DISCUSSION OF c_E

CHRISTOPHE DELAUNAY

ABSTRACT. Any errors should solely be attributed to the typist, Steven J. Miller. The cyrillic package did not load, so Sha is denoted by ω.

1. COMMENTS ON AN EARLIER TALK

Earlier in the week I was wrong to say that Ono conjectured that if E/\mathbb{Q} is an elliptic curve then there are infinitely many primes p such that the rank of either E_p or E_{-p} is at least two. In fact, Silverman conjectured that there are infinitely many primes p such that the rank of either E_p or E_{-p} is zero. Ono proved that for all E with conductor at most 100, Silverman’s result is true, more precisely, he proved that there is a positive density of primes satisfying Silverman’s conjecture.

We can ask whether or not for E/\mathbb{Q} an elliptic curve there are infinitely many primes p such that the rank of either E_p or E_{-p} is at least two.

2. FIRST THOUGHTS ON c_E

We discuss c_E and the kind of complexities that arise when we try to compute it. Let E/\mathbb{Q} be an elliptic curve: $y^2 = f(x)$. Let $d < 0$ be a fundamental discriminant, and consider the twisted curve $E_d: dy^2 = f(x)$. By the B-SD conjecture,

$$L(E_d, 1) = \frac{\Omega}{\sqrt{|d|}} c(E_d) |\omega(E_d)|.$$

(2.1)

We will study those with $|\omega(E_d)| = 0$ (this only a convention for saying that $L(E_d, 1) = 0$). At a first study, we only consider prime discriminants so that the contribution $c(E_d)$ in (2.1), coming from the Tamagawa numbers, is simply 1. So, in the following, d will denote a prime fundamental discriminant such that the sign of the functional equation of E_d is +1.

By Random matrix theory and the probability model,

$$\text{Prob} \left(L(E_d, 1) < x \right) \sim c(E) x^{1/2} \log^{3/8} |d|$$

as $x \to 0$. By applying a discretization procedure, we find

$$\text{Prob} \left(L(E_d, 1) = 0 \right) = \text{Prob} \left(|\omega(E_d)| \approx 0 \right)$$

$$= \text{Prob} \left(|\omega(E_d)| < r \right) \text{, for some } r < 1$$

$$= c(E) r |d|^{-1/2} \log^{3/8} |d|. \quad (2.3)$$

The conclusion is that

$$\# \{ |d| < T : L(E_d, 1) = 0, \epsilon(E_d) = 1, d \text{ primefund. disc.} \} \sim c_E T^{3/4} \log^{8-1} T. \quad (2.4)$$

To understand c_E there is an interplay between the arithmetics on E, the behavior of ω, our probability model, and the value of the parameter r.

2.1. Arithmetic. We have to pay attention to the arithmetic coming from \(E \). For example, if \(E = 17a_1 \), the \(|\omega(E_d)| \) is odd and thus \(L(E_d, 1) \neq 0 \). This is not really a program. But consider \(E' = 11a_1 \). Letting \(y^2 = f(x) \), look at the degree three field defined by any root of \(f(x) \), call this \(K \). Note \(K \) is a non-Galois extension of \(\mathbb{Q} \). If \(d = -p \) is a prime fundamental discriminant such that the sign of the functional equation of \(E_d \) is +1 then \(\frac{D_K}{p} = \left(-\frac{44}{p} \right) = 1 \) so \(p \) is inert or split in \(K \). If \(p \) is inert then \(|\omega(E_d)| \) is odd and thus \(L(E_d, 1) \neq 0 \). This happens 66% of the time, and must probably be taken into account.

2.2. Behavior of \(\omega \). We assume the following conjecture: \(\omega \) is finite. Hence \(\omega \) is a finite Abelian group and there is a bilinear pairing \(\beta : \omega \times \omega \to \mathbb{Q}/\mathbb{Z} \) (alternating and non-degenerate). We say \(G \) is a group of type \(S \) if \(G \) is finite Abelian group with a bilinear alternating non-degenerate pairing \(\beta : G \times G \to \mathbb{Q}/\mathbb{Z} \).

Idea of the heuristic: \(\omega(E) \) of rank 0 elliptic curves \(E \) behave as random group \(G \) of type \(S \) weighted by \(|G|/|\text{Aut}^SG| \). More precisely, if \(f \) is a function,

\[
M(f) := \lim_{T \to \infty} \frac{\sum_{d|T, r(E_d)=0} f(\omega(E_d))}{\sum_{d|T, r(E_d)=0} 1}
\]

is the average of \(f \) over the Tate-Shavarevich groups of \(\omega(E_d) \). It is not known, in general, if the limit exists. The heuristic asserts that for reasonable functions \(f \) the average exist and is given by

\[
M(f) = \lim_{x \to \infty} \frac{\sum_{n \leq x} \sum_{G^0(n)} \frac{f(|G|)/|\text{Aut}^SG|}{|G|}}{\sum_{n \leq x} \sum_{G^0(n)} \frac{|G|}{|\text{Aut}^SG|}}
= \lim_{s \to 0} \frac{\sum_{n \geq 1} n^{-s} \sum_{G^0(n)} f(|G|)/|\text{Aut}^SG|}{\sum_{n \geq 1} n^{-s} \sum_{G^0(n)} |f|/|\text{Aut}^SG|}
= \lim_{s \to 0} \prod_{j \geq 1} \zeta(2s + 2j - 1).
\]

(2.6)

For example, take

\[
f(G) = \begin{cases}
1 & \text{if } |G| \leq N \\
0 & \text{otherwise.}
\end{cases}
\]

(2.7)

Then \(M(f) = \text{Prob}(|\omega(E_d)| < N) = 0 \). This suggests that, maybe, we have to consider \(r < N \) in (2.3). Worse, we can prove (under BSD) that

\[
\frac{1}{T^2} \sum_{|d| < T} |\omega(E_d)| \sim dT^{1/2}.
\]

(2.8)

Hence, this suggests that in fact \(r < |d|^{1/2-\varepsilon} \) have to be considered for probably some twists.

The computation in (2.3) can be done for more general size of \(|\omega(E_d)| \), obtaining that if \(r < |d|^{1/2-\varepsilon} \) we should have

\[
\text{Prob}(|\omega(E_d)|^{1/2} \approx \ell) \approx (*)|d|^{-1/4} \log^\text{power} |d|.
\]

(2.9)
2.3. Another example. Fix a prime ℓ, and let
\[
f(G) = \begin{cases}
1 & \text{if } G_\ell = \{0\} \\
0 & \text{otherwise.}
\end{cases} \tag{2.10}
\]

Set
\[
M(f) = \text{Prob}(\ell \nmid |\omega(E_d)|) \\
= \lim_{s \to 0} \prod_{p \neq \ell} \big(*\big) \prod_{p} \prod_{j \geq 1} (1 - p^{-(2s+2j-1)})^{-1} \\
= \prod_{j \geq 1} (1 - p^{-(2j-1)})^{-1}. \tag{2.11}
\]

We end up getting
\[
\text{Prob } (\ell ||\omega_d(E_d)|) = 1 - \prod_{j \geq 1} (1 - p^{-(2j-1)})^{-1} \\
= \frac{1}{\ell} + \frac{1}{\ell^3} - \frac{1}{\ell^4} \ldots, \tag{2.12}
\]

where the $1/\ell^3$ and higher terms are the difference between the classical arguments and (probably) ‘reality’.

I think one of the key points is the following question: Can random matrix theory predict the above result? Maybe up to a constant? Of course, as ‘up to a constant’ has no meaning in predicting a constant, we need to be a bit more precise.

Let consider the following heuristic computation. We have
\[
\text{Prob } (\ell ||\omega_d(E_d)|) = \text{Prob}(|\omega(E_d)| \approx 0) \\
+ \text{Prob}(|\omega(E_d)|^{1/2} \approx \ell) + \text{Prob}(|\omega(E_d)|^{1/2} \approx 2\ell) + \ldots \\
+ \text{Prob}(|\omega(E_d)|^{1/2} \approx ||d||^{1/4} \ell) \\
= \big(*\big)|d|^{-1/4} + \big(*\big)|d|^{-1/4} + \ldots + \big(*\big)|d|^{-1/4} \\
= \text{Average of } \big(*\big), \tag{2.13}
\]

where the last is known in advance by the heuristics. This could be useful to adjust the ‘approximations’ in the computations...

For doing this, we would need a more precise probabilistic model:
\[
\text{Prob } (L(E_d, 1) < x) = c(E)x^{1/2} \log^{3/8} |d| + \ldots + o(x^{1/2-\epsilon}) \tag{2.14}
\]
for $x \ll 1$. Or something like that.

Another useful fact is that we can use other test primes than ℓ or other functions. Unfortunately, the heuristic is not right for all primes. For some primes (depending on E and probably just on the order of the torsion sub-group of $E(\mathbb{Q})$) we rather have to apply the original Cohen-Lenstra for class-group (this is discussed in M. Rubinstein talk).