HECKE OPERATORS ON HALF-INTEGRAL WEIGHT
SIEGEL EISENSTEIN SERIES

LYNNE H. WALLING

ABSTRACT. We construct a basis for the space of half-integral weight
Siegel Eisenstein series of level 4N where N is odd and square-free.
Then we restrict our attention to those Eisenstein series generated from
elements of I'g(4), commenting on why this restriction is necessary for
our methods. We directly apply to these forms all Hecke operators
attached to odd primes, and we realize the images explicitly as linear
combinations of Siegel Eisenstein series. Using this information, we
diagonalize the subspace of Eisenstein series generated from elements of
I'o(4), obtaining a multiplicity-one result.

1. INTRODUCTION

In a seminal paper [5], Shimura established a beautiful correspondence
between (Siegel degree 1) cusp forms of half-integral weight k/2, level 4N
and character y, and elliptic modular forms of integral weight &k — 1, level
2N and character x2. Essentially the correspondence is established by com-
paring Hecke-eigenvalues (and using Weil’s Converse Theorem to show that
the integral weight forms constructed are indeed a modular forms).

In recent work [7] we constructed a basis for the space of degree n, integral
weight k, arbitrary level N' and character y Siegel Eisenstein series, and
through direct computations we produced a basis of simultaneous eigenforms
for the Hecke operators

{T(®),Tj(p*): 1<j<n, pprime, pt N };
when N is square-free, the elements of this basis are also eigenforms for
{T(q),Tj(¢*): 1<j<n, qprime, g\ }

and these basis elements are distinguished by their eigenvalues.

Here we extend this work to consider half-integral weight Siegel Eisen-
stein series. There are several difficulties that arise, since we need to work
with automorphy factors. In principle we could work in a cover of the
symplectic group, but following Shimura, for any matrix in the congruence
subgroup I'y(4) (defined below) we make a specific choice for an automorphy
factor given by a quotient of Siegel theta series (also defined below). Our
computations take advantage of nice properties of these theta series and of
generalized Gauss sums (Proposition 2.2). Unfortunately, this also limits
our detailed evaluation of Hecke operators to those Siegel Eisenstein series
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generated from elements in I'g(4), and we are unable to give a satisfactory
evaluation of the action of Tj(4).

Like Shimura, we only consider levels 4N, and here we especially focus
on the case of N odd and square-free. In degree 1 this is fully justified as
there is no one-fold covering group of a subgroup of SLy(Z) that properly
contains

{lr,0(y7)/0(7)] = v € To(4) }

(see, for example, Corollary 3.7). However, we are not able to prove this
for degree n > 1, although (also in Corollary 3.7) we prove a partial result
toward this. The reasoning used to prove Corollary 3.7 is also used to
show that, regardless of the choice of automorphy factor for certain v €
Spn(Z) with v & T'g(4), the Siegel Eisenstein series generated from ~ is 0
(Proposition 3.6). (In Proposition 3.5 we give necessary conditions on x to
have a nonzero Eisenstein series.)

For N odd and square-free, we show that the subspace of Eisenstein series
generated from elements of I'y(4) has a basis of simultaneous eigenforms for
the Hecke operators

{Tj(¢*) : q prime, g\ },

and these basis elements are distinguished by their eigenvalues. (As in the
case degree 1, the half-integral weight Hecke operator T'(p) is 0 for any prime
p; see, for example, Proposition 2.1 [6]).

When the degree n is 1, we recover Shimura’s correspondence [5]: With
o = (Np, N1) varying over all multiplicative partitions of N' (meaning that
NoN1 = N), we have a basis {E,} for the space of weight k/2, level 4N
and character x FEisenstein series generated from elements of I'g(4), and a
basis {E/ } for the space of weight k — 1, level N and character x? Eisenstein
series, so that for every odd prime p, the T (p?)-eigenvalue of INEU is the T'(p)-
eigenvalue of E/. For n > 1, such a correspondence is unclear; below we
exhibit the eigenvalues for half-integral weight and integral weight Eisenstein
series.

We still assume that A is odd and square-free. Take k', k € Z, with
k odd, X' a character modulo N, and x a character modulo 4N . For
o= (MNo,...,N,) a multiplicative partition of A/, we have corresponding
Eisenstein series E] and E, of weights &' and k/2, levels A" and 4\, char-
acters x” and x (respectively). (Note that by Proposition 3.6 [7] and Propo-

2

sition 4.1, when E/ # 0 we have (Xj\//NoNn) =1 and when E, # 0 we
have (X4N/No/\/n)2 = 1.) For a prime ¢|N and 0 < d < n so that ¢|Ng, by
Corollary 4.3 [7] we have

Ey|T(q) = ¢" " DPX @XMy, Xa)E,
where, for each prime ¢'|A/q and 0 < d < n so that ¢'| Ny,

Xy (g™ ) it d' <d,

L (GX M, Xg) = ,
Xg (@Xa a) {X;,(qd—d) if d > d.
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Also, by Corollary 4.5 [7], we have

J
E;|Tj(q2) _ qjd Z qs(2k —2d—|—s—]—1)X§\/6 (QQS)X.//\/,,Q (q2(j—s))
s=0
’ Bq(d7 S)Bq(n - da] - S)E;
where ,Bq(m, r) is the number of r-dimensional subspaces of an m-dimensional
space over Z/qZ and N} = N;/(¢,N;). In contrast, by Corollary 4.4 we have

J
Eg"fj(q2) _ qjd Z qs(k—2d+s—j—1)XN_6 (QQS)XNT’L (q2(j—s))

s=0
: /Bq(da S)ﬁq(n - d7] - S)]Eo"

In particular,

o 2\ _ _d(k—d—1) 2d 2(n—d)
Eo|Tn(q”) = q X (@)X (g )-
For an odd prime p{ N, by Corollaries 5.3 and 5.5 [7] we have

n

170 = | TT x| TT (X @x, 070" + 1) =
0<d<n i=1

E;|Tj(p2) _ ﬂp(nvj) Z pk’(j—T+5)_(j—T)(n‘H)X’(pj—T"‘S)va"(pQ(T—S))

r+s<j
: ﬂp(ja T)Bp(] - S) Symp(j -r- S)E;‘

where sym,,(¢) is the number of symmetric, £ x ¢, invertible matrices over
F = Z/pZ. In contrast, by Theorem 4.5 we have

E0|Tj(p2) =8,(n.j) Z pk(j—r+s)/2—(j—r)(n+1)X(pj—'r—i-S)XNn (p2(T_s))
r4s<j

BB, — 1, s) (gl (?)

VP
where Gy (p) is the classical Gauss sum modulo p, (%) = (%) , and sym} (£) =
ZUelFﬁ’yzm Y(det U).

Since these cigenvalue of E, under T;(p*) are not so attractive, in Corol-
lary 4.6 we introduce an alternate set of generators for the local Hecke
algebra, obtaining more attractive eigenvalues (similar to what we did in
Corollary 5.5 [7]).

As much as possible, we borrow results from [7]. Here the construction
of the Siegel Eisenstein series is a bit different because of the automor-
phy factors involved. As the automorphy factors contain Gauss sums, for
the evaluation of the action of the Hecke operators we establish some nice
identities between generalized Gauss sums (Propositions 5.1, 5.2, 5.3). Al-
though these identities can surely be established by other methods, we rely
on changes of variables to provide elementary arguments.

The author thanks Andrew Booker and Fredrik Stromberg for helpful
conversations.

j—r—s _
> sym;’f(j —r—3)E,
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2. PRELIMINARIES

For n € Z, n > 1, Siegel’s degree n upper half-space is defined as
by ={X +YV: X, Y €eREN, YV >0}

sym>

where Y > 0 means that, as a quadratic form, Y is positive definite. The
symplectic group Spy(Z) acts on b,), where

Spn(Z)
_ {(é‘, g) € SLon(Z): A'B=B'A, C'D = D'C, AtD—BtD_I}

(here !B is the transpose of B). For v = (é, IB;) € Spn(Z) and 7 € by,

the action of v on 7 is given by

1 = (AT + B)(CT + D)~ L.

C D
meaning that C'*D is symmetric and for all primes p, rank,(C' D) = n (here
rank,(C' D) denotes the rank of the matrix (C' D) modulo p, meaning we
view (C' D) as a matrix over Z/pZ). Conversely, given C, D € Z™" so that

Note that for <A B) € Spn(Z), (C D) is a coprime symmetric pair,

(C D) is a coprime symmetric pair, there is a matrix <é g) in Spy(Z).

When (C D) is a pair of integral n x n matrices, we write (C,D) = 1 to
mean that C and D are coprime.

To construct Siegel Eisenstein series of half-integral weight k/2, we need
to make sense of (det(C'T+ D))~*/2. Thus we have the following definitions.
é, IB; € Spn(Z) is an ana-
lytic function ¢_(7) on b, so that |¢ (7)]* = |det(CT + D)|. (Note that
it is known that det(C'7 + D) # 0; see Proposition 1.2.1 [1].) When we also
have 4" € Sp,(Z) and ©., (1) an automorphy factor for 7/, we have

Definition. An automorphy factor for v =

[y, e, (DI, (D] = [ 0, ('), (T)]-
When det D # 0, we define S¢ p(7) by taking

)\liHl+ SC,D (Z)\I) =+Vdet D € Ry UiR,
—0

and extending analytically to T € §(,). Thus with v = (é ;) € Spn(Z),
det D # 0, and ¢_(7) an automorphy factor for v, we have that

¢, (1)
Sc,n(T)
is analytic with absolute value 1, so ¢_ (1) = v(7)Sc,p(7) for some v(7) with
|v(y)| = 1. We define the basic degree n Siegel theta series by
0(r) = Z e{2'UUT} where e{*} = exp(miTr(x)),
Ueztm
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and for (C' D) a coprime symmetric pair with det D # 0, we define a gener-
alized Gauss sum by

Go(D)= > e{2'UUDT'C}.
Uezin/zinD

The following result is a special case of Theorem 1.3.13 and Proposition
1.4.5 [1].

Proposition 2.1. (Transformation Formula) Set

To(4) = {(g‘ g) € Spa(Z) : 4IC }

For v = <é g) € 'v(4), we have

00r) _ GoD) g o
0(r)  deD <PV

Because of this result, we make the following definition.

Definition. For v € I'y(4), we set

v = [v,0(y7)/0(7)].

Note that with 7,8 € Tg(4), we have 35 = (76).

The following identities will be useful.

‘s A B
Proposition 2.2. Take § = (C D) eT'y(4).

(a) For a € T, we have O(at) = 0(7), and for Y € Zgym, we have

M S (1) = EC(D)
JdetD 1 oy Pty Vdet D

(b) For E € SL,(Z), we have Sc,p(T) = Spc,ep(T).
(c) For E € GL,(Z), we have

Geo(ED) = Go(D) = Gop(D1E™).

Proof. (a) For a € ', we have a = <(0; th1> for some G € GL,(Z) and

Y € Zim. Thus for U € ZY", 'UUGY 'G is integral, and UG varies over
ZY" as U does. Hence

O(ar) = > e{2'UUG(r+Y)'G}
Uezl:n

= Y {2NUG)UG)T}

UeZtm

=0(7).

SQD(T + Y).
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So with G = I and noting that da € T'g(4), by Proposition 2.1 we have

Go(D +CY) (r) = 0(5orr)
det(D + OY) PO T T (r)

(b) We know that
Sc,p(T)
Sec,ep(T)
is an analytic function whose square is 1, and whose limit as 7 — 0 is also
1. Hence SQD(T) = SEC,ED(T)-
(c) Since (ED)"' (EC) = D7'C and Z'""E = Z'", we have Gpc(ED) =
Go(D). Also, we have

Gep(D'ETY) = > e{2'UU'ED'CE}
UEZI’"/ZL”D tp—1
= > {2(EU)U'E)DICY

UEZI,n/Zl,nD tp—1

(recall that Tr(AB) = Tr(BA).) Take U’ = U'E. Thus U’ varies over
ZIUE /7D = 77 )25 D as U varies over ZV" /ZVDYETL. So Gop(DIE™Y) =
Ge (D). O

We will make use of the following terminology and notation from the
theory of quadratic forms. With F a field, V an m-dimensional F-vector
space equipped with a quadratic form @, and A € Feym', we write V ~ A
when A represents the quadratic form ) on V relative to some basis for V.
With V ~ A, we say V is regular if det A # 0. For a vector v € V, we
say v is isotropic if Q(v) = 0, and anisotropic otherwise. For A, A’ square,
symmetric matrices, we sometimes write A 1 A’ for the matrix diag{A4, A’}.
With aq,...,a, € F, we write <a1,...,aT> for diag{ai,...,a,}. We write
<a>£ to denote the ¢ x ¢ matrix diag{a,...,a}.

For a prime ¢, our formulas for the action of the Hecke operators on

Eisenstein series will involve the functions we now define. For b, ¢ € Z with
0<c<hb, set

c—1 c—1
pob.c) = TT@ " = 1), 840.c) = [T(@" "+ 1),
=0 i=0
and set -
py(b,c
/Bq(bv C) = HZ(C, C) .

(So B,(b,c) is the number of c-dimensional subspaces of a b-dimensional
space over Z/qZ.) We agree that 3,(0,0) = 1 and with 0 < b < ¢, B,(b,c) =
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0. Now fix a character x whose conductor is exactly divisible by q. Then

define
14
sy (0.0 = 3 vy (dee (1))
U

where F = Z/qZ and (t/j/ g) € Fg;@f;b“ with p of size b x b. We agree that

symy (0,0) = 1, and we set symg (b) = symg (b,0).

Lemma 2.3. Let ¢ be an odd prime, and suppose that x is a character
whose conductor is exactly divisible by q. Then

I ()
ué(mgc,mfc)
e™q™ p(b,b)
symé‘(b, C) = W:f;z:ncvzib—b;)
jﬁ(m—cl,LmLc)
0 otherwise.

ifb+c=2m and x4 =1,
ifb+c=2m, ngl, and xq # 1,
ifb+c=2m+1 and x4 =1,

In particular, symy (b, ¢) = 0 unless x2 =1.
Proof. To help us compute symg (b, ¢), for o € F* we let sym, (b, ¢; ) denote

the number of U = f; g IS Fg;rﬁ’bﬂ with 1 b x b and detU = a.

Set r = b+ c. With V an r-dimensional vector space over F, an invertible
matrix A € Fgym defines a regular quadratic form @ on V. Since ¢ is odd,
by Theorem 2.11 [2] V has a diagonal basis (relative to the quadratic form
@). Then by Proposition 2.51 and Theorem 2.52 of [2], we have that V ~ I
or V.~ 1 L <w> where w is a fixed, non-square element of F*. If we
change the basis for V by a matrix G € GL,,(F), we get V ~ 'GIG or
V ~ 'G(I L (w))G. Thus when V ~ I, any matrix for the quadratic form
on V has determinant o? for some o € FX, and when V ~ I L <w>, any
matrix for the quadratic form on V has determinant o’w for some o € FX.
Also, note that for o € F*,

(o) (o)D)

gives us a bijection between the matrices counted by sym(b, ¢; 1) and those
counted by sym(b, ¢; a?), and between the matrices counted by sym(b, c; w)
and those counted by sym(b, ¢; wa?). Thus

1
sym(b,c) = 5 (squ(b, ;1) + xq(w) sym, (b, c;w)) Z Xq(aQ).
a€eFx

(The factor of 1/2 is to account for the value o appearing twice as a varies
over F*.) Thus symy (b,c) = 0 if x2 # 1.
On the other hand, we can compute
Z sym, (b, ¢; o?) and Z sym, (b, ¢; wa?)
a?#0 a2#£0
as follows. First we choose a basis yp11, ..., ypre for a dimension ¢ subspace
of V that is totally isotropic (meaning that the quadratic form on Fy,,q @
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-+ @ Fypy. is identically 0). Then we extend this to a basis y1, ..., yprc for

V. In this way we construct all bases for V relative to which V ~ tl,i 16

where p is b x b. There are o(V) bases that yield the same matrix, where
o(V') denotes the order of the orthogonal group of V. Using Theorems 2.19,
2.59, 2.60 from [2] we compute these quantities to obtain the formulas for
symy (b, ¢). O

3. DEFINING EISENSTEIN SERIES

Fix N € Z,. The (degree zero) cusps of the Siegel half-space b(n) under
the action of the congruence subgroup I'g(4N) correspond to the elements
of the double quotient T's\Sp,(Z)/To(4N') where

r.— {(g fé}ﬂ) L GE€GL(Z), Y € 7™, }

To(4N) = {(g‘ g) € Spu(Z) : AN|C }

Given v € Sp,(Z), we want to construct a half-integral weight Eisenstein
series generated by the I'o(4\)-orbit of I'noy and transforming with some
character x. We begin by defining an Eisenstein series for the group

T(4N) ={B € Spp(Z): B=1T (mod 4N) },

as follows. With 0 € Sp,(Z) and ¢s5(7) an automorphy factor for ¢ (assuming
w5(7) =0(67)/0(7) when 6 € Ty(4)), we set

L(7)|[6,05(7)] = (s(7)) ",
Then with
TooT(4N) = UssT oo™ (disjoint),
we set B
E*(r) = _1(r)|o".
5
Since 1(7)| = 1 for any 8 € T's, the (formal) sum for E*(7) is well-defined,

and provided n > (k + 1)/2, the sum on §* is absolutely convergent and in
fact is analytic (in all the variables of 7). Also, E* # 0 as lim, oo E*(7) = 1

since lim, o0 1(7)[6* = 0 unless 0* € T'oy. For any o € T'(4N), we have
Iool(4N) = Us«T'so0* v (disjoint) and 6*a = 6*av, so
E*(r)|a =Y 1(r)[6*a = E*(7).
5*
Thus E* is a (nonzero) Eisenstein series for I'(4N') with weight k/2.
Now take v € Spy(Z) with automorphy factor ¢-(7), and fix a character

x modulo 4N. Assume that n > (k + 1)/2. We would like to define an
Eisentstein series supported on the T'g(4A)-orbit of T'wy by

> XOE*(7)[76
é
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where
TooT0(4N) = UsToo T (4N)6 (disjoint) and x(6) = x(det Dy).
However, this sum is not well-defined unless, for all a € T'o(4N) so that
FooT(AN)ya = T T'(4N)7, we have
X(@)E*(m)[ya = EX(7)[7.
With this in mind, we have the following definitions and lemma.
Definition. Fix a level 4N, a character xy module 4N, v € Sp,(Z), and
automorphy factor ¢, (1) for v (with ¢, (1) = 0(y7)/0(7) if v € ['x(4)). Set
Iy={aelo(dN): TooI'(4N)ya =T T(4N )y },
and set
Iy ={aely: X(@)E (r)[Fa =E"(7)[7 }.
(Note that I, is a group.) We give an alternative definition of I, | as follows.

For a € T, we have yay™! € I'['(4N) and hence E*(7)|yay~! = E*(1).
Thus for a € T, we have o € T/, | if and only if

X(@)E*(r)[7a7 ™" = E*(7)|yay .
Here ¢ -1(7) = m so that 33! = I. So defining G(a) : Ty = C* by

the relation o

a1

Yoy (yam iyl = [1, ¢ ()]
we have

F,%X:{OZEF’YZ de(a)zl }

We now establish some basic properties about ¢, .

Lemma 3.1. Fiz a level AN, v € Sp,(Z), and ¢ (T) an automorphy factor
for v, with ¢ (1) = 0(y7)/0(7) if v € T'o(4). The map ¢y : I'y — C* is
a homomorphism taking values in the multiplicative group {£1,+i}. Thus
Xd : 'y = C* is a homomorphism with finite image and kernel F'%X. If
v€To(4) and a € Ty, we have ¢y(a) = 1.

Proof. Take o € I'; note that we have a, yay~! € T'g(4). When ~ € T'g(4),
we have

jay ™! = (yar )
and hence ¢, (o) = 1.

Now suppose that v ¢ I'g(4). For 6 = (é g) € Spn(Z), let Ys(1) =
det(C7+D). One easily checks that for ' € Sp,(Z), we have ¢5('T)s (T) =
ss(T). Also, for any § € Sp,(Z) with automorphy factor ¢, (7)the function
(¢5(1))?/9s(7) is analytic with absolute value 1, thus for some w(§) with
|w(d)| = 1, we have (¢, (7))?/1s(T) = w(J5). Then we have

1 o 1
Y = e )

and so
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So

G(@)? = w(y) ey (™ - ya Iy w(a) Yo (v - vaTiy )
L O Lo e A BPR R

. w(ya "y ) Yyq-14-1(T

Tt i (1)
= w(a)w(ra~ly )
Since a € T'y C T'g(4N), we have ya=ty™! € T T'(4N) C T'o(4N), and
hence by the Transformation Formula we know that w(a), w(ya~1y~!) are

squares of normalised Gauss sums. Thus we have (, (o) € {£1, £i}.

To see that (¢ is a homomorphism, take o, € I'y. Then, since we have
a, b,y Iy 46y e T(4),

1,6, (ad)] = Fady L (y0—La—1y—1)

—_~—

= Gay HFEF (0 (v iy )
= (a7 L G(0)](vatyh)

= (FaF Y (ya Ty, & (6)]

1, Ca (][, G4(6)]

1, Gy (@) G4 (9)]-

Hence ¢, is a homomorphism and ¢ I'y — C* is a homomorphism with
finite image. So T?, | is a normal subgroup of finite index in T. O

=
=

Now fix v € Sp,(Z) and fix an automorphy factor ¢ (7) for v; assume
that n > (k4 1)/2. Set

1 —( 5! * =SS
Ey = WZX(MS)E 706
where
To(4N) = UsT6 (disjoint), Ty = Us T | 6" (disjoint).
Hence

Fo(4./\/) = Uy 51—‘/ ) (diSjOint)
Since I, | has finite index in Ty, T'(4N ) C I',, and I'(4N) has finite index in

Lo(4N ) We have E. defined as a finite sum. To see that £, is well-defined,
take 8 € F Y Thus

XBE*FB = X(B)E |, ¢ (B)787 7
=E" By~
—E*[§

since 787! € I'w['(4N). Thus E, is well-defined. With 6,8 varying as
above, by Lemma 3.1 we have

0T B, = > X(8'6)E 755
88

= ;x (ng ) E*[75.
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Since X(fj is a homomorphism on I'y, we have that E, = 0 unless X(éc is
trivial on I'; (meaning that I, | = T',). Note that for any o € To(4N), we
have
TooTo(4N) = UsT oo (4N )yda (disjoint),
and since 0a = da for any J as above, we get
EJa = 3 %(0)E*foa = x(@)E,.
1

Hence E, is a weight k/2, level 4N Eisenstein series with character x.
Henceforth, we assume that n,k, N € Z, are fixed with k odd and n >
(k+1)/2, and we fix a character x modulo 4N.

Proposition 3.2. Take v = <Z\2 ;;) € Spu(Z), ¢.(7) an automorphy
o No

factor for v, and x a character modulo 4N . Suppose that F/%x =1,. Then

E, # 0 and
Zx a7

where T'ooyTo(4N) = Uglsoy8 (dzsgomt). If v € Tg(4) then

s = ¥ s0rm (28, )
Vdet N
(M N)
where GLn(Z)(M N) wvaries over GLyp(Z)(Moy No)To(4N) and x(M,N) =
X(B) where 8 € To(4N') so that GL,(Z)(M N) = GL,(Z)(My Ny)S.
Proof. With 6* € T'(4N) and ¢ € T'o(4N) so that ToT'(4N) = Ug: oo™
(disjoint), To(4N) = UsI'4d (disjoint), one easily sees that I'soyLo(4N) =
Us+ T'o00*76 (disjoint). Also, v~ 16*y € T(4N), so
Lo To(4N) = Uss sT ooy (718 7)4 (disjoint).

Since y~1§*y € T, = FWX, we have

—_—~—

U7)|6"F = L(n)FIF 0T = L) Ay 16%y.

ZX o7

where ' To(4N) = Ugl'ac8 (dlSJOlnt). Also, for 0* € T ['(4N) and
d € To(4N), we have

Hence

lim 1(7)[6*365 ' =0

T—100
unless 0*v6y ! € I's, in which case y67~! € T I'(4N) and so § € I',. Thus
lim E, (1) = lim E*(r) =1,
T—100

T—100

so E, # 0.

Now suppose that v € T'g(4). If 5 € *

M N) € ' To(4N) then
(M N) € GL,(Z)(My No)T'9(4N). On the other hand suppose (M N) is a
) € FOO’YFO(W)

coprime symmetric pair. Thus there is some a =

MN
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and if (M N) € GL,(Z)(My Ny)d for some § € T'g(4N), then one easily
*x  x
M/ N/ ’

GLA(Z)(M N) = CLL(Z)(M’ N') = GLa(Z)(My No)s
if and only if T'yoax = I'no = I'ioyd. Thus

checks that o € I'ooyd. Further, with o/ = we have

_ Gu(N) N
E,(1) = X(M,N) Su,n(7)
5 e (S5,00)
where GL(Z)(M N) varies (once) over G Ly, (Z)(Mo No)T'o(4N). O

Next we describe a basis for the space of Eisenstein series.

Proposition 3.3. Let v vary over elements of Spy(Z) so that

Spn(Z) = Uy TocyLo(4N).
Then the corresponding nonzero weight k/2, level 4AN" Fisenstein series with
character x are linearly independent. Further, suppose that v € Spn(Z),
B € To(dN), B* € Tool'(4N) so that a = B*yB; set a = B*3B. Then
Eo = X(B)EV'
Proof. Suppose v, 8 € Sp,(Z) so that 8 & Ty To(4N) and E,,Eg # 0. As
shown in the proof of Proposition 3.2,

lim E, [ =1,

T—100
but as L
lim 1(7)]6*B307 1 =0

T—100
for all 6* € TooI'(4N') and & € T'y(4N'), we have
lim Es(7)[7~" = 0.
T—>100
Consequently E, is linearly independent of the set
{Eﬁ : /8 € Spn(Z)7 5 ¢ F007F0<4j\[) }

Now take v € Spp(Z), B* € T, B € To(4N). Set a = E*?E With ¢
verying so that
Tl (4N) = UsTooad’ (disjoint),

we have
CooTo(4N) = Ug/Foo’y(ﬁ(S/) (disjoint).
Hence B o
E. =) X(9)E*|ad’ =) X(8"E*[F(65) = x(DE,
14 &’
(recall that for 3,¢" € T'g(4), we have B = B\g’) O

In this paper we are particularly interested in Eisenstein series of level
4N where N is odd and square-free. Below we introduce some terminology
and then exhibit a set of representatives for the degree zero cusps.

Definition. Suppose N € Z, is odd and square-free. We say
o= (No,...,Np),(d,d€))
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is an admissible type for level 4N if (N, ..., N,,) is a multiplicative partition
of N, d,d" € Z>¢ so that d+ d" < n, and € = + or — if 2|d’ with d’ # 0,

n,n

€ = + otherwise. We say M € Zgyjm is of o-type if
M=1, 1 (0" ()
for all 5, 0 < s <n, and

Iy L 2Ly L (o) (4) if e =,

_ d'/2
M: 1 g
IdL2<(1) 0) L) () ife=—.

Proposition 3.4. Suppose N' € Z, is odd and square-free. For each ad-
missible type o for level 4N, fix M, of o-type. Then then with o varying

over all admissible types,
I 0
M, 1),

is a set of representatives for T'oo\Spn(Z)/To(4N).

Proof. Fix v = *> € Spn(Z). By Proposition 35 [7] we know there

*

M N
is some M’ € Zgym so that for all primes g4\,
M= L) L (0)"" (@)

where r(q) = rank, M. Let (Ny,...,N,) be the multiplicative partition of
N so that for each prime q|N, ¢|N; if and only if r(q) = s.
Set d =r(2). By §63 [4], we know there is some E’ € SL,(Z2) so that

E'M''E =Jy,L2J, L4J

where Jy, J1 are unimodular over Zo, Jy is d x d, and

_ ap b a, by,
Ji= Iy L <b1 Cl) Ll <br Cr>

with a;e; — b2 £ 0 (2) (1 <i < 7). Note that

)0 )G D==G1)G o)1) e

01

1 0> (2) for some

So adjusting E’, we can assume that J; = I, L <

l,m € Z>o. We also have

111\ /1 00\ /1 11
10 1)](oo1|[101]=1(@)
110/ \0o10/\110

Hence, further adjusting E’, we can assume that

d' /2
- 0 1
Jl = Igq Or (1 O) (2)

where J; is d' x d'.
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Now (using Lemma 6.1 [7]) choose E € SL,(Z) so that E = I (N') and
E=F (4). Thus

<J\§” ?) - (tE_l E) <J\2/ ?) <tE E—l) € TooTo(4N)

with M” = M’ (N), M" = Jy L 2J; L (0)" d=d (4) where Jy, J; are

d’/2
symmetric and invertible modulo 2, and J; = Iy or ( ) . Now

take Jo € Zsym so that JoJo = I (4). Take § € To(4N) so that 6 = I (N)

and

Jo Jo—1

— In—d 0

5= i (4).
In—d

Set e = + if J; = Iy (2), and set ¢ = — otherwise. Then
I 0\._ (I 0
(& o=, %) v
where 0 = (N, ..., Nn), (d,d,€)). Hence by Proposition 3.3 [7],
I 0
v €Tl'x <Mg I) F0(4./\/).

I 0
Thus U, (Ma I) = Spn(Z).
Now we want to show the above union is disjoint. So suppose that M,

and M, are o- and o’-type (respectively) where o((No,...,Np,), (d,d  €))
and o’ = ((N,....N)), (r,7",€)), and suppose that

<Ai/ ?) €Tw (Air ?) Fo(4N).

I 0\ [(tE' «\[I 0\(A B

M, 1)=\ o E)\M, T)\C D
A B .

for some E € GL,(Z) and c p) € To(4N). So for all primes q|4N,

rank, M, = rank, M,. This means that N = N for 0 <i¢ < n and r = d.

Write 14
_(E1 E» (A A
= (i k) 4= (i 3)
where F1, A1 are d X d. We have
My=1;12J (4) and M, =1, L 2J" (4)
where J = J; L (0)"™ " =1 L0V s d < d, I s 0 s,
and Ji,J] are invertible modulo 2. We have M, = EM,A (4), so E1, A;

are invertible modulo 2, F3, Ay = 0 (2), E4, A4 are invertible modulo 2, and
J' = E4JAy (2). Hence ranky J' = ranks J, meaning that v = d’. Writing

D = <D1 D2> where D; is d x d, and knowing that E(M,B + D) = I,

Thus

D3 Dy
we see that we must have D3 = 0 (2) and E4Dy = I (2). We also know
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that A'D =1 (4N), so A4tDy =1 (2). Thus Ey = YAy (2). Hence J' =

)«
152 Where o
a3 Qg

J{ _ thJlOél tOélJlOéQ (2)
0/ tOé2J1041 tOéQJlOéQ ’
and hence «; is invertible modulo 2, ag = 0 (2). Thus over Z/2Z, J; and

Ji represent the same quadratic form. Noting that Iy has an anisotropic
¢

tA4J Ay (2). Now suppose that d' > 1 and write Ay =
isd xd. So

vector modulo 2 and for any £ > 1, (1) 0 does not, we must have € = e.
I 0 I 0
Thus ¢/ = o whenever <MUI I) elg (Ma I> To(4N). O

Next, for v € I'g(4), we determine necessary conditions on x to have
E, # 0. Then for certain v ¢ I'g(4), we show that E, = 0 regardless of
choices for x and ¢ (7).

Proposition 3.5. Suppose that N' € Z. is odd and square-free, and suppose
that o = ((No, ..., Ny),(0,0,4)) is an admissible type for level AN. Take

]éa ?) Thus v € T'9(4) and Ey = 0 unless

x2 =1 for all primes q dividing N1 - -- Np—1. (Note that we necessarily have
2
xi=1)

M, of o-type, and set v =

Proof. Take q to be a prime dividing N7 - - - N,,_1. Hence M, = <Id 0> (q)

where 0 < d < n. Let u € Z be a unit modulo ¢, with w € Z so that
wt =1 (¢q). By Lemma 6.1 [7], we can take E € SL,(Z) and § € Sp,(Z) so

U
that E=1 (4N /q), E = I (q), 6 =1 (4N /q),
u
u w
1,9 0
. u 0
5= " (9)
In72
U
tEfl

where w = u —u. Thus § € To(4N), B = E

I'I'(4N). Hence § € I'y. Since v € I'g(4), we have that ¢,(0) = 1. So
by Lemma 3.1, if E, # 0 then 1 = x(6) = xZ(u). This argument holds for
all units modulo ¢, and for all primes ¢ dividing N7 ---N,,_1, proving the
proposition. U

€'y, and Byoy—! €

Proposition 3.6. Suppose N' € Z is odd and square-free, and
0 = ((N07 s 7N7l)7 (d7 dl? +))
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is an admissible type for level AN with d' > 0. Then with x a character

modulo 4N, M, of o-type, and v = ]\}
ag

of the choice of automorphy factor for .

(1)> , we have E, = 0, regardless

Proof. Fix a choice of character y modulo 4N and an automorphy factor
©~(7) for v. We have M, = (mq,...,my) (4N) where

0 (NO .. 'Nd),
may1 = Q1 (Nag1 - Na),
2 (4).
So (using Proposition 3.3) we can assume that M, = <m1, el mn>.
Now set m = mg41,
Iq 04
A= 142N , B= 2N /m ,
In—d—l 0n—d—l
0a Iy
C = —2N'm , D= 1—-2N
Onfdfl Infdfl

One easily checks that with
(A B
“=\c b)
we have (M, I)a = (M, I) and consequently a € I',. As we saw in our

construction of Eisenstein series, we have E, = 0 unless I"%X =1I',. Then as
in the proof of Lemma 3.1, we have

(( (Q))Q _ (E—Q./\/'m(l - 2./\/))2 _ (EQNm<2N— 1))2
! 1- 2N e

Since AV is odd, we have 2N —1 = 1 (4) and hence (Gapnrm (2N —1))% = 2NV —1.
Therefore (¢,(a))? = —1 and so (y(a) = £i. We also have y(a) = x(1 —
2N) = x4(—1) = £1. Consequently, Xqﬁ(a) = +i. Hence I’ | # T, and so
E, = 0. 0

Using elements of the above proof, we prove the following.

Corollary 3.7. Let To(4) = {3 =[,0(y7)/0(7)] : v €To(4) }. Suppose
that T is a subgroup of Spn(Z) containing T'o(4), and that I" is a cover of T,
meaning that I' is a group whose elements are of the form [y, (7)], v €T

and p~(T) an automorphy factor for . Suppose further that I'g(4) C T and

that <J\I4 ?) el with M =1 L 21y L <0>n7d7d/ (4) where d+d' > 0,
d'/2 , -

g 3 1 <0>n_d_d (4) where d > 0. Then I' is not a

one-fold cover of I'. In particular, when n =1, there is no group I' so that
Ig(4) €T C SLy(Z) and T is a one-fold cover of T.

or M =1 L
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Proof. With M as above, we have

10\ (1 0\ _
M 1) \M T ’

I 0
M T
for some r > 0. Take an automorphy factor ¢, (7) for v so that [, o (7)] €

consequently I' contains a matrix vy = where M’ = 21, | <0>n7r (4)

[. Then since I is a group with identity [I, 1], we have

T =N e (i) €T
Then from the proof of Proposition 3.7, there is some o € I, C I'g(4) so
that

Fay ! = [, G (a)](vay1) # yay L
Thus there are (at least) two distinct elements in I' of the form [yay~!, «].
Hence I' is not a one-fold cover of T'. O

Remark. It would be interesting to know whether there is a group I' with
I'p(4) € T' C Spu(Z) so that T' is a one-fold cover of I'. Note that by the
above result and Proposition 3.5, such a group I' would necessarily have an

element of the form
I 0
M T

0 2) L {0)"""? (4) where r > 0.

,:
where M' = <2 0

4. THE ACTION OF HECKE OPERATORS ATTACHED TO ODD PRIMES
WHERE THE LEVEL IS 4N WITH N ODD AND SQUARE-FREE

Throughout, we fix n,k,N' € Z, with k odd, n > (k+1)/2, N odd and
square-free, and y a character modulo 4N .

Here we look at the action on Siegel Eisenstein series of Hecke operators.
However, because of the constraints reflected in Proposition 2.2, we are only
able to do this satisfactorily for Hecke operators attached to odd primes,
and for Eisenstein series supported on the I'g(4N)-orbit of a matrix v €
I'p(4). (In the process of our evaluation, we point out where we find these
restrictions necessary.) We restrict our attention to level 4N with A odd
and square-free so that we can evaluate the action of the Hecke operators
attached to primes dividing .

In Proposition 3.4 we presented a set of representatives for the double quo-
tient T'oo\Spn(Z)/To(4N). From that we can see that a representatives for
[oo\[o(4)/To(4N) are associated to admissible types (N, - .., Ny), (0,0, +))
where (Np, ..., N,) is a (multiplicative) partition of A. Hence to ease our
notation, for o = (N, ...,N,) a partition of N, we fix a diagonal matrix
M, € 4Z™"™ with M, = I, L <O>n_s (N5) for all s, 0 < s < n. Then we set
Vo = < ]\i, ?), and we often write E, for E, . Note that with such o and
M, we have that

GLn(Z)(My I)To(4N) = SLn(Z)(M, I)To(4N),
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so we can write £, as a sum over representatives
SLn(Z)(M N) € SLo(Z)(My I)To(4N).

This observation is useful in allowing us to more easily adapt results from
[7], as with the following result.

Proposition 4.1. Fiz a multiplicative partition o of N', and suppose E., #
0. Take (M N) € SL,(Z)(M, I)y where v € To(N), and fix a prime q|N.
There are Ey, Ey € SL,(Z) so that

_(M; O
with My invertible modulo q; for any such Ey, E1 we have

_ N1 N-
EONtEl ! = < 01 Ni) (Q)

and xq4(v) = xq(det M1 -det Ny). Also, x4(M, N) = x4(det N). Further, for
any G € GL,(Z), we have

x(GM,GN) = x(det G)x(M,N) = x(MG,N'G™1).

Proof. Essentially, this is Proposition 3.7 from [7], although for that propo-
sition the level is N with N square-free. So here the difference is that our
level is 4N with N odd and square-free. Hence for v € T'g(4N') so that
(M N) € GL,(Z)(M, I)7, we have x4(7v) = x4(det N). O

We begin by evaluating E,|T;(¢%) (1 < j < n) for o a partition of A" and
q a prime dividing N'. We show that the span of these E, has a basis

{E, : o a partition of N }

so that each E, is a simultaneous eigenform for {T},(¢?) : prime ¢|N }.
Further, we show that for o, p distinct partitions of N, there is some prime
gl so that the T,,(¢*)-eigenvalues of E, and E, differ. Then, since the
Hecke operators commute, we can show that each IEJ is an eigenform for all
Hecke operators associated to odd primes, and we explicitly compute the
eigenvalues of all Tj(p2) where 1 < 7 <n and p an odd primes.

From Proposition 1.3 and Theorem 2.3 of [6], and Proposition 2.1 of [7], we
have the following. Note that here we have normalized the Hecke operator
presented in [6]; also, we have simplified a Gauss sum that appeared there.

Proposition 4.2. Suppose F is a modular form of degree n, weight k/2,
level 4N and character x.
(a) For q a prime dividing 4N and 1 < j < n,we have

/9 xX7l¢' Xx7lytg\
FIT (@) = 0 S (9 e )]
GY J

where G varies over K;(q), and Y wvaries over Y;(¢*), meaning that

tv 0
ces modulo g2, and V' wvaries over integral j x (n—j) matrices modulo
q.

Y = <U V) so that U wvaries over integral symmetric j X j matri-
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(b) For p a prime not dividing 4N and 1 < j < n, we have
FI|T;(p*)
=D S )

ng,n2

)

X g' Xl viGg —i/94n
[( "o o tQ P " Dgyl(ij—no—m)

no,n2

Here, ng,no € Z>o vary so that ng +no < j. For each pair ng,na,
we have G = G1Ga, where G varies over SLy(Z)/Kngn, (P),

Ing
Gy = el
I,

with G' varying over SLy/(Z)/ 'K}, (p) where n' =n —ng —na, j' =
j — o — N2,

r pI]/ lI]/
/cj,_< I) SLy(Z) <p ;) NSLw(2),

and Y varies over Vng n, (p?), the set of all integral, symmetric n xn
matrices

Yo Yo Y3 O

Yo Yi/p 0
t}/3 0
0

with Yo ng X ng, varying modulo p?, Y1 j' x j', varying modulo p
provided p 1 det Y1, and Ya,Ys varying modulo p with Y3 ng X ns.
Note that we can assume G =1 (4N) and Y =0 (4N). Also,

det Yl

Gt (T —y ) = ( ) Gy (p)i 02,

Theorem 4.3. Suppose that N € Z. is odd and square-free, x is a char-
acter modulo AN so that x(—1) = 1. Fiz a prime q|N and a multiplicative
partition o' = (Ng,...,N;) of N/q. For 0 <d <n, let o4 = (No,...,Np)

where
IS S A
N}, ifi=d.
Then when Es, # 0 for 0 < j < n, we have

n—d

E0d|Tj<q2) = Z Aj (d, t)Ea'dJ,-t
t=0
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where
Aj(d,t) = qU V=12 (4 4 ¢, ¢)

i s

ds
i(d;s,ds,dg)— -1 —1yv—1
DD D IR (X M, X, XX
s=0 d5=0 dg=0

By(d,5)B,(t,d5)B,(n —d —t,j — s+ ds — 1)
Byt — ds, ds) symy(t — d5 — ds) symy} (ds, ds)
g M= ds)/2 G, (g)k(ds—ds)
r=7—s—ds+ds,
a;j(d;s,ds,dg) = (k/2 —d)(2s +ds —dg) +s(s —dg —j — 1)
+ds(j — ds) — ds(ds +1)/2 + ds(ds + 1)/2,

and Xy (*) = Xq(*) (3) . (Here symy (b, c) is as defined in section 2.) Thus
E0d|Tj(q2) = Aj(dvo)EUd'

Proof. Here we make use of results derived in the proof of Theorem 4.4 [7],
where we evaluated the action of Tj(qQ) on integral weight Eisenstein series.
The difference is that here we need to compare automorphy factors Gauss
sums.

To ease notation, temporarily write Eg for E, ,, My for M, ,, X, for
Xs,r(Q)a ’Cs,r for ICS,T(Q)a and yj for yj((]2)-

By Proposition 4.2, we have

— —k
EA(r)ITy(q?) = D s ) (T
) =0 3 s ()

Sun(XIGTH T+ EYIG)fGTIX T

where SL,(Z)(M N) varies over the I'g(4N)-orbit of SL,(Z)(My I), and
G,Y vary as in Proposition 4.2. By Proposition 2.2 we know that for E €
SL,(Z), we have x(EM,EN) = x(M,N), Gem(EN) = Gy (N), VEN =
VN, and Sgrpn(T) = Sy (7) for all 7 € b,). Thus for each G,Y, we
follow [7] to adjust the pair (M N) by left multiplication from SL,(Z) so
that, with appropriate choices of s, r, we have that

(Xe, MXT'GTY, X NX;'G) = 1.

We set M' = X, ,MX'G™!, N = X,,NX;'G, and N' = M'GY 'G+ N".
Then
Sun(X;'GTHr +GY'G)IGTIX )
SM/JV//(T + GY 'G)
is an analytic function whose square is ¢"~*77 and whose limit as 7 +— 0
is ¢("=579)/2; thus the quotient above is equal to ¢"~579)/2, Further, since
q # 2, from Proposition 2.2 we know that

? , N/l g , N/
\/% Sy (T + GY 1G) = Ajie(tN? Sy v (7).
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Hence
_ o =k
Ea(7)|T;(¢?) = ¢ */27 ) Y(M. N <gM’(N)>
AT () = > o) (G

(M N),G,Y

_ —k

. qk(s—r)/Q gM(N) - Vdet N” S N7 (T)—k
vV detN-?M/(N”) '

where SL,(Z)(M N) varies over SL,(Z)(My I)To(4N), G,Y vary as in

Proposition 4.2, and r,s, M', N” N’ are as defined above. Note that we

necessarily have rank, M’ > rank, M = d.
Given a coprime symmetric pair (M’ N’), we want to count how often

SLp(Z)(M' N') = SLo(Z) X, (MX;'G™ MX'Y'G+ NX;'G)

for some (M N) € SL,(Z)(Mg I)T'o(4N'). Equivalently, we want to count
how often

(+) X JEMGX; -MGYX;'+N'G'X;")
€ SLn(Z)(My I)To(4N)

for some E € SLy(Z). Since X }'EX,, € SLy(Z) for E € SL,(Z) if and
only if E € Ky, we only need to consider E € KC;,\SL,(Z). Thus

/ I\~ / / EM’(N/) -+
Ea(7)|Tj(¢*) = ca(M', N')X(M',N') | ———= Sm/,n'(T)
o= 5 (B, i)

where

Cd(M/,N/) _ qj(k/2_n_1)X(M,,N/) Z Y(Mv N)qk:(s—r)/2
s, E,G)Y

?M(N) \/detXSJNXj

Vdet NGy x 1 (X NXG) ;
5,17 € L>0, E € Ks;\SLn(Z), G € SL,(Z)/K;, Y € Y; such that

(M N) =X E(M'GX; M'GYX; '+ N''G7'X; )
€ SLn(Z)(Md I)F0(4N).

(Here we have used that for G € SL,,(Z) we have Gy (N') = Gapg(N''G™1).)
We also know that E4|T};(¢?) is a modular form, and hence is a linear com-
bination of Eg for d’ > d. Thus E4|Tj(¢?) = YarsaCd(Ma, I)Eq.

As shown in the proof of Theorem 4.4 [7], given s, 7, each solution F, G,Y
to (*) corresponds to choices for s, ds, d7,dg so that s < d, d' = d+ds+d7+dg
and M, N have the following forms.

Al g qAy A Dy D1 Dy D
qAy  qAs A} qA4 N — Dy Ds Dj Dy
qA;  qAs qAf qds |’ qD5 Ds qDg  Dg
AL ?Ar qAy qAs ¢D. D; qDi qDs
where A}, D] are s x s, A}, D} are (d — s) x (d — s), A7,D7 are r x (j —
s), A}, A} are invertible modulo ¢. Since (M,N) = 1, we must have

-k

M:
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(row) rank, (D 5 D 6) = n —d, and since (X,,MX;' X,,NX;) = 1,

D7 0
As 0 0 Dg
A7 Ag D 0 >
and ranky(As Dg) = n — d — r. Further, adjusting £ by left multiplication
from Ky and G by right multiplication from K;, we can assume that modulo

4,
_ (a5 0 0
A5:<o 0 0)’

we must have (row) rank, < =n —d. So rank, D7 = r

00 0 0 O
A7=10 0 a7], As=[0 0
00 0 ag 0

where a5 is ds X ds, a7 is d7 X d7, ag is dg X dg, and as, a7, ag are invertible
modulo ¢g. (So we necessarily have ds +dy < j—sand dg <n—j—d+s.)
Also, as (M N) is a coprime symmetric pair, modulo ¢ we have

_ (B x % _ (M =
D5—<o**’D6— 0 )

0 60 O
D7 = 0 * 6/6
& %

where (] is d5 x d5, 7] is d5 X dg, yais (n—d—7r—ds) X (n —j —d+ s —ds),
(52 is (T‘—d7—d8) X (j—s—d5—d7), (5(/3 is d7><d7, and 5’7 is ngd5.
Then a careful analysis in the proof of Theorem 4.4 [7] tells us that ds > dg,

e (BT M
r=37—s d5+d8a and 74»527567 5/ 0
q 7

From the above descriptions of M, N, we can see that

(X0, MX; ' Xy Xo,NX;X7)

) are square and invertible modulo

is an integral, coprime pair (which is necessarily symmetric). Thus by Propo-
sitions 2.2(c) and 5.1, we have

gxs,TMXj*l(XsmNXj) = ngXo,rMXJflxs (Xos NX;X ).

Let
0 I, O
P=|I—s 0O 0
0 0 In_j

So using Propostion 2.2(c) and recalling that P, ' = Py, we have
gXO,erjflxs(XO,rNXngl) = gXO,,.MXj—lxspl (X0, NX; X, ' Pp)

= gXo,rMP1X;}S (Xo, NP1 Xj—s).
To prepare to use Proposition 5.2, choose Ey, Go € SLg,(Z) so that

B, = (f) (@), 8Go= (0 &) ()
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where 1, 67 are dg x dg. Write
1
EoBiGo= ("1 '02>
oG <,03 P4
where 7 is (d5 — ds) x (ds — ds). So

1"
0
E / / G ﬁ1 P2
( 0 T ) (gl1 FY1> < 0 I > = pP3 P4 ’71, (Q)v
as) \97 0 ds 0 o 0

and since this matrix is invertible modulo ¢, we must have rank, 07 = dg =
rank, v/, and rank, 8/ = ds — dg. (So B{,~Y, 0% are invertible modulo g.)

Write
/
_ [0 w
anstG()l:( 5 2)
w3 W4

where of is (ds — ds) x (d5 — dg). By the symmetry of M ‘N, we have that

) ()0 ) (7 )
Ids 5/7 0 tOég Idg

is symmetric modulo ¢; consequently wy = 0 (¢) and so af, w4 are invertible
modulo ¢q. Now set

I o 0 Igy_gqe O
E = E, ,G:(O I ),sz I, 0 0
In—d—d5 nds 0 0 Infjfs

Then E commutes with Xy, (since dg < n —j —d + s and hence r =
j—s—ds+dg <n—d—ds). Somewhat similarly, G and P> commute with
Xj_s (since d5s < j—s and r+ds —dg = j —s). Thus by Proposition 2.2(c),

gX0,7~MP1X;jS (XO,T’N—PlXj_S)
= QXO,TEMP1 tG‘ngijlS (XO’TENPIGP2XJ._S)_

Hence with M = EMP;*G~" and N = EN PG, we know that
(MPQX;}SXT ]vPQXj,SXT_I) is an integral coprime pair
<= (]WPQXJZISXT tp, NPQX]‘_SXT_:L tPg) is an integral coprime pair

— (MX71 NXj_S_T) is an integral coprime pair.

j—s—r

Recall that P; has permuted the 1st j — s columns of M with the next s
columns of M, and similarly for N. (So, for instance, the top row of blocks

of MPy is (qA; A} qAb qAs) and hence M X', is integral.) Using our

j—s—r
block decompositions of M and NN in terms of subscripted As and Ds, we

have the following. In MX;l the (1,2) block is A} which is s x s and

—s—r?

invertible modulo ¢, and the (2,3) block is A} which is (d — s) x (d — s)
and invertible modulo q. Let A5 denote the (3,1) block of M X! and

J—s—nr?

D5, Dg and l~?y the (3,1),(3,4) and (4, 1) blocks of NX]-_S_T. Then modulo
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q, we have
N ar 0 0 0 N B! * = x N 0 =
As=|ws 0 0 O),Ds5=| 0 = x x|, Dg= | =],
0 00 0 0 0 % x 0 ~u
N 0 0 4 O
D7E 0 O * (5(/3 y
0 & = x

where (as we’ve previously noted) of, 87,71, V4, 02, 0§, 0% are square and in-
vertible modulo ¢. Hence (MX;_IS_T NX;_s_,) has g-rank n, and thus is a
coprime symmetric pair. So by Proposition 5.2 we have

gXO,rMP2Xj__13 (XO,TNPQX]‘—S) = gMPQXj__lsXT(NP2Xj_SX;1)

::gﬁixfl (ﬁjxafsfr)

Jj—s—r

since PQX]-,SXT_1 'Py = Xj_s_,. If j = s+ r then with Proposition 2.2(c)
we have

gXOYT],\ZPQXj__ls (XoerPQXj—S) = gﬁ(ﬁ) = gM<N)

Suppose j > s+ r. Then we modify GG in our previous step to prepare to
apply Proposition 5.3. Take Gy as before, and choose an integral (ds —dg) xr
matrix W so that

Eq Go Iy, W 70
D 508 = .
( Indrd5> > < Ijsd5> ( Ir) < * % (Q)

Then with
Go Ijo—ge W
G = 5—dg ,
! ( Ij—s—d5> < Ir

EO to~N—1 Oéir) 0
< In—d—r—d5> A5 Gl - <>I< * (q)

recall that wo =0 (g)). Set G = G ; 80 G commutes with X, _,.
( ; j
n—j+s

we have

Hence we again have

gXbmﬁZPbX;4 ()(QTPJEE;XEAS):: gﬂixfl (jv;Xﬁfsfry

—s j—s—r
But now, with
Iy 0 0
P = 0 0 In—d—d5+d8 )
0 Igs—aq 0

by Proposition 5.3 we have

(ﬁXjfsfr) = gP31\7XJ215,T (P3j\7xjfsfr)

det o 37 N -
=<2fﬁ@@%%%w>

ngIXf 1

Jj—s—r
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and we know by Proposition 2.2(c) that QM(N) = Gy (N). Recall that
r=j—s—ds+dg and d5 > dg. Hence we have j = s + r if and only if
ds = dg. Hence for all choices of s, r, the above computations give us

det af 57

gXS,,.MXj*l(Xs,TNXj) =q° < p

) (G(0)) % Gy (V).

/8/ ,y/ ta5
Now, by the symmetry of M !N, we know that (5; 01) < tOé8> is

symmetric modulo ¢, and hence

B Y\ (fos
det (5/7 0 fag B <—1)d5_d8 <detagﬂf>

q q q

Also, G1(q) = G-1(q) = (%1) Gi(q). Thus

det (P1las m'as
Gu(N)Vdet N”  glds=ds)/2 \ottas 0

VAet NG (N (Gi(g))ds—ds q

To evaluate cq(My, I), we also need to evaluate
X(M,N) = x(X; ) EMyGX;, X, , E'GT'X;).

We note that by Lemma 6.1 [7] we can choose E,G = I (4N'/q), and we can
choose Y =0 (4N /q). Thus M = My (4N/q) so

Xan/q(M, N) = xanq(Xo} Mo X5, X X7,

As shown in the proof of Theorem 4.4 [7], with (M N) as above we have

!t !t
Y, (M,N) =%, (det <§;tz§ 7 Oas> det(aétw)) .

Now we need to consider what happens when we fix s, r,d’ and let E,G,Y
vary so that X' E(MyGX; —Md/GYX;1 + tG_lel) € SL,(Z)(My I).
As proved in Theorem 4.4 [7], there are

IBq(d7 S)Bq(d, - d? d5)18q(n - dlv.j -5+ d8 - d, + d)ﬁq(d/ +d— d57 d8>
i q(d+d5)(7‘+d+d57d/)+8(n7d7d5)+(d4+d8)(jfsfd5)fd7d8

permissible choices for (E,G), and for each choice of (E,G), as Y varies
over permissible choices, the matrix

Bilas Aitag 0
5/7 tOé5 0 0
0 0 dlar
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varies qU—)(n—d+1)=ds(j—s+ds+1)—dr(d7+1)/2 timeg over all symmetric, invert-
ible matrices modulo g. As j3],], d¢, 0% vary as such,

/¢ it
prlas M 048)

det | '/
- Brlas v 'as 't <57 a; 0
Z Xg (det <5,7 tg, 0 det(dg “a7) .

= symgl (ds, dsg) symg(dy),

and by Lemma 2.3, this is sym (ds, dg) symX(dr). Now combining the above
results yields the theorem. U

From this theorem we can deduce a “multiplicity-one” result. To ease our
description, we introduce the following.

Definition. Let o, a be multiplicative partitions of A/, and let ¢ be a prime
dividing N. We write 0 < « (q) if rank, M, < rank,M,, 0 = « (¢) if
rank, M, = rank, M, and o < « () if rank, M, < rank, M,. For Q|N, we
write 0 < a (Q) if rank, M, < rank, M, for all primes ¢|Q, 0 = a (Q) if
rank, M, = rank, M, for all primes ¢|Q, o < o (Q) if rank, M, < rank, M,
for all primes ¢|Q.

Corollary 4.4. Let o be a partition of N so that E, # 0 and let q a prime
diwviding N'; set d = ranky M,. For any partition B of N with > o (N),
there are constants a, g(N') so that aso(N) =1, and with

Ee= Y ags(N)Es,
B>o (N)
we have IEU]Tj(QQ) = )\U;j(qQ)IEU where
J
Aoij(@®) =g P2y 0 (%) xw (029 )
3 0 n
s=0
and N! = N;/(q,N;). For o,p distinct multiplicative partitions of N, there
is some prime g|N" so that Ag.n(¢%) # Apin(q?). Further, E, = 0 if and only
if B, =0, and
span{IEU : o is a multiplicative partition of N '}
= span{E, : o is a multiplicative partition of N }.
Proof. This proof follows the lines of reasoning used to prove Corollaries 4.2
and 4.3 in [7].
First, fix a multiplicative partition o = (N, ...,N,) of N and a prime
q/N. Let d = rank, M,. We temporarily use the notaion of Theorem 4.3;

so we write o4 for o, and for t > 0, we write 041+ for p where p = o (N/q)
and rank, M, = d +t. Then by Theorem 4.3, we have

E0d|Tn(q2) = Z An(d7 t)EUd+t;
t>0

if Egy+ = 0 for some ¢ then we can replace A, (d,t) by 0 in this formula. The
formula for A,(d,0) is a sum on s with 0 < s < n, and the corresponding
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summand has a term 3,(d, s)3,(n — d,n — s). Consequently

1
A, 0) = 0% (X ) X))

since B,(d,s) = 0 if s > d and B, (n —d,n —s) = 0 if s < d. So we can
represent Ty, (q?) on *(E,, ... E,,) by an upper triangular matrix, whose dth
diagonal entry has absolute value ¢**~4=1) when E,, . 7 0; when E;, =0, we
can take the dth column of this matrix to be zeros. Hence we can diagonalize
this matrix; correspondingly, for each p with p = o (M/q) and E, =# 0,
there are values a, (q) with a,,(¢q) =1 so that

Z ap,a(q)Eq

a>p(q)
a=p(N/q)

is an eigenform for T},(¢?) with eigenvalue \y.,,(¢?) (as defined in the state-
ment of the corollary). Further, for a > p (¢), @« = p (N/q), by Proposition
2.3 and Theorem 4.3, we have a, (q) = 0 unless Xg =1

Now, for any prime ¢|N and o, multiplicative partitions of N with
a >0 (q), set

to,0(9) = @p.alq)

where p = o (q) and p = « (N/q). Then for any QN and a > o (Q), set

o,a(Q) = H )

q1Q
g prime
Set
Ee= Y dralN)Eq.
a>o (N)
So
EU|Tn(q2) = Z as,8(N'/q) Z aﬂ,a(q)Ea’Tn(QQ)
B=0(q) a>p(q)
B> (N'/q) a=pg(N/q)
= Z )\ﬂ;n(q2)aa,ﬁ (N/Q) Z a,@,a(Q)Ew
B=0o(q) a>p(q)
B>o (N/q) a=3(N/q)

We claim that for any § so that 8 = o (q), 8 > o (N/q), and a, 3(N/q) # 0,
we have Ag.,(q?) = Aon(q?). To see this, first note that since 8 = o (q), we

have
1
)\,B;n(q2> =dq dkb—d— 1)X/\//q <qun d( )M/37 Xdrlz d)

Using Proposition 4.1, we see that for a prime ¢'|N/q and d' = rank, Mg,
we have

_ 1 o
Xq' (qu,rlL_d( ) Mg, Xd; d) = Xg/(qd d)
and by Proposition 3.5, ng =1 When ¢'|N/NoN,, (and necessarily x% = 1)
As noted above, for 3 > o (¢') and § > o (N/q), we know that a, (q") =
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unless XZ, = 1. Thus when a, (N /q) # 0, we have ng = 1 for all primes
¢'|N/q. Hence

Agin () = ¢ *=4=D =\ (D).

Consequently Eg]Tn(qQ) = )\U;n(qQ)IEU.

Regardless of whether va/q =1, we have |A\,.n(¢%)| = gdk—d—1)

for every

prime ¢|N and d = rank, M,. Hence for p # o (N), there is some prime g| N
so that rank, M, # rank, M,, and hence ;. (q?) # Aoin(g?). This gives us
the multiplicity-one result claimed in the statement of the corollary.

Finally, since the Hecke operators commute, we must have that E, is an
eigenform for Tj(qQ) for all primes ¢|NV and 1 < j < n. Thus using Theorem
4.3, we must have

EU‘TJ’(QQ) = Aoyj (q2>E07

as claimed. O

Since the Hecke operators commute, we know that for every odd prime
pt N we must have that E, is an eigenform for T;(p?); below we compute
the eigenvalues. These are not so attractive, so in the corollary that follows
we use an alternate set of generators for the local Hecke algebra, producing
much more attractive eigenvalues.

Note that in Corollary 4.4 we have only diagonalized the space of Eisen-
stein series corresponding to I'no\I'o(4)/T0(4N), relative to the Hecke op-
erators Tj(q?) for primes g|A. Following the proof of Theorem 4.3, we can

see that the E, will not all be eigenforms for Tj(4) (unless all the Eisenstein
series corresponding to cusps outside I'o\I'g(4)/To(4N) are all 0, which is

certainly not the case for Siegel degree n = 1).

Theorem 4.5. Let o = (N, ..., N,,) be a multiplicative partition of N, and
suppose that E, # 0. Let p be a prime not dividing 4N, and take j so that
1 <j <n. Then E,|T;(p*) = \j(p*)Eo where

Aoij(p?) = By(n, j) Y pFUTHIRUmD0H Dy (g )y, (070 )
r+s<j
. , g
’ ﬂp(]? T)Bp(] - S) ( i/(g)

where the sum s over all non-negative integers r,s with r +s < j, and

P(x) = <;‘;) Further, I~EU|T]'(;D2) = )\a;j(PQ)IEU-

j—r—s
> sym;f’(j —r—3)

Proof. To a large extent we follow the reasoning of Theorem 5.4 [7].

For any ng,ny € Z>o with ng +ny < j, G € SLy(Z), Y € YVngmas
and SL,(Z)(M N) € SL,(Z)(M, I)To(4N), we adjust the representative
(M, N) and choose r, s € Z>q so that

(M'N") = X, J(MX,,.',,G™" NXpon,'G)

no,mn2

is an integral coprime pair (which is automatically symmetric). Note that
M’ =0 (4), and for all primes ¢|N, we have rank, M’ = rank, M,. It follows
from Proposition 3.5 that (M’ N”) € SL,(Z)(M, I)T'x(4N). Then as in
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the proof of Theorem 4.3, we have

Sun(X, L. G Y r+aYyta)icTx, )

no,n2 no,n2
_ p(T*S*n0+n2)/2SM/,N”(T + GYtG)
= p(T*S*no+n2)/2 Vdet N EM’ (N/) N Y
G (N") Vdet N
where N = M'Y + N” (and (M' N') € SL,(Z)(M, I)T'x(4N)). Setting

€= <_71), we have

(7)

G (N')

—k
dot 7 M (T)>

ENT0) = 3 e(M N)X(M,N) (
(M’ N")

with
CU(M/,N/) _ pj(k/anfl)X(M/’N/) Zx(pjfnoJrng)X(M’ N)

_ —k
[ Gu(NV) Vdet N pHE=T)/2
Vdet N Gppr(N”)

A \% .
(k1) (j=n0—n2)/2 <de; 1> (p 3G (p))i o2,

where the sum is over all r,s,n9,n2 € Z>o with ng +ng < j, G,Y as in
Proposition 4.1(b), and E € K, \SLy(Z) so that

(M N) =X, s E(M'GXpyny, —MGYX, ) +N'G'X, 1)
€ SLy(Z)(My T).

Now fix a partition ¢’ of N. As noted in §5 of 7], we can choose the
representative M,/ to be divisible by p?; then with (M N) as above, we
have that p|M and N is invertible modulo p. We also have that N” =
X, IN Xnoms "G is invertible modulo p; consequently (as proved in Theorem
5.4 [7]), we must have r = ng and s = ng. From this we find that

N; pNs p?Ns
N=|Ns N5 pNg
N, Ns Ny

with N1 rxr, Ng sx s, and Ny, N5, Ng invertible modulo p. Hence X,TlNXr
is also integral and invertible modulo p. Set

P = (n xn).

SNo o
O~
o oM~

Then X;thPXOjj = X, !NX,P is invertible modulo p, and using Propo-
sition 2.2(c) and Proposition 5.2, we have
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Gty (N") = Gyt g (X;INX,..)
- gXo_,i(XFlMtPXOW)XS(XOS (X, thPXO Hx
=Gy aripxy, (Xr N 'PXg,)
=0x,, prux;t (Xor PNX;)
= Gu(N).

As shown in the proof of Theorem 4.5 [7], given r, s, for all choices of Y and
for

prs:@p(na ])Bp(]a T)ﬂp(] - 5)

choices of (E, G) we have
(M N) = X, s E(MyGXyy — MyGY X, [+ 'GT'X))
€ SLn(Z) (M, I)To(4N).
Writing Y as in Proposition 4.2, we have

det Y; s .
Z( P l)zp“” Wsymf (j—r — )

Y

where 9 (*) = (;) . Note that sym}f(j —r —s) =0 when j —r — s is odd,
and when j — r — s is even we have e(**1DU=7=5)/2 — 1 Also, we can always
choose E,G =1 (p)and Y = 0 (p); hence x(M,N) = X(X, s My X, 5, I), and
by Proposition 4.1, if E, # 0, we have x(M, N) = x:, (p>"=)). Combining
these computations yields the value of Ay.;(p?).

Since the Hecke operators commute, by our multiplicity one result (Corol-
lary 4.4), E, = Eaza % ao,oEq must be a Tj(pz) eigenform. Since each E,
is a T;(p?) eigenform, we must have A\n.;(p?) = A (p?) whenever aq o # 0
(which can be corroborated by direct computation), so we have ]E0|Tj(p2) =
Aaij (0*)Eq- O

Corollary 4.6. Let p be a prime not dividing 4N, and set € = (_71) Set

j
Ti(p®) =Y x(pH)eWHDU=0/2p0=0F2==1D g (0 — 0, § — )Ty (p?)

and ;
Ti(p?) = > (-1 V28, (n = j +i,i)xn, (P i (07).
With o = (N, .. Z,j\()fn) a multiplicative partition of N, we have
Eo|Tj(p*) = X;(0*)Eo and Eo|T}(p*) = X ; (0°) o
where
)\;;j(pz) _ /3p(n7j)]9](k/2 n—1/2)+j(5-1) /2 ( ﬁ k+1)/27¢ +1),
i=1

and X' (p*) = x(p*)e"* D2,
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Proof. To take advantage of a result proved in [6], we set
5 L _
G((0)") = p~"(G1(p))" symy (¢)

where 1 (x) = <%) Then (with t = £ —r — s) we have EU|@(p2) = Xj(pQ)EU

where

Xa;j(p2) _ Z X(pj—l)6(k+1)(j—é)/Qp(j—Z)(k/Q—n—l/Z)
0<L<y

B(n—£,§ = OAoie(p?)

_ ZX r+s X./\/n (p2(r—s))€(k+1)(j—r—s)
pUr(k/2=n=1/2)+s(k—1)/2

. L—r— s
ﬁ(n—ﬂ,j—ﬂ),@(n,ﬁ)ﬁ(&r) t—r, S <0>

where 0 < ¢ < jand 0 < r+ s </, or equivalently, 0 < r+ s < j and
r+s</{<j. We have

Bl — 1.3~ OB, O8(E.1)B(E — r.5) 207

= ,B(n,]),@(],’l“)ﬂ(] - S)/B(J —r—sl—r— S)'

Now we make the change of variables £ +— ¢ —r —s. So

ZX —r+s XNn(pQ(r—s))g(k-l—l)(j—r—s)/Z
.p(] r)(k/2—n—1/2)+s(k—1)/2

- B(n, )BU,T)BG —1,9)B( — 1 — 5,0)G((0)")

where 0 <r+s<j5,0<¢<j—r—s. Taking W = <0>j7rfs in Lemma
3.2(b) [6], we have that

=

S

j—r—s

Zﬁ(j—r—sﬁ <0> JTS)(jrsl)/Q
=0

(as the form W L <2> primitively represents <O>j_r_s only once). Hence

Mg (%) = D (= 1) P D P, (PTTN (pT)

. p(j—i—r)(k/2—n—1/2)+s(k—1)/2+(j—i—r—s)(j—i—r—s—l)/2

Bn—j+1,9)B(n,j—i)B(G —i,7)B( —i—r,s)

where 0 < ¢ < jand 0 < r+4s < j—i, or equivalently, 0 < < 35,0 <r < j—i,
0 < s <j—1i—r. Making the change of variables r — j —i — r, we get
)\;-(p2) asasumover 0 <i<j,0<r<j—1, 0<s <r, or equivalently,
0<r<j,0<i<j—r,0<s<r. Wehave B8(j —i,j—i—1)=p0B(—1i,r)
and

B(n—j+i,i)B(n.j — )BG — i,ry D)

= 18(77‘7])6(.77 7’),8(] - Z)
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Using that B(m,r) =p"B(m — 1,r) + B(m — 1,r — 1), we find that

= 1 ifr =
S (~1)ip VG — i) = ’

p 0 otherwise.
Thus
2 . iN, 5 (k/2—n—1/2)+5(G—1)/2 A/ .
Ny (0) = Bln, )X (p)p? 2 VATV A, (k + 1) /2 = )

where

J
AGy) = ¢p")pr D283, 5)

s=0
and ¢(p®) = x(p®)elkFtDs/2y (pzs). Again using the relation B(j,s) =
p’B(H—1,8)+B(G —1,5s— ) we find that
j—1
A(j,y) = (e(p)p! + DAG — Ly +1) = [ ()%, @0*)p* ™ + 1).
i=0
Taking y = (k + 1)/2 — j shows that ]EU|TJ{(p2) = )\:T;j(pz)Eg.

Now recall that E, = > g0 (N) Go,s(N)Eg. Suppose that 8 > o (N)
so that a,g(N) # 0. Write 0 = (Ny,..., Ny), 8 = (N{,...,N}). For
any prime ¢|N,, we know that rank, Mg > rank, M, = n. Consequently
NoN.. Now suppose that ¢ is a prime so that q|A/ but ¢ { N,. Thus
n = ranky Mg > rank, M, as thus as discussed in the proof of Corollary
4.4, we have x2 = 1. Hence x3, = Xx3,. Therefore )\%;j(p2) = \,.;(p?) for

all 8 > o (o). Hence E,|T}(p?) = A,.;(0?)E. O

5. RELATIONS ON (GAUSS SUMS

To prove the following identities, we frequently use that with n x n ma-
trices A, B, we have Tr(AB) = Tr(BA).

Proposition 5.1. Suppose (M N), (X;MX;! X;NX;) are coprime sym-
metric pairs. Then

Gxmxt (XsNXs) = ¢ - Gu(N).

Proof. We let Uy vary over Zl’”/Zl’"NXS, Ui over Zl’”/Zl’"Xs. Then
Ui N X, varies over Zl’"NXS/ZL”XSNXS; hence U = Uy 4+ U1 N X, varies
over Z'" /7' X N X, and, recalling that M !N = N ‘M, we have

{2WWUXINTIMX'} = 20U XTI NTIMX 7Y - {4t U UL M X 1Y
For fixed Uy,

> e{ATTUIMX 1y =) {4 MX [ U}
U1 Ul

is a character sum, so the sum is 0 unless M X !!Uj is integral. Since

X M X! is integral, M = <qji113 ﬁi

(X, MX;7LX,NX,) =1

) with A; of size s X s. Since
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we must have that A; is invertible modulo q. M X;1tUj is integral if and
only if Uy € ZY"X,, from which the proposition follows. U

Proposition 5.2. Suppose (M N) and (Xo,MX,; ' Xo,NX,) are integral,
coprime symmetric pairs. Then

9o, Mx (Xo,rNX;) =Gu(N).

Proof. First, note that since (Xo,MX, 1 Xo,NX,) is an integral coprime

. o qu A2 . Bl BQ . .
pair, we have M = <q2A3 qA4>’ N = <33 4Bs with As, Bs of size r xr

and Bj invertible modulo gq.
We obtain the desired identity by evaluating in two ways the sum

> {2UUXT N M XY,
UeQln/Zln N X,
We now show that as Uy varies over Z" /Zl’”N and U; varies over
Zl’”/ZL”X&}, U X, + U1 Xo,NX, varies over 7"/ ZI"NX,.. Define the
additive homomorphism 1 : Zb" x Z1" — 7L /71N X, by

V((Uo,U1)) = Up Xy + U1 X0, NX, + Z'""NX,.
Suppose (Up,U) € kere. Thus
Uo + U1 Xo,N € Z""N C Z".

Writing Uy = (Wy W{) where W7 is 1 x r, we must have W{ = 0 (¢) since
Bs is invertible modulo ¢ and U; X, N is integral. Hence Uy X, is integral,
and thus Uy € Z"N. Thus

kery = Z'"N x ZH" Xt

Since
[W(ZY" x Z8™) [ ker | = ¢" det N = |ZY" /ZP N X, |,

1) is an isomorphism.
Thus with Uy varying over Z'"/Z'"N and U; over Zl’”/Zl’”XO_;, we
have

> {22UUXINTIM X1}

UEZL”/ZL”NX,.

= > ef2/(UpX, + U1 X0, NX,)(Uo X, + Ut X, NX,) X, "N MX, 1
Uo, Ux

= > e{2'UgUoN "M} e{4'UU1 X, M} e{2°N Xy, "T1U1 X0, M}
Uo, U

=q"Gu(N)

since Xo,M, MXq,, and X()’TMtNXg’T are integral.

On the other hand, as Vj varies over Zl’”/Zl’”XO,TNXT and Vj varies over
ZL"/ZL”XO_; and hence V1 X, N X, varies over Zl’"XOVTNXT/ZL”NXT. So
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Vo + V1 X0, NX, varies over Zb"/ZY" N X,.. Thus
> 2WUUXIN"I MY}
AR ARI D'
= > 2"V X, 'NTTMX,  e{d VoVi X, M X,
Vo,Va
e{2'ViVi - X0, M'NXo,}
= > 2V X, INTIMXT)
Vo,V1
since Xo,M 'N Xy, is integral. Thus
> {2?UUX'NT'M" = 4Gy, i1 (Xo N X,).
UeZln I N X, ’

This proves the proposition. O
Proposition 5.3. Suppose that (M N) is a coprime symmetric pair so that

qu BQ Cl 02
M — N =
(qu qB4> ’ <C3 qCy

where Bs, Cs are £ x £ and invertible modulo q. Then rank,(By Ca) =n—/,
(MX[1 NXy) is a coprime symmetric pair, and

G (VX0 = (12 ) (61() G (),

Proof. Since Cjs is invertible modulo ¢, we have
o By 0 Oy . By 0 (5
n—rankq<0 Cs O)-rankq(o Cs 0),

hence rank,(By C2) = n—{. Also, 1"ankq(MXZ—1 NX;) = rank, <59 %2 C(;Q) =
3

n, so (]\JX[1 NXp) is a coprime symmetric pair. We know that X¢ N X,

is integral, so we define the additive homomorphism ¢ : Zb" x Z\" —
Zh" 7V N X, by

Y((Uo,Uy)) = Up Xy + U1 Xo o/ NX, + Zl’nNXg.

Then just as proved in Proposition 5.2, 1 is surjective with kernel Z'"N x
ZL”XO,ENX@. Thus, as Xo ¢M is integral, we find that

gMX[l(NXe) = gM(N)thNXo,e (X(Iﬁl)

To evaluate Gyrinx,, (X ), we first note that {(0 V) : V € Z4¢/qzZ1t }
is a set of representatives for ZL"/ZL"XO_EI. Thus

Grrenxo,(Xop) = > e{2'VVB3'Cs/q}.
vezbt/qzl:t

Since g # 2 and B3 !C3 is symmetric and invertible modulo ¢, by section 2.8
[2], there is some G € SLy(Z) and wy,...,w, € Z so that

GB3tC3tG >~ <w1,w2, e ,wg>
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where ¢ { wyws - - - wy. Since ZMWG /qZMG = 71 /qZM, replacing V by VG
gives us

Grenxo,(Xog) = D e{2(wiwr +v3ws + - + viwe)/q}
V1,500 (q)
w w « o e w
- (qf> (G1())!
_ (det B3y

) ) G1(0))" .

proving the proposition. O

(1]
2]
8l
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