SHINTANI LIFTS, p-ADIC FAMILIES AND DERIVATIVES OF QUADRATIC TWISTS

HENRI DARMON, MCGILL UNIVERSITY

ABSTRACT. Thanks to Steven J. Miller for texing these notes. Any inaccuracies or obscurities of exposition should be bamed on the speaker!

1. INTRODUCTION

Let N be an odd, square-free integer, $S_k(\Gamma_0(N))$ be the space of cusp forms of weight k on $\Gamma_0(N), k \equiv 2 \text{ mod } 4$, and $S_{(k+1)/2}(\Gamma_0(4N))$ the space of forms of weight $(k + 1)/2$ in the Kohnen subspace.

Theorem 1.1 (Shimura-Kohnen). The spaces $S_{\text{new}}^k(\Gamma_0(N))$ and $S_{\text{new}}^{k+1/2}(\Gamma_0(4N))$ are isomorphic as modules over the Hecke algebra.

Given an eigenform $f \in S_{\text{new}}^k(\Gamma_0(4N))$ there is a corresponding $g \in S_{\text{new}}^{k+1/2}(\Gamma_0(4N))$, which is unique up to multiplication by a non-zero scalar. Let $g(q) = \sum \sum_{D>0} c(D)q^D$ denote its Fourier expansion.

Theorem 1.2 (Kohnen). We have

$$c(D)^2 = \begin{cases} \lambda_g \sqrt{D^{k-1}} L(f, \chi_D, k/2) & \text{if } -D \equiv 0, 1 \text{ mod } 4, \chi_D(\ell) = \omega_\ell \text{ if } \ell | N \\ 0 & \text{otherwise} \end{cases} \quad (1.1)$$

The question which motivates the present talk is the following. By Kohnen’s theorem, the central critical values of quadratic twists of f are packaged into a modular generating series. Can we do something similar for first derivatives? Is there a way to package them into a generating series with a modular interpretation?

This is the motivation. We will discuss a partial result saying something in this direction (joint work in progress with Gonzalo Tornaria). We exploit p-adic families of modular forms.

2. OVERVIEW OF p-ADIC FAMILIES

Let f be a modular form of weight 2 on $\Gamma_0(N)$ which is associated to an elliptic curve E. Fix a prime p dividing N (recall that N is a square-free integer, so $p || N$). This implies $a_p(f) = \pm 1$ (the negative of the eigenvalue of the Atkin-Lehner involution), and thus $a_p(f)$ is a p-adic unit.

Fix a p-adic domain $U \subset \mathbb{Z}_p$.

Definition 2.1. A p-adic family of modular forms is a formal q-series $\sum a_n(k)q^n$, where the $a_n(k)$ are p-adic analytic functions of $k \in U$, with the property that $f_k := \sum a_n(k)q^n$ is a normalised eigenform of weight k on $\Gamma_0(N)$, for all $k \in U \cap \mathbb{Z}_{\geq 2}$.

Example 2.2. There are the following basic examples of p-adic families of modular forms:
• **Eisenstein series.** Let
 \[E^*_k = \zeta^*(1 - k) + \sum_{n=1}^{\infty} \sigma^*_k(n)q^n, \]
 with \(\sigma^*_k(n) = \sum_{d|n,(p,d)=1} d^{k-1} \) (the \(\zeta^* \) means we remove the factor corresponding to \(p \)).

• **Binary theta series.** Let \(\psi \) be a Hecke character of an imaginary quadratic field \(K \), of \(\infty \) type \((1,0)\),
 \[\theta_k = \sum_{a \in \mathcal{O}_K} \psi(a)q^{a^2}. \]

The following theorem of Hida shows that these families are in some sense quite ubiquitous.

Theorem 2.3 (Hida). There exists a unique \(p \)-adic family \(f_k \) satisfying \(f_2 = f \).

Remark 2.4 (Important). For all \(k \in U \cap \mathbb{Z}^{>2} \), we have \(f_k \in S_k(\Gamma_0(N)) \), though these are not necessarily newforms. For \(k > 2 \), they are not new at \(p \), but are new at all other primes dividing \(N := pM \). Thus there exists a newform \(f_k^\# \in S_k^{\text{new}}(\Gamma_0(M)) \) with the same Hecke eigenvalues at \(\ell \neq p \).

Let \(g_k \in S_k^{\text{new}}(\Gamma_0(4M)) \) be the form which corresponds to \(f_k^\# \) under the Shimura-Kohnen correspondence:
 \[g_k = \sum_{D>0} c(D,k)q^D. \]
These forms have potentially twice as many non-vanishing Fourier coefficients. This is because the level has dropped.

There are two types of \(D \) for which, a priori, \(c(D,k) \) could be non-zero:

- **Type I:** \(D \) such that \(\chi_{-D}(\ell) = \omega_\ell \) for all \(\ell | N \): for these \(L(f,-D,s) \) has sign 1 it its functional equation and \(c(D) \) encodes its central critical value \(L(f,-D,1) \);
- **Type II:** \(D \) such that \(\chi_{-D}(\ell) = \omega_\ell \) for all \(\ell | M \) but \(\chi_{-D}(p) = -\omega_p \): for these, \(L(f,-D,s) \) has sign \(-1\) if its functional equation and it becomes natural to consider \(L'(f,-D,1) \).

Note that the \(g_k \) are only defined up to a non-zero scalar. We will normalise them by setting a coefficient equal to 1. There is a fact (due to Glenn Stevens) which asserts that there is a \(\Delta_0 \) (of type I) such that \(c(\Delta_0, k) \neq 0 \) for all \(k \) in a \(p \)-adic neighborhood of 2, and in particular \(c(\Delta_0) \neq 0 \).

By dividing by that coefficient, we can define
 \[\tilde{c}(D,k) = \frac{1 - \chi_{-D}(p)a_p(k)^{-1}p^{-\frac{k-2}{2}}}{1 - \chi_{-\Delta_0}(p)a_p(k)^{-1}p^{-\frac{k-2}{2}}} \cdot \frac{c(D,k)}{c(\Delta_0, k)}. \]
These are defined for \(k \in U \cap \mathbb{Z}^{>2} \), and we can show
 \[\tilde{c}(D,k) = \frac{c(p^2D,k)}{c(p^2\Delta_0,k)}. \]

Theorem 2.5 (Hida, Stevens). The functions \(k \mapsto \tilde{c}(D,k) \) extend to analytic functions in a neighborhood of \(k = 2 \).

If the discriminant \(D \) is of type II, then \(\tilde{c}(D,2) = 0 \). Our main theorem is the following:

Theorem 2.6 (Tornaria-Darmon). Let \(-D\) be a type II discriminant. Then there exists a point \(P_D \in E^{-D}(\mathbb{Q}) \otimes Q \) (the Mordell-Weil group attached to the elliptic curve \(E^{-D} \)) such that
(1) \(\frac{d}{dk} \tilde{c}(D, k)_{k=2} = \log_p(P_D) \) (here \(\log_p : E^{-D}(\mathbb{Q}_p) \to \mathbb{Q}_p \) is the \(p \)-adic formal group logarithm).

(2) The point \(P_D \) is of infinite order if and only if \(L'(f, -D, 1) \neq 0 \).

One way of stating this result is the following. After normalising \(g_k \) (and applying a Hecke operator \(U_p^2 \) to it) we have the following “first order expansion” of \(g_k \) in a neighbourhood of weight \(3/2 \):

\[
g_k = \sum_{D \text{ type I}} c(D) q^D + (k - 2) \sum_{D \text{ type II}} \log_p(P_D) q^D + O((k - 2)^2).
\]

(2.7)

Question 2.7. Natural questions:

(1) What can we say about the order of vanishing at \(k = 2 \) of \(c(D, k) \)? Presumably this is related to the rank of \(E^{-D} \).

(2) What can we say about leading terms?

(3) Is there a non-\(p \)-adic version?

(4) Is this formula useful (for the types of questions considered in this workshop)? The original formula of Kohnen and Waldspurger helps analyze a large number of non-vanishing of quadratic twists. Can we do something similar for first derivatives?

To amplify on the last question: Consider a \(k \) which is \(p \)-adically close to 2, say \(k = 2 + (p - 1)p^M \). We can look at \(\tilde{c}(D, k) \). If \(D \) is of type II, we know \(\tilde{c}(D, k) \equiv 0 \mod p^{M+1} \). If \(\tilde{c}(D, k) \not\equiv 0 \mod p^{2M} \) then \(L'(f, -D, 1) \neq 0 \). So if we are looking for non-vanishing twists of derivatives, we can search instead for coefficients of forms of higher half integral weight that are not divisible by \(p^{2M} \).

The key ingredient in the proof of the main theorem are

- a formula (due to Kohnen) relating integrals of modular forms to products of the coefficients: \(c(D, k)c(\Delta, k) \) is a combination of geodesic cycle integrals attached to \(f_k \) and binary quadratic forms of discriminant \(D\Delta \);
- The theory of Stark-Heegner points.