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que k@ = H, (i) et que le conjugué de ./A(r) dans k'*)/H, est —1/,/A(x); par
conséquent uek®; le théoréme est démontré dans ce cas.

Supposons maintenant 3 inerte dans k/Q et soit § un point de 3-division
non nul de E,. Comme précédemment iT (B)/,/A(r) appartient & k*’. On peut,
en procédant comme dans le §11, trouver be H, tel que iT(B)/\/A(z) = b (2)
On pose alors

il(i T b)

p=is -b}.

2\ /i)

Il est alors immédiat que u est un entier de k™ et qu'il engendre avec ses
puissances I'anneau des entiers de k™ relativement a H,.
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attached to lattices of arbitrary rank
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LYNNE H. WALLING (Lewiston, Me.)

1. Preliminaries. Let K be a totally real algebraic number field of degree
n over Q; let (¢ denote the ring of integers of K and @ the different of K. Let V
be a quadratic space of dimension m over K with totally positive quadratic
form Q and associated bilinear form B where B(x, x) = Q(x). Take L to be
a lattice on V (so KL= V). Let . denote the upper half-plane; then for
T=(t,,..., T,)€#", define

O(L, )= e(Q(x)7)

xel

Where e (x) = e, Notice that e(x) = | whenever €23~ !. For ye V, define

O, y, )= ge(Q{x+J’)f)-

So when yeL, O(L, y, 1) = O(L, 7).
As defined in Eichler [6], let L denote the complement of L, N (L) the
Rorm of L, and A (L)= N(L)"'!N(L)"'4* the level of L. Notice that
=0 'I* where [* is the dual of L (as defined in [12]), hence
V(L) = N(L)~! N(L*)~ !, which is integral (ie. A (L) < O; see [6]). Also, xeL
Tand only if B(x, L) € d™". For aeK, let I* denote L scaled by «; that is, I is
the lattice L together with the quadratic and bilinear forms @ and B* defined by

*(x)=0aQ(x) and B*(x,y)=aB(x,))

(see §897 of [12]). So N(I%) = aN(L) and 4 (I%) = 4 (L).
For fractional ideals 3, and 3J,, define

o(3),3,) = {[: ﬂ| a,de0, ce3,, be3,, ad—bc = 1}.

If 3, 3, is integral then I'y(3,, 3,) is a group. If ordy, 3, = 0 whenever B is
A prime ideal with ordy 3, # 0, then we say 3, and J, are relatively prime.

The reader is referred to [12], [2] and [10] for details regarding lattices
ad quadratic forms.
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2. The transformation formula. To prove @ (L, 7) is a Hilbert modular
form, we begin by proving a transformation formula. For this we generalize
Eichler’s inversion formula (see [6]):

s=mnf2

O, y, 1) =—

N(z)~ ™2 e(2B(y, 5))@(L, s, —1/7)

0 ( .}m (2B(y, 9))

where L is an integral lattice of even rank and yeL; ®(L) = det(Tr(B(x;, x )
where the set {x,, ..., Xm} is @ Z-basis for L. Eichler’s proof of this formula is
independent of the parity of the rank of L. Now we choose a totally positive
algebraic integer o such that ¥ is an integral lattice and ayeL (that is,
ye(f;‘)). Then from Eichler’s formula we get that

O,y ar)=8O(L, y, 1)
s—mnf2

: - i
MN’ (r)™™2 mzlie(ZaB(y, x)—aQ (x) T)

e - ( 1 )
= N(t)™™2 Y el 2B(y, x)—Q(x)— ).
a0 Le(280n 9-007;
It follows from the definition of @ that @ (I%) = N (a)" @ (L); replacing at with
T we now get

i—lllllfﬁ

(1) 8Ly, )=———=N@™ }, e(za(y, x)—Q(x)%)

V(L) el

where L is any lattice and y is any vector in V.

Using (1), we derive a transformation formula for @ (L, 7). We essentially
follow the derivation of the transformation formula presented in [6]; howevers
Eichler’s final formula contains some inappropriate factors, and we sometimes
need to impose an additional restriction.

Take [‘: 3]5 Fo(A (L)N(L)3, N(L)"127") such that d> 0 and d is
relatively prime to 4 (L)@ and to N(L). Following Eichler we write

Q(L, -g:%) -3 e(gQ(x)+—-Q:L).

e d(d;-l-(.‘)

Since gQ(xo+dx}E gQ(xo} (mod2071Y) for any x,, _xeL, we have

a+h)_ o (bg (Q(dx+x0))
Q(L “+d) xoszl::w. (dQ( o))»%e d(d1+c)
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and by (1),

l--—mfi

l mf2
— N —mf2 =
e D (d) N (d . + c)

b 2 1
X xoe%ﬂe(zQ(xo}+zB(x, xo)—EQ(x))e(—Q(x);).

For any x,eL and xeL, we have

c b 2
— 0@ (bxg+x) = 20 (x0)+5 Blxo, x}-%Q(x} (mod 26~1);

thus

at+b R 1 m/2
o) -Sompin(s)
x ¥ e(—dEQ(bxo+x))e(—Q(x)l).
xoeL/dL 2

We claim that for any xeL, bx,+x runs over L/dL as x,, runs over L/dL.
To prove this, we need )

PROPOSITION 2.1. Let L be a lattice and let B be any prime ideal. Let Ly
denote the O-module tensor product L® Og. Then B divides A" (L) if and only if
Ly is not modular. Thus Ly is N(Lg)-modular if B does not divide N (L).

Proof. Since N(L)0Oy = N(Ly) for any lattice L and prime ideal P (see
(31, p. 11), it suffices to show that P divides A4~ (Ly) = N(Lg) ' N(L%)~*ifand
Only if Ly is not modular.

Via a Jordan decomposition of Ly, we can write

Eysdydi. Ly

thire h is some positive integer and each J, is a modular lattice. Let ey, ..., ¢,
Integers such that J, is ¢, -modular. If J, and J, are both %‘G'js-modular

(Where k # 1) then J, 1 J, is also P°Oy-modular; thus we may assume that
¢ < ... <e, Then

N(Ly) =P 0y and N(I%) =P 0.

Hence @ divides N(Ly)~! N(IZ)™! if and only if k> 1; that is, B divides
“¥(Ly) if and only if Ly is not modular. =

Now to prove our preceding claim, we fix xe L. Since be N(L)" ' 9!, we
ave bL < Land hence bx,+xeL for any x,eL. Also, if x,, xpe L such that
Xo~xpedL, then (bx,+x)—(bxj+x)ebdL < dL.
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Suppose x,, Xo €L such that x,—x,¢dL. Then there exists a prime ‘B|d
such that
ordg B(xo—xXp, d ' L) < ordg 0™ 1.

Our conditions on d ensure that ordy b = 0, and these conditions together with
Proposition 2.1 imply that Ly = Ly. So we get

ordg B(bxo—bxp, d™ ' L) = ord‘.gB{xU*xi}, Ly)

1
= 0rd$EB(xo—x5, Ly) < ordgo™!

proving that (bx, +x)—(bx, +x) ¢ dL. Thus bx,+ x runs over L/dL as x, runs
over L/dL.
This allows us to write

at+b
G(L' T +d)

2 el g fom )
= cb(L)N(d) th+c x.}e}f;ue dQ(be) _‘;e —Q(x);

i = mnf2

mf2
S 7 N@) ™2N (d%-i—c) %u e(i—lQ{x&) EL e ( —Q(x) %)

and with (1) we get the transformation formula:

at+b\ I_"’_’z 2 — b
@) Q(L, ——m+d)~—N(c+dT) N@"2N@d)™* ¥ e(EQ(x))G[L,t)-

xeL/dL

3. ©(L, ) as a modular form. Let the notation be as in the preceding
section. To show that @(L, 1) is a modular form we need to analyze

b
b3 e(aQ(x)). As a first step we have
xeLdL

ProrosiTiION 3.1. Let 3 = 3,3, where 3, and 3, are relatively primé

integral ideals. Then we have the (I-module isomorphism
L/3L~ 3, L/SL®3, L/3L

by means of the map from 3,L/IL@®I,L/IL onto L/IL defined by
(xy+3L, x,+3L)—>x, +x,+3L. Furthermore, for x,e3,L and x,e3,L.
Q(xy+x,)+23N (L) = Q(x,)+Q(x,)+ 23N (L).

Applying this proposition repeatedly, we get
L/dL ~ dB7* L/AL® ... ®dP;* L/dL

where B,,..., B, are distinct prime ideals such that dO = P ... o
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Furthermore, we have

b b b
EQ(x,+ +xg)EEQ{xl)+ +EQ(x’) (mod 287"

Where x;edP;* L. Thus

b g
b3 e(EQ(xJ) = [1 ( Y e(gQ(x))).
xeL/dL i=1 xed‘-ﬁj €iL/dL

We now analyze each sum in this product.

PrOPOSITION 3.2. Let L be a lattice on V and let B be a prime ideal in 0,
eeZ, , and ge P~ ' N(L)™ . If ‘B does not divide N (L) then

Ny i 2le,
,EL?E,,.L.‘?(QQ ) {N(qsyﬂie—“ﬂ Y e(v'0Q(x) otherwise
xeL'/PL"

Where v is any element of P—P2.
Proof. For e=1 the statement is trivial. For e > 1 we have
Y el@x)= Y  ele@(x+y)
xeL'[P°L xeL' /P L
yed® =L e
Now, 00 (y)e20~" for any ye P 'L, so
> eleQ)= Y e@(x) Y  e(2B(x,y)
xeL'[P°L’ xeL’|$* L yee T IL L’
For fixed xe I, y+rs e(20B (x, y)) is a character on B¢~ 'L/P°L; it is the trivial
Character only when xe*BL. Hence

0 otherwise.

e(20B(x, y) = {N (P if xePL,

}‘E%""ZL'fﬁl'[,'
(Notice that [P~ 'L:PL] = N (P)".) Hence
Y e@@M)=N®" ¥ ()

xel'[PeL’ xePL' B 'L
=N@®B)" Y e(veQ(x)
xel' ¢ AL

“’I‘_Iere ve P—P2. Induction on e now yields the statement of the prop-
Osition. m

We now need to analyze the Gaussian sum

b
e (ufi‘ -0 (x})
xed$ "Uﬂl; 7 d

Where v,eB,—P?. Fix j and let B =B, and L = dB;“L; let Ly = LQO,
Where the tensor product is as (@-modules). Let ¢ be any element of
BUN@E) 0T =N(L)' 07" (ie. we could take g = vj~'b/d). Writing
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L=0x,® ... ®0x,-®AUx,, where A is some fractional ideal, we have
l:WB = @gxle Ve @@.me—l®@$ﬂxm.

The quadratic form Q extends naturally to Lg: for a, ..., tm-; €0q and
2, €0y we have

Qg x4 ... +apXx,)= Y a Q(x)+2) o B(x,, x)).
k=1 k<l
This allows us to evaluate the Gaussian sum over L/BL by examining

Ly/BLy,.

When P42, our initial assumptions together with Proposition 2.1 imply
that Lg is unimodular; thus Lg >~ (1, ..., 1, &y) with respect to some Oy-basis
Vis ey Y Of Ly and some ege@y. (Notice that eg = discLg.) As we let
0y, ..., 0, vary over O/P, the vector a, y,+ ... +a,y, varies over Ly/BLgy.
Using the Chinese Remainder Theorem (allowing congruences modulo infinite
primes) we choose ec@ and pe2N(L) such that &= ¢y (mod POy) and
=1 (mod*P). Then

Qo yy+ oo+, V) = pld+ ... 02 +e02) (mod 2PN (L) Oy)
and
pled+ ... 4ok, +ext)e2N(L).

Since the cosets of L/BL are in one to one correspondence with those of
Ly/BLy via the obvious map, we find that

Y e(@@(x)= ) elep@i+ ... +ai_ +ea))

xel'[PL’ AL yensZmed|P
= (eIBI( X eloua) (el B)™.
xed/P

(Here (-|-) denotes the Legendre symbol) Utilizing standard techniques
employed to evaluate Gaussian sums we get

(3 elopa)(x|P)) Y. elen(o+P)(BIP)

Il

acl/P a,fel/P
= Y @P)( X elep@+1) =(—1IP)N(P)
ae@fP fed/P

(since B e(gup(x+1)) is a character on ©/P). This gives us
ProOPOSITION 3.3. Let L be a lattice, B a prime ideal dividing neither
2A4°(L)é nor N(L) and ¢ any element of B~ N(L)"'0 " '—N(L) ' d"'. Then
_ f{(—1y™* disc Ly|B) N (B)™? - if 2|m,
OO = {((unm-“ﬂ disc Lol )N (™02 Y e(ous?) otherwist

ac0/P
where ue2N (L) with p =1 (mod B).
Now consider the case where B|2. Since B|d, our conditions on d and
Proposition 2.1 show that Ly is a unimodular lattice, so we can write

Py=Jyd... 1,

where J, ..., J, are unary or binary unimodular lattices (see §93 of [12]). In
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fact, J,, ..., J, must all be binary lattices, otherwise we would have J,~ Q)

for some @€ N(Ly) < Oy and hence J, would not be unimodular. So we must
have that rank L = rank ' is even. Thus

A, 0
Ly~ | . with A, = [2"* ! ]
0 A, I 2¢

for some a;, ¢,e0y (sce §93 of [12]). Similarly to the case when P.r2,
we get '
mf2
2 e(e)=T1( X e(me(@o®+ap+cip?))
xel'PBL’ k=1 a,pet/P

Where peN (L) with u=1(mod P), and al, c,e @ with a, = a, (mod POy)
and ¢} = ¢, (mod POy). Now we fix k and let a =aj, ¢ = Ck.

Suppose first that aceP; without loss of generality, suppose ce .
Then e(2ugcp?) =1 for any fe0, so

Y e(@®+af+cp) = Y e(2uoaa?)( Y. e(uoap)) = N(B)

. a,fel/P ael/P Bet/p
(since i e(2upap) is a character on O/P).

Now suppose that ac¢P. Then ca runs over ¢/P as a does, so

E e(ae?+af+cp?) = Z e (2uoac? o?) ¥ e(2pocp (a+ B)).

) a.fed/P aedj P peCP
S@lnce llhe_characteristic of O/ is 2, fr>e(2uocp(a+p) is a character on
/B; it is the trivial character if and only if B(a+peP for every
BGQ/E]J, and this happens if and only if |0/B] =2/™ =2 (where f(P) is
the inertial degree of PB) and xe®—P. Hence we have
. PROPOSITION 34. Let L be a lattice, B a prime dividing 2 but di-
Yiding neither N (L)@ nor N(L), and 0eEN(L)" "B ' —=N() oL,
hen rank L is even and

A
f,v: |: 1". ] with Ak=[2ak : ]
A 1 2¢

Jor some ay, c,€Oy; furthermore,

_fo if f(B) > 1and a,c, ¢ POy for some k,
2, (e b)) = {N (BY"2  otherwise.

Because of this possible degeneracy of the sum

b

el=0(x)|,

Y need to strengthen our conditions on d. We¢ could be very crude and
uire that d be relatively prime to 2; however the following approach,
beit a bit tedious, is more refined.

4
Acta Arithmetica 54.3

xel'fPL’
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DernITION. Let P be a prime dividing 2. We define a normal form q on
L/BL ~ Ly/PLg as follows: q is given by the upper triangular matrix (g;;) where

ql'j= B{xh x}) ]f I<}$
0 ifi>j
where {x,, ..., x,.} is any O/$-basis for L/BL and the g;; are considered as
elements of N (L)/BN (L)~ N(Lg)/BN (Lg). Then we define

q(x) = x'(qy) x
where x is identified with the corresponding coordinate vector. (As discussed in
[15], ch. 9, §4, this normal form is independent of choice of basis.) Following
Sharlau, we say that g is weakly metabolic if there is a basis of L/L such that

D :
with respect to this basis g is given by a matrix of the form [ 0 é] where D is

a diagonal (m/2)x (m/2) matrix and I is the (m/2)x(m/2) identity matrix.

Now we define another ideal S (L) which we use to replace the ideal A4~ (L)
from [6].

DermniTioN. For a lattice L of even rank, we define the ideal S(L), which
we call the stufe of L, to be the ideal generated by A" (L), the level of L, and all
primes P which satisfy:

1. B|2;

2. f(P)> 1; and

3. L/BL is not weakly metabolic.

For a lattice L of odd rank, we define S(L)= A (L).

We have already seen that when P divides 2 but not 4" (L)d or N (L) then
rank L is even. We now prove a stronger statement.

PROPOSITION 3.5. For L a lattice of odd rank we have 4|.A4"(L).

Proof. Consider the decomposition of Ly into unary and binary lattices

Lg—_"JlJ. e J“Illﬂ‘i'l))'Z'
Without loss of generality, assume J, is unary; thus
2a, b
J,~(2a,) and J,n_-[b: 2:,‘] for k> 1

with a,, b, c,€ N (Ly). Let e = ordg N (L); recalling that L% is given by the
matrix A~' where Ly~ A, we have

1
i EE‘%E N (L§) = N(L*) Og
1

and hence A (L)Og=N(L*)"'N(L) 'O03<40y. »
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We now define an action of matrices on functions on 3#".

a b
DErFINITION. Let 4 = [c d]eGL§ (0) = {AeGL,(0)| detA>0}. An

automorphy factor for A is an analytic function ¥ (t) on #" such that

N(ct+4d)

/N (det 4)

Where the s_ign is independent of . The collection of such pairs (4, ¥ (1)) forms
a group with multiplication defined by

(4, ¥, ())(B, ¥, (z)) = (4B, ¥,(B1) ¥, (v)).
For a function f on #" and keiZ,, we define the slash operator by
S@|[(4, ¥@)], = ¥ (@)~ (41).
When ke Z, we write f (r)I[A], to mean f (7)| [(A m‘w))l (where we
YN (det A)
agree to take /N (det A)e R,). Notice that

SO|[A4, 2, @)|[(B, ¥.()], = f@)|[(4B, ¥, (Br) ¥, (x))],-
We also define

(P@) =+

O(3,7) =Y e(2x*1)

xel

Where we consider the ideal 3 to be a lattice with the quadratic form given by
Xi~2x2. For any Ael,(43%0, 37207 !) we define

Fio (A, e(3, A'r))’
(3, 1)

and for J =40 we define the group
[p(33%0,37207") = {A] Ael,(I3*0,3I 207 Y)}.
PROPOSITION 3.6. Let 3 and 3 be fractional ideals, and let

b
A [‘: d]EFuHS" 83,3720 NI, (4320, 3207 Y).

Then 4 is well-defined: that is,
| 0(3, A1) _ (3, A1)
03,17 63,1

F urthermore,
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Proof. Using the Chinese Remainder Theorem we can write any matrix

_|¢é b]_ 2 -245-1
A_[c d]_ro(em a,37%07Y)

-l L 2]

where fe3I 207 'nJ 207", yed4I?0n 43?4, and d' =d (mod40) with 4’
totally positive and relatively prime to 40, to 3, and to J. The result now
follows easily from Propositions 3.1, 3.2 and 33. =

Now we prove

THEOREM 3.7. Let L be a lattice of rank m.

1. If m is even, then @ (L, 1) is a modular form of uniform weight m/2 with
character y for the group I'o(S(L)N(L)3, N(L)"'0™'). The character x is
a quadratic character modulo S(L); if d > 0 and d is relatively prime to S (L)d
and to N(L) then '

as a product

2(d) = [T{(= 1y disc Ly | B)™**".

P|d
2. If m is odd, let 3 be an ideal such that N(L)S3* and let
3 = S(L)N(L)3~2; then O (L, 1) is a modular form of uniform weight m/2 with
character y for the group I'((33%0, 3 28"). Here y is a character modulo
S and if d > 0 and d is relatively prime to 30 and to 3 then

1(d) = [T (@disc Ly|P)™"**".
Pld

Proof. First we suppose that rank L is even. For de @ such that d > 0
and d is relatively prime to S(L)é and to N(L), define

@ = [ (1 dise Ly 1 )"
Pid

ab
c d

Remainder Theorem we can write

1A ofe b7
A_l:o I]li}' I:I[C’ df]_AIAZAB

where A,, A,, A,el,(SILN(L)d, N(L)"187Y), & >0, d' =d (mod S(L))
and d' is relatively prime to S(L)d and to N(L). Then the transformation
formula (2) and the preceding propositions show that

O (L, D|[Alm2 = x(d) O (L, 7).

Now choose A =[ ]eFD(S{L}N(Lja, N(L)~'907'). Using the Chinese
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We want to show that y is a character modulo S(L). For this we define another
function @ by

@(b, d) = x(d+by)

where de®, be N(L)™' 7" such that bN (L) 4 is relatively prime to d, and y is
any element of S(L) N (L)0 such that d+by is totally positive and relatively

prime to S(L)J and to N(L). Since ©(L, r)|[|:_: {:]:I = @(L, 1) for any
m/2

YeS(L)N (L) 0, w(b, d) is well-defined. To show w is indeéendcnt of b, we take
b’ to be another element of N(L)"'d7! such that d is relatively prime to
b'N(L)é. Then we choose y, y € S(L) N (L)@ such that by = b'y' ebS(L)N (L)
Nb'S(L)N (L) 3 such that d+by > 0 and d+ by is relatively prime to S(L)d and
to N(L); thus

(b, d)=x(@+by) = x(d+b'y) = 0¥, d).

H(?ncc we can define x(d) = w(b, d) where d is any element of @ relatively
Prime to S(L) and b is any element of N(L)"'8~! such that bN(L)d is
relatively prime to d.

_ Now we only need to show that y(d) = x(d') whenever d = d’ (mod S(L)).
Using the Chinese Remainder Theorem, we choose b, b'eN(L)"'9~! and
b Y e€S(L)N (L)@ such that d is relatively prime to bN(L)3, d+by is rela-
tively prime to b’'N(L)d, and byS(L)™! is relatively prime to b'y. Then
S(L) = Oby+0Ob'y, so

d=d+aby+o'b'y
for some a, «’€@. Thus

x(d)=ow(b, d) = w(b, d+aby) = o, d+aby) = 0 (V',d) = x(d).

b
5 d]e ry(3324,372074).

If d is totally positive and relatively prime to S(L)d and to 3 then

9(L7)|[j]wz=( 3 e(gzxz))—m Y e(gQ(x))Q{I_., 7)

xe3/d3 xeL/dL

b, -1 b
=| X e 72 Y e(EQ(x))G(L,r)
xel’[dL’ xeL/dL

"f'hel:e L= {(xy, ..., x,)| Xy, ..., x,,€3} is the lattice with the quadratic form
Q' given by Q'(x,, ..., X,) = 2x2+ ... +2x2. Propositions 3.1, 3.2 and 3.3
now give us '

O (L, 1) [A1w2 = [] (disc Lg- disc Ly| B)™* O (L, 7)

Pl

i ﬂ(z disc Lg|P)"* @ (L, 1).
d

Now suppose that rank L is odd. Take 4 = [a
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The same procedure used in the case that rank L is even also yields the
statement of the theorem in the case that rank L is odd. =

Remark. When K = Q and L is integral, Theorem 3.7 is Schoeneberg’s
Theorem (see Theorem 20 of [11], p. VI-22) together with Proposition 2.1 of
[17] (p. 456).

4. The Hecke operators for integral weight. We begin by giving a global
definition of Hecke operators. For the case of trivial character this definition is
equivalent to that of Eichler [6].

DeFINITION. Let 3, and 3, be fractional ideals such that 3,3, = 0. For
keZ, and y a character modulo 3, 3,, let #, ([, (3,, 3,), x) denote the space
of modular forms of uniform weight k for the group I'y(3,, 3,) with character
x- Let

c d

For B a prime ideal not dividing 3, 3,, choose g P— P such that ¢ > 0; let
7§ be the ideal such that o0 = BJ. Let {A;} be a set of right coset
representatives for

-1 o 0
r 33 (nese 3 sae[8 " Hnenslg 1))

Then for k a uniform integral weight and y a character modulo 3, J,, W¢
define the Hecke operator

To(B. To(3y, 32): Ma(To(S1 S2), 1) = Ao (Fo (3B, 3, B), 1)

r,(3,,9,)= {[" b]e [y(3,,3,) a=d=1(mod 3, 3,)}.

by

0 1o
SOIT(®, ro(su32))=Nf°mt_1zj:f(f)||:[g I]Aj[ﬁ 1]]

(Notice that this definition is independent of the choice of ¢ and of coset
representatives {4}.)
We define the operator

Ve(B, I'o (34, 3:): "#k(ro(sl' 3, X)"’-ﬂk(ro(%_zgl' B2 3,), I_)
by
S(@| V,‘(‘B, Iy(3, 32)] = f(DI[4],

where A is any element of {[: z]er, (B~'3,, B3, deﬁB}. (Notice that

this operator is independent of the choice of A4.) For e > 1, we inductively
define the operators

V(B To(S,, 3)): M(Fo(S0, o), 1) > M (To (B3, B3,), 7)
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by
S @IV, To(31, 3)
= S@OIVi(B, To(3y, IMV(P To(P723;, P23y).
We now inductively define the Hecke operators’
T (B Io (34, 3)): M (T34, 3)), X)_' M (To (P23, B30, 1)
by
S @| LB o3y, 3))| (B, To(B 3y, B3,)
= fOIT (B, To(34, 3))
+N B @IV(B, To (31, 3T (B, Lo(B23,, B23,).

(It is understood here that T(P°) is the identity operator.)

Finally, for 3, and J, relatively prime integral ideals which are also
relatively prime to 3, 3,, we define

f(r.“]:(:;l 32, rO(Sh 32))

= S OIT(315 To (D15 INT(I2s Fo (31 34, 31 32)-

For simplicity, we shall often refer to the operators defined above as T'(3J)
and V(). :
We now prove the following useful proposition.

PROPOSITION 4.1. Let- B be a prime ideal not dividing 3,3,, and let

A=I:: 3] be a matrix such’that aeP~!, beP3,, ceP!3,, dePB,

d=1(mod 3,3,), and det A = 1. Then f (1)|[4], = f )|V (P).

Proof. Let B be a matrix giving the action of V () (i.e. B is a matrix such

that f(2)|V(P) = f(2)I[B),). Then AB™'el';(3,, 3,) and hence
S@OIAB™ ], = f(z). m

. Now we prove some multiplicative identities among the operators defined
In this section; these identities imply that the operators T(J) are well-defined.

PROPOSITION 4.2. Let B, and B, be distinct prime ideals not dividing
3, 3,. Then:

L f@IV(BIV(B,) = fV(BIV(B,);

2. f@ITBINV(B) = fOIV(BIT(By);

3. S@ITBIT(B,) = SOIT (BT (B,);

4. fOITPBNV(B) = SOV (BT (By);

min{a,b)
5. f@OITPBDNTE®BD = Y NEB)* VL@V (BT (P2
e=0
where a, beZ ,.
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Proof. To prove the first four identities we make prudent choices for our
coset representatives; the final identity then follows from the fourth.
First, taking Ael,(P;'3,, B, P23I,), A'el, (B:'S3,, B, B,
Bel', ('3, B, P,3,). and B'el, (B5'3,, B, B, 3I,) such that the lower
right entries of 4 and B are elements of 9B, and those of 4’ and B’ are elements
of PB,, we get
S@OWV @AV (By) = f@OILANIAL = S @IBLI[B L = £ @IV (B)IV (B.)-
Next, let {4;} be a set of right coset representatives for
ry(Pr'Bz23,, B, BE3)/r, (B223,, B, B3 3).
With A’ as above, {4’ A4;(A)™'} is a set of right coset representatives for
r,(®:! S0 B33y By 3);
hence

F@IWV(BLI T(B,) = f(t)l[A']kIZ[Aj]k
. J .
=f (ﬂl? [4'A;(4) "W [AT = f@IT(BIV(B,).

Now let {4;} be a set of right coset representatives for

Iy(Br 3y, By B2 3L (3,, BB, 3,

and let {B,} be a set of right coset representatives for
Fy(P3'35, By B3/ (34, By B, 3).

;[(;t:cn {4;B;} and {B, A} are both complete sets of right coset representatives

Ty(Br B3, By B3T3y, BB, 30,
and so f()|T(P)IT(B2) = f(@)IT(BIT(B,). '
Finally, take 4 = ‘: 3] such that ae P74, be P?3,, cePr'3,,deP,»

d=1(mod 3, 3,), det 4 = 1; let {4} be a set of right coset representatives for

Iy (B0 3y, IS (B2 3y, BT,

and let BeTI', (P7%3,, P} 3I,) be a matrix whose lower right entry is in Pi
Then {4A4;B™'} is a complete set of right coset representatives for
TIP3y, By ST (3, B, I,), giving us the fourth identity of the prop-
osition. m

Remark. It is really an abuse of the language to call the map T(3) an
operator since its range is not contained in its domain. However, we can view
T'(J) as an operator via the following procedure. We say two fractional ideals
3 and J are equivalent (written I ~ J) if IF~* = a® for some o€ K with a > 0.

There are a finite number of equivalence classes (see Cor. 1.6 of [8], p. 112);
we let 3,, ..., 3, represent the distinct classes. Fixing 3 and integral ideal,
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X a character modulo 3, and k a uniform integral weight, we form the direct
Product

H (3, 0= ® -ﬂx(ro(s&, 3 ‘); Z)-
i1=1

Whenever 3, and 3, are fractional ideals with 3,3, = 3, we can find aeK
With « > 0 and some [ (1 <!I< h) such that the map

rosofs 1]

defines an isomorphism from #,(I',(3,, 3,), x) onto 4, (o (330 301, 2).
Identifying such isomorphic spaces, .#,(3, ) becomes a space which is
Invariant under the action of T(3) (where T(3) acts on each summand of
“#,(3, x) and J is relatively prime to J). Notice that if K = Q, these operators
are the usual Hecke operators on 4, (3, x).

5. The Hecke operators for half-integral weight. To define these Hecke
Operators, we mimic as much as possible the definition given by Shimura in the
Case K = Q (see [17)).

DErFINITION. Let 3 and J be fractional ideals such that < 40; let P be
3 prime not dividing J. Choose g€ —P? such that ¢ > 0 and g is relatively
Prime to 2; write o = PJ. Set

-3} ova)
0 1) YN/
and let {4,} be a set of right coset representatives for
F (3320, 3720~ Y[I (3320, 37207 Y)n &1 T, (3320, 372074 &].

For ketZ,—~Z,, x a character modulo J, and fD) e, ([ (3320,
3725-1) 1), we define

SOIT(B, [5(33%0,37207Y) = NBF ' T f@IEA, ¢ 1),
i

PROPOSITION 5.1. With the notation as above,
F@IT(P, [ (3328, 37201 = 0.

Proof. Notice that

Fi (330,320 )nE 1,330, 37207Y)¢

\f@da_mamﬂ

e, 1) 63, 1)

= {zer,(g* 39,3729
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-1
where A¢ = ¢ D A g= 0 . For A= @ B with d > 0 and d relatively
01 0 1 c d

prime to 49 and to 3, (2) shows that

T
9(3’ ”E) 83, 4ty
03,170 63,7
Since we can find such a matrix 4 with (g|d) = —1, we have that

(M (3928, 37207 )& (3320, 37207 1)) =2

if and only if (¢|d) =1.

where
-1

F=F1(3’326,3—=a—‘)n[§ ﬂrl(sya, s-za-‘)[g (1}]

Let A, and A, represent these two right cosets. Letting {B} represent the right
cosets of I in I7, (3 320, I"2071), we get

N@®'*f @IT®) =Y f@)I[EA, 3,5"].+§f(r)|[632 B, 1,
J
= Zf(t)l[éﬁjé"].—?f(r)l[cﬁ,t' k=0 =
j

This proposition motivates the following

DEerFINITION. Let 3 and J be fractional ideals with J = 40; let 3, be an
integral ideal which is relatively prime to 3. Choose g€ 3, such that pJ;' 18
relatively prime to 23,; write o0 = J, J. Set

0’ 0 1
e~(5 1] W)
and let {4} be a set of right coset representatives for
FL3@ 0, I 207
AT (3@ I?0, (I 207" )N I, (33%0, 372077)¢]
Then for ke3Z, —Z,, we define the Hecke operator
T(3%, 63370, 37207Y): M, (F6(33%0.37207"), %)

— M, ([o(J(T)23%20,(F)*3I7207), %)
by
FEIT(32, T (3320, 372071 = NS 2f @I [E4,E7]..
J

One can verify that this definition is independent of the choice of ¢ and of the
choice of coset representatives {A4}.
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Although these maps T'(J?%) are not truly operators, the procedure used in
the previous section can be used here as well, where the map

fGy—f <ﬂl[([g ?] ﬁ)l

defines the appropriate isomorphism of spaces of modular forms.

6. The action of the Hecke operators on @ (L, 7). We now study the effect
of the operators T'(B) and T(P?) on the theta series @ (L, ) and relate these
effects to the structure of L/BL. First we prove

ProrosiTiION 6.1. Suppose L has even rank m. Then for ‘B a prime ideal not
t'fl'viding 2S(L), O(L, ))|[V(P)=eN(P) ™*O (PR 'L, 1) wheree = +1 if L/BL
is hyperbolic as a quadratic space over O/PB, and ¢ = —1 otherwise.

Remark. We view L/PBL as a quadratic space over @/ by choosing
@ > 0 such that N (I¥) = aN (L) € ¢ but B ¥ N (I%); we then identify L/PBL with
/I via the identity map on L/BL.

Proof Let A= I:z z] be a matrix such that aeP, be P ' N(L)"187 !,
cePS(L)N(L)d, de® with d> 0, d =1 (mod S(L)) and det 4 = 1. Then
O (BL, DILA™ ' Jm2 = O (BL, 1)V (P);

We show that @ (L, 1)|[A]w: = eN(P)"/? O (BL, 7).
Calculations similar to those used to prove (2) give us

R

xpeL/dDL xePL d- +e
T

and using (1), j-mnj2

l mf2
- _N@) ™ N(a-
Jowr @ ( r“)

x Y e(—EQ(bxo+x))e(—Q(x}l).
xe(PL) d %
. xoelL/dPL
For any xe(PL) = B! L, bx, + x runs over B~ L/dL as X, runs over L/dBL.

Also, for xe B~ 'L and yedL we have %Q(x+y) = EQ(x) (mod 227); thus

Q(L, a_f+_b)
ct+d

e b

1,y 1
= -m/2 st s o
Joan @ N(dr“) ,,,ef.zme(dg("“’)m%,"( Q(""r)
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and by (1),

=N(@ ™*N (g).ﬂ N@™* ¥ e(g (0] (x)) ©(PBL, 1)

xeL/dPL
and by Proposition 3.1,

. d\™2 b b i
=N@ "'“N(;) NE™ Y e(EQ(x)) 3 e(EQ(x))G(‘BL-‘}

xePL/dDL xedL/dPL

Theorem 3.7 shows that

N@™* % ( (x)) (@ (BL, 7)I[A1m2)/€ (BL, 1) = 1

xePL/dPL

(since d = 1 (mod S(L)) and S(L) = S(BL)) while Proposition 3.3 shows that
> e(30@)- T c(aoc)
xeL[PL

xedL/dBL
= ((—1)™? disc I’§|B) N (B)™"

B {+N (Py™2  if 24P is hyperbolic,
| =N(P)y™?> otherwise.

(Recall that a regular quadratic space over a finite field is completel)'
determined by its dimension and its discriminant, see [12], § 62.) Since L""/‘BL
is hyperbolic if and only if L/L is, the proposition follows. =

We use this in proving

PRrOPOSITION 6.2. Let L be a lattice of even rank m and let B be a primé
ideal with B Y 2S(L). Then

O (L, )T
-t N(rr'"“(mmr'“ 3 e(—Q(x)l)HN(w-l ( 0 ))
720 Z : P

Qx)eBNIL)
Proof. Let {c;} be a set of coset representatives for the quotient group
P~ S(L)N(L)3/S(L)N(L)d; then

oL, r)lT($)=N(ﬂ3)W2’-1():e(L r)l[[l 0]] +o(L t)IV('EB))-
] ¢y 1] jmp2
Using (1), we get

i—m,‘z

26 "'[B, (1)]] - 2O E Ee(-c,00)e ( Q(x}-i-).

The proposition now follows easily from this last equation and Propositio®
6l =

Similarly, we obtain
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PROPOSITION 6.3. Let L be a lattice of even rank m, and let B be a prime
ideal with B J2S(L). Then
;=mnf2

O (L, )IT(WIT(P) = :/mN(z) '"”(N(&B)" L e(-Q(x)%)

Q{x}eﬂlzh" (17

+eN(P)Pma=t N e(—Q{x);)

xePL _
Q(x)eV3N(L)

+N (Byem-1 z_e(—Q(x}l)

xePL

+N(BP"2 Y e ( 2(x) ))

xe92L
Where ¢ is as in Proposition 6.1.
Now we consider the case when rank L is odd.

PROPOSITION 6.4. Let L be a lattice of odd rank m. Choose J to be the
Smallest fractional ideal such that N (L) < 3%, and set J = S(L)N (L)3™ 2. For
B a prime ideal not dividing 3,

—mu,rz

—m|2 2 — _l._)
mwm (N(‘B) Y e( Q-

xel _
Q(x)eP2N(L)

N (@O (— 12 disc(BF LiglB) Y (Q(x)gzm)e(—c(x)})

xePL _
QUxePAN(L)

O(L, 1)|T(P*) =

NP 3 o(-0m}))

xeP2L

Where e = ordg 3 and geK such that ordggo = —1+o0rdy3d. (To evaluate
E!}Q(x]gzl‘n), we identify Q(x)o%+ POyeOy/POy with its canonical image in
/B.)

Proof. Let {y;} be a set of coset representatives for JP~23*9/JI*9,

and set 4, = (:.: 0] Using Theorem 10.3 of [8] (p. 182) we choose de @ such

that d » 0,d = 1(mod J) and d@ = B, P with P, a prime ideal not dividing
OB nor 3. Let {c,} be a set of coset representatives for (3P~ 232 /IP ! 325)*
Such that each c, is relatively prime to P,; then by the Chinese Remainder
eorem we can find a,€ 0 and b, e B> I ™20~ such that the determinant of
B, - [‘:" !:;] is equal to 1. Now we choose dePB? such that 4> 0,
t -
=1(mod J) and 6P~2 is relatively prime to d and to J; we again
Use the Chinese Remainder Theorem to choose ae® BfeP>I 287! and
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ye€3B 2329 such that B = [: g] has determinant 1. Then

O (L, 1)|T(P?)
= N(PB)™2"2(Y. O (L, D[4 w2+ Y. O (L, DI[Blmz+ O (L, DI[Bny2)-
J k

Using the techniques previously employed, we get
'l!lll /2 1
O L, )[A]m:2 = L NP = 2
%‘, (L, DILA 12 N CUEDN e( Q{x)T)

xel _
Q(x)eP2N(L)
and

jmn/2
(L, T)I[E]m;z—N(“B)"‘\/—LN(T)_"'” é:z:. ( Q)= )

Tedious calculations using our previous techniques yield

e(L, T)I[El]mfz

—mz

= NI S N (07 (= 1) 219) 2disc Lo, o

o BN ) o)

— ye L

If xe B, BL such that Q(x)e B> N (L), then welhave %Q (x)€2871; in this case
the techniques of Proposition 3.3 yield

(-], & ) 00) 507)-

where ne€ B~ P, I—P, I and ve2P Y28 T Let xe P, PL such
that Q(x)¢ %P N(L). Choose geB' *“*". Observe that

(g (”*" !m)) = (—¢.e* VD)

since (b, ¢,|®B) = 1. Now,
(Q(x)e‘zv‘zl‘n);e(—%g(x)) T e(%zﬁ)

aeP~ 19T/ PT

g o) 50
=§( Q(x)cqﬂs) ( dQ(x))“;m (2%).
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As k varies, —Q(x)c,/v runs over (2P, /PP, 1)*, thus

Z(—mlm)e(—ﬁg(x))= )3 (")(m‘m 5 e(ﬁ)
k L4 d BePo/BPo BePo/PTo d

Proposition 3.3 gives us

2 (B0 5 o(2) - amnem:

BePo/$Po ae0/P
$0 we now have

;—mnj2

@(L, Bl.,=N ""“'52_!.___” —-mj2
; (L, DI[Bilm2 (‘B) \/m (7

x((— 1)~ 12| ) (2 disc Ly, | Py)
% F, (2Q(x}9"'v‘zi?ﬁ)e(—Q(x)%)-

Q(x;:‘l?’lf\f(f-}
Finally, we observe that d is the lower right entry of some matrix A4, in
I (332 B~2¢0, 32 P20 ") where e = ordy J. Thus by Theorem 3.7 we have

OB L, DI[A w2 = (2disc(P ¢ L)y, |1Bo) (2disc(P°L)g|P) O (B °L, 1)
=@(P°L, 7).
Hence

(2disc Ly, |Bo) = (2disc (P~ L)y, [Bo) = (2 disc(P~L)y|P). =

7. The action of T(P) and T(P*) on O(L, 7) in terms of sublattices of
L. To realize @ (L, 7)| T(P) or O (L, 7)| T(P?) as a linear combination of theta
Series associated to sublattices of L, we examine particular sublattices of
L which we define as follows.

DEerINITION. Let L be a lattice of rank m and let P be a prime ideal not
dividing 2. Consider L/BL as a quadratic space over @/ by choosing e K
Such that a > 0 and aN (L) € O with ordgaN (L) = 0; then with the quadratic
form induced by @, the space I2/PBIZ becomes a quadratic space over 0/B. We
Say that a sublattice I’ of L is a P-sublattice of L if BL = I’ and (L)*/PI* is
4 maximal totally isotropic subspace of I%/BL. (Notice that this definition is
Independent of the choice of a.)

If L is a P-sublattice of L and L' is a P-sublattice of L with
dim ['(PL A I) = dim I/PL, then we say L' is a PBZ-sublattice of L.

We now describe which vectors of L these ‘8-sublattices contain in the case
that 9 42S(L). Proposition 2.1 implies that I/PBL is regular whenever
By S(L), so the maximal totally isotropic subspaces of L/BL are of dimension
®qual to the Witt index of I5/BL (see Ch, III, §6 of [2]).
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ProposITION 7.1. Let B be a prime ideal such that Py S(L); let
m =rank L and let o be as in the preceding definition. If E/BL is anisotropic
then BL is the only P-sublattice of L. Suppose that I5/BL is isotropic; then
N(L)=BN(L)
and
S = {S (L) if E/‘l&..(‘,‘ is hyperbolic,
BS(L) otherwise.
For L' a B-sublattice of L, we have
N({L)=P*N(L) and S(L)=S(L).
(Notice that IE/BI* can be anisotropic only if m=1 or 2)

Proof. First, observe that it suffices to prove the assertions locally at .
Also, replacing Ly with I% if necessary, we can assume that N (Ly) < (. Using
the invariant factor theorem (see 81:11 of [12]) we can find x,, ..., X,,€ Ly such
that

L‘;=@$I1@...@@$xm
and .
Eg=m1x!@... @QIMXM

for some Og-ideals A,,..., A, with WA, ,. Since PL< L, we know
POy < A, < O; furthermore, Ly/BLg =~ L/PL and Lq/PLg ~ L/PL (via the
canonical map x + PL—> x+PLy) so we must have A, = ... =W, = O and
Wiy = ... =AU, = POy where k = dim L/PL.

Letting X; denote x;+%BLy, we have that Ly/PLg is spanned _ by
{X1, ..., X,}. We can extend this set to a basis {X,, ..., X, Jks1s -+ I} 10T
Ly/BLg such that with respect to this basis

01,0
Ly/BLy~ |I, 0 0 | M, (0y/B0y)
004

where I, is the k x k identity matrix and A is an (m—2k) x (m—2k) nonsingular
matrix (see Ch. 1, §4 of [10]). Let Be M,, (0q/POy) be the matrix which maps the
basis {X;,..., X} t0 {%,..., X}, Fk+1, -++» Jm}- Multiplying 7, by a suitable
scalar from Og/B0Oy, we may assume that BeSL, (0y/P0y). Now we have

0D O
Ly/BLy~ | D 0 0 | eM,, (0yB0y)
00 4

with respect to the basis {X,, ..., X;, Jx+1, ---5 Jm}» Where D is a nonsingular
diagonal k x k matrix and A is a nonsingular (m—2k) x (m—2k) matrix. The
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proof of Lemma 1.38 of [16] (p. 20) implies that we can find B e SL,,(Og) such
that B’ transforms the Og-basis {x,, ..., x,,} into an Oy-basis {x}, ..., X} such
that xj—x;e PLy for 1 <j <k, and xj—y;€PLy for j > k; thus

Ly= 0,56 ... ®0yx,
and
.Eg = 0$x,l® s @@.ﬂxi@‘ﬂa",xi.,.l@ = @iB@gx:,,.
Hence, taking e B! 03, we get
*DO

(Le)/B(Ly)* = | D 0 0| eM,, (0y/P0Oy)
000

With respect to the basis

{xi+BLg, ..., Xk +PLy, 07 X441+ BLg, ..., 071 x}, + BLy).

(Notioe that (Lg)?/ (Lg)® has Witt index k and a radical of dimension m—2k.)
Since Ly is unimodular,

vol (Ly) = P2m= 2k yo] (Ly) = p2m- 2k 0q
(see 82:11 of [12]). We also have that

Ly =CBrseees Bud
for some B, ..., B, e BOgy. Thus vol(Iy) = B, ... B,. Also,
(B‘D)QI‘B(L'@)G = (Qﬂh wany Qﬁm)'

Since this space has a radical of dimension m— 2k, it follows that exactly m— 2k
of the f; are in PB>0g, so N(Lg) = POy. We know that (Ly) ~<B1Y, ...

-+y Bm 1>, which means that

o B0y ifm =2k,
N((L"))"{qr’@,. if m > 2k.

A similar analysis shows that for I’ a P-sublattice of L,
Ly ~{ay,...,0,)
With o e B2 0, for each j and vol (L) = P™ Og,. Thus I% is P2-modular, so by
Proposition 2.1, N (Ly) = P20y and N((Ly)) = P20y, u

PROPOSITION 7.2. Let L be a lattice of rank m and let B be a prime,
?34" 25(L). Let a be as in the preceding proposition, and let k denote the Witt
"dex of I/PL.

1. If k =0 then the only B-sublattice of L is BL.

2. Suppose k> 0. For xeL, x is in a PB-sublattice of L if and only if

1- Acta Arithmetica 54.3
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Q(x)e BN (L). If x& BL then x is in every P-sublattice of L, of which there are

(NEBF1+1) ... (NB°+1)  if m=2k,
(NEBF+1)... (N(B)'+1) ifm=2k+1,
(NEBFH +1) .. (NB)P+1)  ifm=2k+2.

If xeL—PBL and Q(x)e PN (L) then the number of P-sublattices of
L containing x is

(NEBF2+1) ... (N(B)°+1)  ifm=2k,
(NEBF ' +1)... (N(B)' +1)  ifm=2k+1,
(N@BY+1) ... (N(P)P*+1) ifm=2k+2.

Proof. We construct all the P-sublattices of L by constructing all the
maximal totally isotropic (nonzero) subspaces of L/BL. To ease the notation
we assume L has already been appropriately scaled so that N(L)< 0 and

PLN(L) .

We know by Proposition 2.1 that L/BL is regular. If L/BL = (4, B) L U
where A is totally isotropic (nonzero) of dimension j and 4;® B, ~ jH (wher¢
H denotes a hyperbolic plane — see [2]), then the Witt index of U is k—J-
Using the formulae from § 6 of [2], we find that there are ¢ (m, k, j) isotropi€
vectors in U where

(NEBF/=1)(NB)F " +1)  if m =2k,
o(m, k,j)=< N(B>** -1 if m=2k+1,
(N7 +1)(N(BFI—1)  if m=2k+2.

Thus there are N (PY ¢ (m, k, j) isotropic vectors in Aj —A;. Using inductio?
on j, we find that there are
N(B)... N(B to(m, k,0p(m,k,1)... o(m, k, k=1)

ways to construct a basis for a totally isotropic k-dimensional subspace A’
Hence there are
NP ...N® om,k 0)omk, 1)... o(m k, k—1)
(N@BF—1) ... (N(BF—NBF™)

such subspaces. m
We also have

ProposiTION 7.3. Let L be a lattice of rank m and let ‘B, o and k be as in the
preceding proposition.
1. If k=0, then L is the only P*-sublattice of L.

Hecke operators on theta series 237

2. Suppose k > 0. Then each B>-sublattice of L is contained in exactly one
P-sublattice of L. For xeL, x is in a P-sublattice of L if and only if

Q(x)e P2 N (L). If xe B2 L, then x is in every P*-sublattice of L, of which there
are

N NGB (NP +1) . N+ fm=2k+1,

{N(‘.B)""---N(‘J)}"(N(‘B)‘“+l)...(N(‘.B)°+l) if m = 2k,
N} NPO(NPBF +1) ... (N(BYP+1)  if m=2k+2.

If xe L—BL and Q(x)e P> N(L), then the number of P>-sublattices of
L containing x is

NP2 NP (NEBF2+1).. (N(B°+1)  if m=2kand k> 1,
N@BF 2. .NPB°(N®B1+1)...(NB)+1) ifm=2k+1and k> 1,
N(BE2... NP (NB)+1) ... (NP2 +1) ifm=2k+2and k > 1,
1 otherwise.

If xe BL—PB? L and Q(x)e B> N(L), then the number of P2-sublattices of
L containing x is

N NN 2+1) ... (N(B°+1)  ifm=2k,
N(PBF-1... N(‘B)"(N(‘B)""+l) (N($)+l] ifm=2k+1and k > 1,
N@BY ' ...NPB°(NBF+1)...(NB)?*+1) - ifm=2k+2and k> 1,
1 otherwise.

If xe BL—P*L and Q(x)¢ P> N (L), then the number of P2-sublattices c;f
L containing x is

0 :fm=2k,
N N® (N +1) . (N +D) i m=2k+1,
NP .. NP)O(NB)+1)... (N(B)+1) ifm=2k+2.

Proof. As in the: proof of Proposition 7.2, we assume N(L) < @ and
OrdgN (L} = 0.

Fix a PB-sublattice I of L. Then for pe B~ ! — @ and D some nonsingular,
diagonal k x k matrix, we have

* DO
(Lp)*/B(Lg =~ |[D 0 0

000
With respect to some basis {y, +BLy, ..., yu+PLy} of (Lg)?/P (Ly)* where
{y,+BLy, ..., e+ BLy, Vs 1+ BLyg, ..., 0¥m+ BLy} is a basis for Ly/PLg.

So the PB2-sublattices of L which are contained in L are in one-to-one
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correspondence with the maximal totally isotropic subspaces of (Lq)?/B (Lp)
which have trivial intersection with the subspace {4+ PBLg, .-
vvs Y2+ PLg)>. Notice that each of these maximal totally isotropic subspaces
must contain the radical of the space (Lq)?/P (Lg)°.

Suppose 4; is a totally isotropic j-dimensional subspace of { y, +BLg, ..
«oes Yo+ BLy) such that 4,0 (ypsy+BLy, ..., yu+PLy) = {0} and

(y1+BLy, ..., yu+PLy) = (4;®B) LU
where A;®B;~jH. It follows that U ~ (k—j)H, and hence there are

N (NPBY-1)

isotropic (nonzero) vectors which are in 4} but not in A4; or in { yy 1+ PLy, .-
«vvs Y+ BILe). Thus an argument similar to that used to prove Proposition 7.2
shows that there are

NP NP2 NP
P2-sublattices of L contained in each P-sublattice I' of L.

Suppose x € BL— P2 Land Q (x)e P> N (L). Then x is in a P2-sublattice L'
of L if and only if gx is in the PB-sublattice L of L which contains ’; in fact, if
gxeL then x is in every ‘P-sublattice of L.

Now suppose xe BL—P2 L and Q(x)¢ P> N(L). Then ox+ PL is aniso-
tropic in L/PL, so x is in a P2-sublattice I'' of L if and only if ox+ PL is
orthogonal to L+ BL in L/PL where L is the P-sublattice of L which contains
I’. Furthermore, if ox+ ‘L is orthogonal to L+ AL then x is in every
B-sublattice of L. The P-sublattices I’ of L with ox + BL orthogonal to I’ + BL
are in one-to-one correspondence with the k-dimensional totally isotropic
subspaces of (ox+PBLg)* S Ly/PBLy; Proposition 7.2 tells us the number of
such subspaces. m

Nov' we combine the results of this section with those of the preceding
section to get the main result of this paper. For K = Q and m = rank L even,
this result is the same as Theorem 21.3 of [5]; see also [13]. It is interesting t0
note that in Lemma 2 of [14], the following theorem is implicitly assumed in
the case that m = 3.

THEOREM 7.4. Let L be a lattice of rank m with norm N (L) and stufe S(L);
take 3 as in Theorem 3.7. Let ‘B be a prime such that B ¥ 2S (L) if m is even, and
PASWIYNL)I™2 if m is odd. Take K such that &> 0, aN (L)< € and
ordgaN (L) =0; let k be the Witt index of I3/PI*. For xeL—PL with
Q(x)e PN (L), let A denote the number of B-sublattices of L which contain x. For

xeL—PL with Q(x)e P2 N (L), let » denote the number of P2-sublattices of

L which contain x. (Notice that by Propositions 7.2 and 7.3, . and » aré

independent of the choice of x.)
1. If m =2k (i.e. I*/BI? is hyperbolic) then
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OLIYITP)=21""'YO(B 'L, 1)
I

Wwhere the sum is taken over all P-sublattices L of L. Furthermore, © (L, )| T(P)
and ©(P~'L,t) are modular forms for the group I, (B 1S(L)N(L)d,
PBN(L) o™ ') with character y as described in Theorem 3.7.

2. If m=2k+1 then

O(L, 7)|T($?)

(N "2+N(P) ) O (B 'L 1) ifm=1,

=AN®B) ™% Y OB L, D+(N(P) "N (B) ™ 32)0(P1L, 1)
L

ifmz3

Where the sum is taken over all B*-sublattices L' of L. Furthermore,
O (L, 7)|T(P?) and ©(P~* L, 1) are modular forms for the group [o(P~25(L)
XN(L)a, P*I~207") with character y as described in Theorem 3.7.

3. If m=2k+2 (ie. Z/PBL is not hyperbolic) then

O(L, 1)|T(P?)

0 ifm=2,
TP Y OB AL, )— N (BF+NBF I —1)OPB L 1) ifm>4

Where the sum is taken over all P2-sublattices L' of L. Furthermore,
O (L, 9)IT(B?) and O (B2, 1) are modular forms for the group I, (B-25(L)
XN(L)d, B>N(L)"'d~') with character y as described in Theorem 3.7.

Proof. First consider the case where m = 2k. Due to our restrictions on
B, Proposition 2.1 implies that

L/BL~ Ly/BLy ~ Ly/PLy ~ 1/PL.
Then with Propositions 6.2 and 7.2 we find that

j—mnj2
O )T(P) =——==N@ ™*N(B)"*17' Y 6 (L,, 1/7)

V(L)

Where the sum is over all B-sublattices L, of 1. Now using (1) we get

oL, )T W) = i~ N(q:}“ﬂz—_\\’/‘% E‘)’ea,, r

Whenever L, is a P-sublattice of L, it follows from the invariant factor theorem
that L, is a P-sublattice of L. Hence

O(L, 1)IT(P)= l"‘)L:_:G(“B" 'L, 1)

Where the sum is over all P-sublattices L of L.
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An analogous argument using Propositions 4.2, 6.1, 6.3 and 7.3 proves the
theorem in the case that m = 2k+2.

Now we consider the case where m = 2k+1. Take e and ¢ as in
Proposition 6.4. Then for xe BL with Q(x)¢ P>N(L),

oxeoPLy = PeOoLy = P° Iy = Ly,
(Recall that by Proposition 2.1, Lg is N(L) Og-modular.) Hence px is
anisotropic in the space P~ °Ly/P' °Ly, and so
(disc (B¢ L)y[P) = (— )™ Q(ex)|P).
Now Propositions 6.4 and 7.3 yield the result of the theorem. m
Remark. In the case that m = 2k+2, we could use the methods used
above to write ©(L,7)|T(") as a linear combination of theta series

{@(P~1L, 1) Lisa P-sublattice of L} and & (B! L, 7). However, these theta
series do not lie in the same space of modular forms as @ (L, 7)|T(%).
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On Dirichlet’s theorem concerning diophantine
approximation
by

PeTeR THURNHEER (Orsay)

1. Introduction.

(i) Let a,, ..., o,, n=>2, be given real numbers. According to Dirichlet
there exist infinitely many integer points (&, ..., Sn+1)€ Z"*! such that

|ﬂ|él+ vew +uﬁé"+c"+l| S(max |Cvl)_"'
1€vEn

We will show that essentially this still holds, if for the approximation of
a,, ..., ®, one allows only integer points (&,, ..., ,+1) in certain subsets of
R"*!. In other words, we shall prove that the effectivity in Dirichlet’s theorem
can be replaced by a condition concerning the position of the approximating
integer points. '

(ii) In what follows, an integer point-is always an element of R"*! with
integer coordinates &, , ..., &,+1 and £ and § are any positive real numbers. For
q= (ﬁl: weey éu+l)em+‘ pl“

L(m = Zl “v§v+¢n+1, {ﬂ’} = max |&,l, (@) = ( i 5311;2_

1=v=n
For real w let

d(w) = {ZTeR*Y &) <1+ @)} v {ZeR o(@) <1}
¥ = (ZeR| &) <20(2)}.
THEOREM 1. (a) If
(0) w=wn)=1+1/n+1/n%,
then there exist infinitely many integer points % such that
Yedw) and |LGI<(1+0){9)7"
®) If

(03] v=ov(m)=3(n—1+/n?+2n-3)
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