,nX−10,r and hence V1X0,rNXr varies over Z1,nX0,rNXr/Z1,nNXr. So
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V0 + V1X0,rNXr varies over Z1,n/Z1,nNXr. Thus∑
U∈Z1,n/Z1,nNXr

e{2 tUUX−1r N−1M−1r }

=
∑
V0,V1

e{2 tV0V0X−1r N−1MX−1r } e{4 tV0V1X0,rMX−1r }

e{2 tV1V1 ·X0,rM
tNX0,r}

=
∑
V0,V1

e{2 tV0V0X−1r N−1MX−1r }

since X0,rM
tNX0,r is integral. Thus∑

U∈Z1,n/Z1,nNXr

e{2 2UUX−1r N−1M−1r } = qrGX0,rMX−1
r

(X0,rNXr).

This proves the proposition. �

Proposition 5.3. Suppose that (M N) is a coprime symmetric pair so that

M =

(
qB1 B2

qB3 qB4

)
, N =

(
C1 C2

C3 qC4

)
where B3, C3 are `× ` and invertible modulo q. Then rankq(B2 C2) = n− `,
(MX−1` NX`) is a coprime symmetric pair, and

GMX−1
`

(NX`) =

(
detB3C3

q

)
(G1(q))`GM (N).

Proof. Since C3 is invertible modulo q, we have

n = rankq

(
B2 0 C2

0 C3 0

)
= rankq

(
B2 0 C2

0 C3 0

)
,

hence rankq(B2 C2) = n−`. Also, rankq(MX−1` NX`) = rankq

(
0 B2 C2

B3 0 0

)
=

n, so (MX−1` NX`) is a coprime symmetric pair. We know that X0,`NX`

is integral, so we define the additive homomorphism ψ : Z1,n × Z1,n →
Z1,n/Z1,nNX` by

ψ((U0, U1)) = U0X` + U1X0,`NX` + Z1,nNX`.

Then just as proved in Proposition 5.2, ψ is surjective with kernel Z1,nN ×
Z1,nX0,`NX`. Thus, as X0,`M is integral, we find that

GMX−1
`

(NX`) = GM (N)GM tNX0,`
(X−10,` ).

To evaluate GM tNX0,`
(X−10,` ), we first note that {(0 V ) : V ∈ Z1,`/qZ1,` }

is a set of representatives for Z1,n/Z1,nX−10,` . Thus

GM tNX0,`
(X−10,` ) =

∑
V ∈Z1,`/qZ1,`

e{2 tV V B3
tC3/q}.

Since q 6= 2 and B3
tC3 is symmetric and invertible modulo q, by section 2.8

[2], there is some G ∈ SL`(Z) and w1, . . . , w` ∈ Z so that

GB3
tC3

tG '
〈
w1, w2, . . . , w`

〉
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where q - w1w2 · · ·w`. Since Z1,`G/qZ1,`G = Z1,`/qZ1,`, replacing V by V G
gives us

GM tNX0,`
(X−10,` ) =

∑
v1,...,v` (q)

e{2(v21w1 + v22w2 + · · ·+ v2`w`)/q}

=

(
w1w2 · · ·w`

q

)
(G1(q))`

=

(
detB3C3

q

)
(G1(q))` ,

proving the proposition. �

References

[1] A.N. Andrianov, Quadratic Forms and Hecke Operators, Springer-Verlag, 1987.
5 Abh. Math. Sem. Univ. Hamburg 66 (1996), 229-247.

[2] L. Gerstein, “Basic Quadratic Forms”. Graduate Studies in Math. Vol. 90, Amer.
Math. Soc., 2008.

[3] J.L. Hafner, L.H. Walling, “Explicit action of Hecke operators on Siegel modular
forms”. J. Number Theory 93 (2002), 34-57.

[4] O.T. O’Meara, Introduction to Quadratic Forms, Springer-Verlag, 1987.
[5] G. Shimura, “On modular forms of half integral weight.” Annals of Math. 97 (1973),

440-481.
[6] L.H. Walling, “A formula for the action of Hecke operators on half-integral weight

Siegel modular forms and applications.” J. Number Theory 133 (2013), 1608-1644.
[7] L.H. Walling, “Hecke eigenvalues and relations for Siegel Eisenstein series of arbitrary

degree, level, and character.” International J. Number Theory (to appear).

School of Mathematics, University of Bristol, University Walk, Clifton,
Bristol BS8 1TW, United Kingdom; phone +44 (0)117 331-5245, fax +44 (0)117
928-7978

E-mail address: l.walling@bristol.ac.uk


